Appendix PDF

Table of Content

Appendix Table S1: Analysis of the allelic recombination products	2
Appendix Table S2: Yeast strains used in this study	3
Appendix Table S3: Primers used in this study	7
Appendix Figure S1	9
Appendix Figure S2	10
Appendix Figure S3	11
Appendix Figure Legends	12

Appendix Table S1. Analysis of the allelic recombination products. The percentage of indicated products among tested colonies. Number of tested colonies is shown in parentheses.

	"BIR"	Gene conversion	Cross-over	Chromosome loss	Others
WT	0.5	81.37	16.75	0.67	0.71
(597)	(3)	(485.75)	(100)	(4)	(4.25)
rad59	2.81	80.42	15.41	0.1	1.26
(623)	(17.5)	(501)	(96)	(0.75)	(7.75)
rad52-R70A	6.73	72.94	15.32	3.14	1.87
(509)	(34.25)	(371.25)	(78)	(16)	(9.5)
rad59 rad52-R70A	8.84	64.58	16.46	6.79	3.33
(571)	(50.5)	(368.75)	(94)	(38.75)	(19)
pif1	0.41	82.99	15.07	0.71	0.81
(491)	(2)	(407.5)	(74)	(3.5)	(4)
pif1 rad52-R70A	1.03	81.09	16.42	0.73	0.73
(755)	(7.75)	(612.25)	(124)	(5.5)	(5.5)
mre11	7.84	64.8	17.25	6.18	3.92
(510)	(40)	(330.5)	(88)	(31.5)	(20)
mph1	0.62	76	22.39	0	1
(402)	(2.5)	(305.5)	(90)	(0)	(4)
mph1 rad59	8.06	69.62	17.17	0.15	5.01
(664)	(53.5)	(462.25)	(114)	(1)	(33.25)
mph1 rad52-R70A	10.35	63.82	17.22	1.9	6.71
(604)	(62.5)	(385.5)	(104)	(11.5)	(40.5)
mph1 rad59 rad52-R70A	11.65	63.86	13.31	7.95	3.23
(541)	(63)	(345.5)	(72)	(43)	(17.5)

Appendix Table S2: Yeast strains used in this study.

Strain	Parental Strain	Genotype	Source	
name				
A. Original strains				
YAM033		ho ade3::GAL10::HO HML α -inc MATa	(Mehta et.	
		hmr::ADE1 bar1::ADE3 nej1::KANMX ade1	al., 2017)	
		leu2,3-112 trp1::hisG ura3-52 thr4 lys5		
JKM139		MATa ho hml::ADE1 hmr::ADE1 ade1 leu2-3,-112	(Lee et. al,	
		lys5 trp1::hisG ura3-52 lys5 ade3::GAL10::HO	1998)	
JKM179		$MAT\alpha$ ho hml::ADE1 hmr::ADE1 ade1 leu2-3,-112	(Lee et. al,	
		lys5 trp1::hisG ura3-52 lys5 ade3::GAL10::HO	1998)	
B. H-150	system		1	
YAM095		ho ade3::GAL10::HO HMLα-inc MATa hmr::ADE1	(Mehta et.	
		bar1::ADE3 nej1::KANMX ade1 leu2,3-112	al., 2017)	
		trp1::hisG ura3-52 thr4 lys5, W∆, MAT		
		$X\Delta 150bp::Cg-TRP1$		
NP493	YAM095	rad59::NATMX	This study	
NP532	YAM095	rad52-R70A	This study	
NP534	YAM095	rad59::NATMX rad52-R70A	This study	
NP817	YAM095	sir2::HPHMX	This study	
NP852	YAM095	yku70::NATMX	This study	
NP853	YAM095	mre11::HPHMX	This study	
NP857	YAM095	yku70::NATMX mre11::HPHMX	This study	
NP856	YAM095	rad51::LEU2MX	This study	
NP868	YAM095	rad52::HPHMX	This study	
NP859	YAM095	dot1::NATMX	This study	
C. H-150 no gap system				
NP764	NP578	<i>W</i> Δ <i>MAT X</i> Δ <i>Y</i> αΔ150bp::Cg-TRP1	This study	
NP743	NP764	rad59::NATMX	This study	
NP775	NP764	rad52-R70A	This study	
NP751	NP764	rad59::NATMX rad52-R70A	This study	
NP829	NP764	sir2::HPHMX	This study	
NP843	NP764	mre11::HPHMX	This study	
NP870	NP764	yku70::NATMX	This study	
NP873	NP764	yku70::NATMX mre11::HPHMX	This study	
D. H-140	0 system			
NP575	YAM033	rad59::NATMX	This study	
NP576	YAM033	rad52-R70A	This study	
NP577	YAM033	rad59::NATMX rad52-R70A	This study	
NP664	YAM033	mph1::HPHMX	This study	
NP665	YAM033	mph1::HPHMX rad59::NATMX	This study	
NP696	YAM033	mph1::HPHMX rad52-R70A	This study	
NP697	YAM033	mph1::HPHMX rad59::NATMX rad5-2R70A	This study	

NP818	YAM033	sir2::HPHMX	This study	
E. H-2100 system				
NP578	YAM033	ho ade3::GAL10::HO HMLα-inc MATα	This study	
		hmr::ADE1 bar1::ADE3 nej1::KANMX ade1		
		<i>leu2,3-112 trp1::hisG ura3-52 thr4 lys5</i>		
NP579	NP578	rad59::NATMX	This study	
NP580	NP578	rad52-R70A	This study	
F. Allelic	Recombination			
NP633	YAM033	$MAT\alpha$ -inc $HML\alpha$ -inc hmr::ADE1 bar1::ADE3	This study	
		ade1 leu2,3-112 trp1::hisG ura3-52 thr4 lys5		
		ade3::GAL10::HO		
NP676	JKM139	kiTRP inserted at location 17130	This study	
		LEU2 at 296670 on Chr III		
NP643	NP633	KANMX inserted at location 296670 on Chr III	This study	
NP677	NP676	rad59::NATMX	This study	
NP681	NP676	rad52-R70A	This study	
NP682	NP676	rad59::NATMX rad52-R70A	This study	
NP645	NP643	rad59::NATMX	This study	
NP646	NP643	rad52-R70A	This study	
NP647	NP643	rad59::NATMX rad52-R70A	This study	
NP698	NP676 x NP643	$MATa/MAT\alpha$ -inc	This study	
NP699	NP677 x NP645	rad59::NATMX/ rad59::NATMX	This study	
NP700	NP681 x NP646	rad52-R70A/ rad52-R70A	This study	
NP701	NP682 x NP647	rad59::NATMX/rad59::NATMX	This study	
		rad52-R70A/rad52-R70A		
NP729	NP676	ura3∆	This study	
NP728	NP643	ura3∆	This study	
NP769	NP677	ura3∆	This study	
NP712	NP645	ura3∆	This study	
NP714	NP681	ura3∆	This study	
NP713	NP646	ura3∆	This study	
NP794	NP729	pif1::HPHMX	This study	
NP795	NP728	pif1::HPHMX	This study	
NP815	NP728 x NP729	pif1::HPHMX/ pif1::HPHMX	This study	
NP798	NP714	pif1::HPHMX	This study	
NP811	NP713	pif1::HPHMX	This study	
NP816	NP798 x NP811	pif1::HPHMX/pif1::HPHMX	This study	
		rad52-R70A/rad52-R70A		
NP693	NP676	mph1::HPHMX	This study	
NP662	NP643	mph1::HPHMX	This study	
NP702	NP662 x NP693	mph1::HPHMX/mph1::HPHMX	This study	
NP694	NP677	mph1::HPHMX	This study	
NP671	NP645	mph1::HPHMX	This study	

NP703	NP694 x NP671	mph1::HPHMX/mph1::HPHMX	This study
		rad59::NATMX/rad59::NATMX	
NP710	NP681	mph1::HPHMX	This study
NP673	NP646	mph1::HPHMX	This study
NP705	NP673 x NP710	mph1::HPHMX/mph1::HPHMX	This study
		rad52-R70A/rad52-R70A	
NP695	NP682	mph1::HPHMX	This study
NP674	NP647	mph1::HPHMX	This study
NP706	NP695 x NP674	mph1::HPHMX/mph1::HPHMX	This study
		rad59::NATMX/rad59::NATMX	
		rad52-R70A/rad52-R70A	
NP814	NP729	mre11::HPHMX	This study
NP835	NP728	mre11::HPHMX	This study
NP841	NP814 x NP835	mre11::HPHMX/mre11::HPHMX	This study
G. Mutat	ion analysis		1
NP754	NP728	<i>HYG-ura3-29</i> inserted 16kb away from $MAT\alpha$ -inc	This study
NP783	NP712	<i>HYG-ura3-29</i> inserted 16kb away from $MAT\alpha$ -inc	This study
NP733	NP713	<i>HYG-ura3-29</i> inserted 16kb away from <i>MAT</i> α <i>-inc</i>	This study
NP757	NP729 x NP754		This study
NP786	NP769 x NP783		This study
NP755	NP733 x NP714		This study
H. H-0 sy	stem		
NP477	YAM033	W∆, MAT X∆::Cg-TRP1	This study
NP494	YAM033	rad59::NATMX	This study
NP531	YAM033	rad52-R70A	This study
NP625	YAM033	rad59::NATMX rad52-R70A	This study
NP717	NP477	mph1::HPHMX	This study
NP718	NP477	mph1::HPHMX rad5-2R70A	This study
NP828	NP477	sir2::HPHMX	This study
I. HR-0 9	system		
NP582		ho ade3::GAL10::HO HMR a -inc MATα hml::ADE1	This study
		bar1::ADE3 ade1 leu2,3-112 trp1::hisG ura3-52	
		thr4 lys5	
NP860	NP582	$W\Delta, MAT X\Delta::Cg-TRP1$	This study
J. Disom	ic BIR system		1
AM1003		MATa-LEU2-tel/MAT α -inc ade1 met13 ura3 leu2-	(Deem et.
		3,112/leu2 thr4 lys5 hml::ADE1/hml::ADE3	al. 2008)
		hmr::HYG ade3::GAL10::HO FS2::NAT/FS2	
yWH271	AM1003	MATa-KANMX-tel/MAT α -inc ade1 met13 ura3	This study
		leu2-3,112/leu2 thr4 lys5 hml::ADE1/hml::ADE3	
		hmr::HYG ade3::GAL-HO FS2::NAT/FS2	
NP667	yWH271	rad59::LEU2MX	This study
NP660	yWH271	rad52-R70A	This study
NP668	yWH271	rad59::LEU2MX rad52-R70A	This study

K. Resection analysis				
NP541	JKM139	rad52-R70A	This study	
AP485	JKM139	rad52::KANMX	This study	
NP729		WT	This study	
NP814	NP729	mre11::HPHMX	This study	
NP851	NP729	yku70::NATMX	This study	
NP875	NP729	yku70::NATMX mre11::HPHMX	This study	
L. Recom	L. Recombination assay on chromosome V			
yRA97		$ho\Delta$ mat:: $hisG$ $hml\Delta$:: $hisG$ $HMRa$ -stk ura $3\Delta 851$	(Anand et.	
		$trp1\Delta 63 \ leu2\Delta::KAN \ hmr\Delta::ADE3$	al., 2014)	
		ade3::GAL10::HO can1 Δ ::UR::HOcs::A3::TRP1		
		RA::LEU2		
NP844	yRA97	rad52-R70A	This study	
NP872	yRA97	sir2::HPHMX	This study	

Appendix Table S3: Primers used in this study

Name	$5' \rightarrow 3'$ sequence	Comments
MATa distal Fw	ATTGGCTATACGGGACGG	To make MAT
MATa distal Rv	CTTAGCTTGTACCAGAGG	distal probe
Z probe Fw	CGCAACAGTATAATTTTATAAA	To make Z probe
Z probe Rv	ATGAGTGTATAAACAAACATTG	
SSA probe Fw	ATTGTACGCCAACTTAAGACC	To make SSA
SSA probe Rv	GATATCACCAAACATGTTGC	probe
ACT1 probe Fw	TCTTCCCATCTATCGTCGGTAGAC	To make control
ACT1 probe Rv	GGTCAATACCGGCAGATTCC	ACT1 probe
MATa resect Fw	CTAAAGTAGAGCAACATACATTACACA	MAT probe
MATa resect Rv	ACATCAAGATCGTTTATGGTTAAGATA	(resection)
BPL1 Fw	CCAGGATCAGTTAAGCATGCTG	To make control
BPL1 Rv	ATTCAGGGTGTGGTCCAGTGAG	BPL1 probe
TRP1 probe Fw	GCATGGTATCACTACACACATC	To make TRP1
TRP1 probe Rv	AACCACACACTTTAACGAGCAT	probe
FEN2 probe Fw	CACCAATGCATATATATCCG	To make FEN2
FEN2 probe Rv	GAATAGTCGACCAGTCTAAC	probe
HML distal Fw	GGAAAATGCGTGTTCCTTGT	To make HML
HML distal Rv	TCATTGCAAACGTCGGGCTTT	distal probe
H F1	gatatettttaatgttgteteactatettgeeaataagaetetaeceagat	To construct H-0
	TCGAG GTCGACGGTATC	systems
H-0 R1	acttttcctttttggaagttttatacagtttccccgaaagaacaaaaatcaag	
	CGCTCTAGAACTAGTGGATC	
H-150 no gap R1	gtaatatgctctaaaagccataaatgagtttaaatatttctttgaagatt	Use with H F1 to
	CGCTCTAGAACTAGTGGATC	construct H-150
		no-gap
kiTRP(III) F1	gggcttaacaggagccgcccatgcggaatcatgtctccgcgcagaggact	To make <i>kiTRP1</i>
	tttaatagag GGCCAGAAGACTAAGAGGTG	insertion cassette
kiTRP(III) R1	ttttctttttctcttttcgcgagtactaatcaccgcgaacggaaactaatg	
-	AAAGTGGAACGATCATTCACTATAT	
LEU2(III) F1	acaattcaagatctgtatcatttacactaacacaccccattttaatagag	To make <i>LEU2</i>
	ATGTCTGCCCCTAAGAAGAT	insertion cassette
LEU2(III) R1	aatgatgcagtggcgatatcatatgcaaaagaaatgtaggaagtactcag	
	TTAAGCAAGGATTTTCTTAACTTCT	
KanMX(III) FI	acaattcaagatctgtatcatttacactaacacaccccattttaatagag	To make KANMX
	GACATGGAGGCCCAGAATAC	insertion cassette
KanMX(III) R1	aatgatgcagtggcgatatcatatgcaaaagaaatgtaggaagtactcag	
	CAGTATAGCGACCAGCATTC	
gRNA-URA3(V)	GTTGATTATGACACCCGGTG	gRNA targeting
		ura3-52
<i>ura3</i> template	TCITAACCCAACTGCACAGAACAAAA	Template to delete
	CUTGCAGGAAACGAAGATAAATCAAAA	URA3

	CTGTATTATAAGTAAATGCATGTATACT AAACTCACAAATTAGAGC	
gRNA-RAD52	ACTCTCTTGGAGATATACTC	gRNA targeting <i>RAD52</i>
<i>rad52-R70A</i> template	CAAGAAATTAGGACCTGAGTATATCTC CAAG <u>GC</u> AGTTGGGTTTGGAACAAGCA GGATTGCATACATCGAAGGT	Template to make <i>rad52-R70A</i>

*Primer sequences for other gene deletions are available upon request. All gene disruptions/alterations were confirmed by PCR. Point mutations were confirmed by Sanger sequencing.

Supplemental references

- Anand R, Beach A, Li K, Haber J. 2017. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. *Nature* **544**: 377-380.
- Church, G.M., and Gilbert, W. (1985). The genomic sequencing technique. Prog. Clin. Biol. Res. 177, 17–21.
- Deem A, Barker K, Vanhulle K, Downing B, Vayl A, Malkova A. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics. 2008;179:1845–1860.
- Lee, S. E., Moore, J. K., Holmes, A., Umezu, K., Kolodner, R. D., and Haber, J. E. (1998). Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell *94*, 399-409.
- Mehta A, Beach A, Haber JE. 2017. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. *Mol Cell* 65: 515-526 e513.
- Rothstein, R. J. (1983) One-step gene disruption in yeast, Methods Enzymol 101, 202-211.
- Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P, Ira G. Pifl helicase and Polo promote recombination-coupled DNA synthesis via bubble migration. Nature. 2013;502:393–396
- Vaze M, Pellicioli A, Lee S, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber J. 2002. Recovery from checkpoint-mediated arrest after repair of a double- strand break requires srs2 helicase. *Mol Cell* **10**: 373-385.

TEI

EcoRI

4 kb

Xhol

В. н-150

С. н-150

Appendix Figure S1. Schematic of recombination assays used in figure 1 and 2

Restriction enzyme sites, size of different repair outcomes, and the position of probes used for Southern blots are shown.

Appendix Figure S2. Role of resection, Rad52 and Rad51 in repair pathway choice

- (A) Schematic of resection assay including sites of restriction enzyme *Eco*RI cleavage and location of *MAT* and *FEN2* probe (top), representative of Southern blots (bottom left) and graph showing kinetics of extensive resection measured 28 kb from DSB (bottom right) in WT, $rad52\Delta$ and rad52-R70A mutant cells.
- (B) Representative Southern blots showing DSB repair products (left), percentage of BIR product among repair outcomes by 6 hr (middle) and viability (right) of WT and $dot1\Delta$ cells in H-150 assay.
- (C) Representative Southern blots showing DSB repair products in WT, rad52Δ, and rad51Δ cells in H-150 assay (left), percentage of BIR products among repair outcomes by 6 hr (middle), and viability of indicated strains (right) are shown. The wild-type control is the same as in figure S2B as experiments in figures S2B and S2C are parallel.

Appendix Figure S3. Comparison of BIR product in H-150 assays with gap and without gap of WT, *rad59∆*, *rad52-R70A*

The percentage of BIR products among repair outcomes by 6 hrs in H-150 and H-150 no-gap assays. The data were taken from the same experiments as shown in figure 1 and 2.