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Abstract: Species usually develop reproductive isolation mechanisms allowing them to avoid
interbreeding. These preventive barriers can act before reproduction “pre-zygotic
barriers”, limiting unfavourable mating, or during the life cycle, “post-zygotic barriers”,
determining the viability and selective success of the hybrid offspring. Hybridization in
parasites and the underlying reproductive isolation mechanisms allowing them to
maintain their genetic integrity have poorly been explored and are still misunderstood.
Using an integrated approach this work aims to quantify the relative importance of pre-
zygotic barriers in  Schistosoma haematobium x Schistosoma bovis  crosses. These
two co-endemic species cause schistosomiasis, one of the major debilitating parasitic
diseases worldwide and can hybridize naturally. Using mate choice experiments we
first tested if a specific mate recognition system exists between both species. Second,
using RNA-sequencing we analysed differential gene expression between homo- and
hetero-specific pairing in male and female adult parasites. We show that homo- and
hetero-specific pairing occurs randomly between these two species, and few genes in
both sexes are affected by hetero-specific pairing. This suggests that i) the choice of
mate is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except
spatial isolation “by the host” seems to limit interbreeding between these two species.
Interestingly, some of the genes affected by the pairing status of the worms can be
related to pathways affected during male and female interactions and may also present
interesting candidates for species isolating mechanisms and hybridization in
schistosome parasites.
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Abstract 42 

Species usually develop reproductive isolation mechanisms allowing them to avoid 43 

interbreeding. These preventive barriers can act before reproduction “pre-zygotic barriers”, 44 

limiting unfavourable mating, or during the life cycle, “post-zygotic barriers”, determining the 45 

viability and selective success of the hybrid offspring. Hybridization in parasites and the 46 

underlying reproductive isolation mechanisms allowing them to maintain their genetic integrity 47 

have poorly been explored and are still misunderstood. Using an integrated approach this work 48 

aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x 49 

Schistosoma bovis crosses. These two co-endemic species cause schistosomiasis, one of the 50 

major debilitating parasitic diseases worldwide and can hybridize naturally. Using mate choice 51 

experiments we first tested if a specific mate recognition system exists between both species. 52 

Second, using RNA-sequencing we analysed differential gene expression between homo- and 53 

hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-54 

specific pairing occurs randomly between these two species, and few genes in both sexes are 55 

affected by hetero-specific pairing. This suggests that i) the choice of mate is not a reproductive 56 

isolating factor, and that ii) no pre-zygotic barrier except spatial isolation “by the host” seems 57 

to limit interbreeding between these two species. Interestingly, some of the genes affected by 58 

the pairing status of the worms can be related to pathways affected during male and female 59 

interactions and may also present interesting candidates for species isolating mechanisms and 60 

hybridization in schistosome parasites.  61 

 62 

Keywords: Schistosoma, Hybridization, Reproductive isolation mechanisms, RNA-63 

sequencing 64 
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Author summary  66 

Understanding how species maintain their genetic integrity is a central question in evolutionary 67 

science. If isolation mechanisms are well documented in free-living organisms, it is currently 68 

not the case for parasite species. Yet, occurrence of parasite hybrids is a critical global health 69 

concern since these hybrids are expected to be more harmful than parental species. We 70 

addressed the question of reproductive isolation mechanisms in parasitic species by conducting 71 

an integrative experimental study (from mate choice to gene expression) on two schistosome 72 

species (S. haemtobium and S. bovis) that parasite human and cattle respectively and for which 73 

hybrids have been responsible of recent outbreaks, including out of endemic areas. We showed 74 

that S. haematobium and S. bovis mate randomly rather than have preferred homo-specific mate 75 

choice, but also that they only express a few genes differentially when involved in a hetero-76 

specific pair compared to a homo-specific pair. We consequently suggest that these two 77 

schistosome species lack strong isolation mechanism but the one imposed by host specificity. 78 

Our results raise the concern that in absence of post-zygotic barriers, hybridization between 79 

both species might be more common than previously thought in areas where the two species 80 

overlap and encounter.  81 

 82 
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Introduction  84 

Usually species cannot interbreed. A subset of obstacles has evolved in the course of speciation 85 

in order to limit gene flow via hybridization and maintain species boundaries. These obstacles 86 

are traditionally classified as pre- and post-zygotic barriers (also known as pre- or post-mating 87 

barriers) and can be defined as any mechanisms preventing or reducing gene flow between 88 

groups of potentially interbreeding individuals [1]. Pre-zygotic barriers include spatial isolation 89 

(two species live in different habitats), behavioural isolation (individuals can choose to mate 90 

with individual of their own species), temporal isolation (copulation does not occur at the same 91 

time e.g., different seasons) mechanical isolation (sex organs are not compatible) and gametic 92 

isolation (the gametes encounters but fertilization does not occur). When the first barrier is 93 

crossed, post-zygotic isolation mechanisms can arise to prevent gene flow. Post-zygotic barriers 94 

include hybrid unviability (hybrids die prematurely), reduced fitness with low fertility (hybrids 95 

are poorly fertile or infertile) or hybrid breakdown (a longer process where the hybrids lines 96 

are counter-selected compared to their parental forms). The strength and/or the order of each 97 

barrier are variable among species making difficult to predict the evolution of reproductive 98 

isolation mechanisms [2]. Moreover, reproductive isolation is often the result of an 99 

accumulation and interaction of multiple pre- and post-zygotic mechanisms restricting most 100 

gene flow [3]. However, it is generally admitted that the pre-zygotic isolation barriers are 101 

enhanced in sympatric species [4] and are the most effective because they act early to prevent 102 

producing un-adapted progeny [5]. 103 

Despite their importance in term of biodiversity [6] and animal or human health, parasite 104 

species have received less attention than free living organisms both in terms of hybridization 105 

and understanding the role of pre- or post-zygotic mechanisms in their reproductive isolation 106 

[7]. The pre-zygotic barriers usually include additional and stronger obstacles to overcome 107 

compared to free living organisms. For instance, the "habitat barrier" includes both the 108 
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geographic area, the host species and tropism within the host. For parasites, hosts are inimical 109 

habitats imposing strong selective pressures (co-evolutionary arms race) requiring constant 110 

adaptation of parasites for the completion of their life cycle. The specialisation of parasite 111 

species to a particular host is thus a strong pre-zygotic isolation mechanism shaped through its 112 

hosts potentially preventing hybridization and favouring speciation. However, some related 113 

species manage to retain their genetic identity while parasitizing the same host, meaning that 114 

they have acquired selective mechanisms for reproductive isolation. Hybridization and pre-115 

zygotic reproductive barriers have been studied on very few parasite models: plasmodium, 116 

cestodes and schistosomes [7–9]. Partial pre-zygotic barriers have been evidenced between 117 

Plasmodium berghei and P. yoeli [8]. It was not the case between Schistocephalus solidus and 118 

S. pungitii [7], suggesting in this last case that post-zygotic selection against hybrids is 119 

presumably the most important driving force limiting gene flow between these two parasite 120 

sister species [7].  121 

Schistosomes are among the world greatest concerns in terms of human and animal health 122 

because they cause schistosomiasis debilitating diseases affecting over 230 million of people 123 

in the world [10]. There are currently six Schistosoma species infecting humans and 19 species 124 

infecting animals [9]. These parasites have a two-host life cycle, which includes a mammalian 125 

definitive host in which sexual reproduction occurs and a mollusc intermediate host in which 126 

asexual multiplication takes place. Schistosomes have the particularity of having separate sexes 127 

among other trematodes [11,12] and have therefore been intensively studied for their sexual 128 

features including male-female interactions [13,14], sex-ratio [15,16], mating system [17,18] 129 

and mating behaviour [19]. One direct consequence of dioecism in these species is the necessity 130 

of individuals of both sexes to infect the same definitive host. This constraint can lead to 131 

interaction of species infecting the same host, and in the case of porous reproductive pre-zygotic 132 

barriers to hybridization. 133 
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To conserve their genetic identity, schistosomes that inhabit the same definitive host are 134 

expected to present pre-zygotic isolating mechanisms. Among these barriers, habitat and 135 

behavioural isolation have a great interest in schistosome’s sexual interactions. First habitat 136 

isolation is a three-level constraint that initially has to be overcome: the geographic area, same 137 

host and same localisation in the host. Indeed, schistosomes species are distributed worldwide 138 

(the majority in Africa), the vertebrate host specificity depends on the parasite species, and 139 

while the majority of species live in the mesenteric vein system, one species (S. haematobium) 140 

lives in the veins surrounding the bladder of humans. Second, behavioural isolation is more 141 

complex in schistosomes than in other species because mate choice is followed by a pairing- 142 

dependent differentiation of the female sexual organs [13,14]. Studies have clearly established 143 

that the presence of the male is necessary not only for the female sexual development but also 144 

for the maintenance of sexually mature and active state and does not depend upon species-145 

specific pairing [20–22]. It was also demonstrated that female schistosomes stimulate the males 146 

through changes in level of glutathione and lipids, and stimulates tyrosine uptake in the male 147 

worms [13]. Hence, while males transfer glucose and lipid secretions to females, females also 148 

release factors affecting male worms physiology [23–26]. Thus, male and female schistosomes 149 

are strongly co-dependent, in terms of behaviour (i.e., they have complementary roles in the 150 

hosts) but also physiologically [11] and an intimate and permanent association between sexes 151 

is necessary for reproduction to occur.  152 

Nevertheless, several hybrid schistosomes have been evidenced and like in several other clades 153 

the isolation mechanisms increase with divergence time between taxa [4,9]. Hence, studies on 154 

Schistosome mating choices have revealed that depending on the parasite species some 155 

combinations readily pair (S. haematobium x S. intercalatum and S. bovis x S. curassoni, S. 156 

mansoni x S haematobium), whereas others may be more selective and present mate choice 157 

systems (S. mansoni x S. intercalatum, S. haematobium x S. mattheii, and S. mansoni x S. 158 
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margrebowiei crosses [27–30]). In the former case and for many related species capable of 159 

hybridizing host specificity hence may be the sole barrier preventing interbreeding. This 160 

isolation mechanism “by the host” may be so efficient that species may lack any post-zygotic 161 

or other pre-zygotic mechanisms ultimately allowing them to hybridize when the opportunity 162 

arises. Therefore, the lack of reproductive incompatibility (i.e., isolation by behaviour and 163 

physiology) between schistosome species infecting humans and animals may facilitate gene 164 

flow if the host isolating barriers are broken down.  165 

Schistosoma haematobium x S. bovis hybrids are today the most studied hybrid system of 166 

schistosomes. These hybrids have first been identified in Niger by Brémont [31] and more 167 

recently in Senegal [32] but seem widely distributed in West Africa [31–36]. Moreover, this 168 

hybrid cross has recently been responsible for a large-scale outbreak in Europe (Corsica, 169 

France), where transmission of the disease is persistent [34,37]. Schistosoma haematobium and 170 

S. bovis are co-endemic in Africa, but their tropism is different (veins surrounding the bladder 171 

for S. haematobium vs. mesenteric veins S. bovis) and their definitive hosts are also different. 172 

S. haematobium is mainly a parasite of human. However, sporadic studies have shown that non-173 

Human primates, Cetartiodactyla or rodents could be naturally infected by this parasite species 174 

[38–40]. Conversely, S. bovis is mainly a parasite of ruminant with sporadic cases of rodent 175 

infection [38]. Interestingly recent studies showed that S. haematobium x S. bovis hybrids 176 

naturally infect rodent or cattle [36,41]. Hybridization between these two species is particularly 177 

worrying because it raises the eventuality for a human parasite to become zoonotic but also 178 

because it may lead to changes in the parasites life history traits including their response to 179 

chemotherapeutic treatment [42]. Also these hybrids often display heterosis, in which their 180 

fitness outperforms parental species [9,32,33]. Importantly the existence of a mate recognition 181 

system between the two species would prevent natural occurrences of hybridization in 182 
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sympatric areas. At the contrary a lack of reproductive isolation could indicate that occurrences 183 

of hybridization may be more frequent. 184 

This study hence proposes an integrated approach, from mating behaviour to male and female 185 

gene expression, in order to quantify the relative importance of pre-zygotic barriers in S. 186 

haematobium x S. bovis crosses. First, using a mate choice experiment we tested whether 187 

specific mate recognition exists by quantifying the frequency of hetero-specific and homo-188 

specific pairs compared to random mate choice expectations. Second, given the strong co-189 

dependence between male and female schistosomes, we also analysed the influence of pairing 190 

(homo- vs hetero-specific) on the transcriptomic profile of male and female parasites using 191 

RNA sequencing. The molecular determinants of the very first step towards hybridization may 192 

give further insight into the permeability of the two species and reveal some important genes 193 

linked to male and female interaction, species isolation and hybridization. Relying on such an 194 

integrative approach from mate choice to gene expression hence allowed us to provide a better 195 

understanding of the mechanisms preventing and allowing hybridization between S. 196 

haematobium and S. bovis.  197 

Materiel and methods 198 

 Ethics Statement 199 

Experiments were carried out according to national ethical standards established in the writ of 200 

February 1st, 2013 (NOR: AGRG1238753A), setting the conditions for approval, planning and 201 

operation of establishments, breeders and suppliers of animals used for scientific purposes and 202 

controls. The French Ministry of Agriculture and Fishery (Ministère de l’Agriculture et de la 203 

Pêche), and the French Ministry for Higher Education, Research and Technology (Ministère de 204 

l’Education Nationale de la Recherche et de la Technologie) approved the experiments carried 205 

Highlight

Highlight

Highlight
In

Comment
maybe

Highlight
uses 

Highlight
involved in interactions between 

Highlight
delete 

Highlight
sequence analysis



10 

 

out for this study and provided permit A66040 for animal experimentation. The investigator 206 

possesses the official certificate for animal experimentation delivered by both ministries 207 

(Décret n° 87–848 du 19 octobre 1987; number of the authorization 007083). 208 

Parasite species and experimental infections 209 

The experimental design of this work was set for two objectives, i) assess the species mating 210 

choices by quantifying the frequency of hybridization, ii) force reciprocal hybridization and 211 

assess the transcriptomic changes occurring between homo-specific and hetero-specific paired 212 

males and females.  213 

Schistosoma haematobium and S. bovis were maintained in the laboratory on Bulinus truncatus 214 

snails as intermediate hosts and Mesocricetus auratus as definitive hosts. The species strains 215 

used here originate from Cameroon and Spain for S. haematobium and S. bovis, respectively 216 

[63]. Experimental infections of hamsters with mixed combinations of both species in 217 

controlled proportions were performed after sexing procedure of the cercariae emitted by 218 

individually infected molluscs [63]. Briefly, Bulinus truncatus molluscs were individually 219 

exposed to one miracidium of S. haematobium or S. bovis. After a minimum of 55 days after 220 

exposing the molluscs to the parasites, successfully infected molluscs released either male or 221 

female clonal populations of cercariae of each species. After collecting cercariae from each 222 

individual mollusc, molecular sexing of the parasites where performed as described previously 223 

in Kincaid-Smith et al. (2016). These molluscs were then classified as releasing male or female 224 

cercariae of a specific species (S. haematobium or S. bovis) and were used for the subsequent 225 

experiments. A schematic view of the experimental infection procedure is presented in Fig 1. 226 

Depending on each objective, hamsters were subsequently infected with specific mixed 227 

combinations of cercariae by surface application method for one hour. Detailed methods 228 

employed for molluscs and rodents infections were described previously [64–66] and the 229 
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number and combinations of the cercariae used for each infestation is presented in Table 1. 230 

Specifically, in order to test species mate choices five hamsters were infected with mixed 231 

combinations of cercariae species and relied on the experiment 1 to 5  (i.e., Exp. 1 to Exp. 5, 232 

see Table 1). Experiments 1 to 4 represent a limited choice of mate (Exp. 1 and Exp. 3 male 233 

choice - Exp. 2 and Exp. 4 female choice). In these experiments the excess of one sex ensures 234 

that all individuals of the other sex will be mated (Table 1). Experiment 5 represents species 235 

full choice of mate and is performed using the same number of cercariae of both sexes and both 236 

species (Table 1).  According to our second objective, homo- and hetero-specific control 237 

experiments presented in Table 1 (i.e., Homo control 1, Homo control 2, Hetero control 1 and 238 

Hetero control 2) are simultaneous infections without mate choice and are used to infer the 239 

transcriptomic profiles of homo- and hetero-specific paired worms (Table 1). Finally, for all 240 

infestations, three months after exposing hamsters to cercariae, the number of single and homo-241 

specific versus hetero-specific paired worms was assessed after recovering worms by portal 242 

perfusion of the hamsters [66], separating couples and individualizing each partner in 96 well 243 

plates. Each worm and their status (paired, or single) as well as their sex (male or female) was 244 

thus carefully assigned. 245 

Fig 1. Schematic representation of experimental infection procedure. 246 

  247 
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Table 1: Experimental procedure to evaluate mate choice of S. haematobium and S. bovis 248 

parasites. For each objective are listed the experiments conducted as well as the number of 249 

males and females S. haematobium and S. bovis used and the number of biological replicates 250 

(number of hamsters).   251 

  

Experiments 

S. haematobium S. bovis   

Biological 

replicates 
Males Females Males Females 

Objective 1: Assess species mate 

choice and hybridisation frequency 

          

Limited Choice   

Exp. 1 (S. haematobium males’ choice) 150 225 - 225 5 

Exp. 2 (S. haematobium females’ 

choice) 

225 150 225 - 5 

Exp. 3 (S. bovis males’ choice) - 225 150 225 5 

Exp. 4 (S. bovis females’ choice) 225 - 225 150 5 

Full Choice   

Exp. 5 150 150 150 150 5 

Objective 2: Assess the transcriptomic 

profiles of homo- and hetero-specific 

paired worms 

          

Homo-specific pairing control 1 300 300 - - 6 

Homo-specific pairing control 2 - - 300 300 6 

Hetero-specific pairing control 1 300 - - 300 6 

Hetero-specific pairing control 2 - 300 300 - 6 

 252 

DNA extraction and species diagnostic multiplex PCR 253 

The worms collected were subjected to DNA extraction was performed as described previously 254 

[67]. To identify the species of each worm we used a rapid diagnostic procedure based on 255 

multiplex PCR reaction enabling the distinction between S. haematobium and S. bovis [68,69]. 256 

Briefly, the reaction is composed of a universal forward primer and two specific reverse primers 257 

targeting either S. haematobium or S. bovis COI gene. In presence of S. haematobium DNA the 258 

amplicon size is of 543 bp whereas in the presence of S. bovis DNA the amplicon size is of 306 259 

bp allowing discriminating S. haematobium from S. bovis parasites (Table 2).  260 
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Table 2:  PCR primer sequences and amplicon size [68,69]. 261 

Target species primer Sequence (3’-5’) Amplicon size 

Universal forward primer TTTTTTGGTCATCCTGAGGTGTAT  

S. haematobium reverse primer TGATAATCAATGACCCTGCAATAA 543bp 

S. bovis reverse primer CACAGGATCAGACAAACGAGTACC 306 bp 

 262 

The PCR reactions were carried out in a total volume of 12.5 µl containing GoTaq Flexi 263 

Reaction Buffer (Promega), 1.5 mM of MgCl2, 0.4 µM of each of the 3 primers (at 10 µM 264 

each), 0.2 µM of dNTP solution (at 10 µM each), 0.5 U of GoTaq G2 Hot Start Polymerase 265 

(Promega, USA) and 1 µl of diluted DNA (1/10). The PCR program was: an initial denaturation 266 

phase at 95°C for 3 min, followed by 35 cycles at 94°C for 30s, 58°C for 1.30s, 72°C for 1.30s, 267 

and a final extension at 72°C for 7 min. PCR products were examined on 1.5% agarose gels at 268 

120V for 45 min and using a 100 bp DNA-Ladder (Promega) for size estimation. 269 

 270 

Statistical analysis 271 

After counting the number of homo-specific pairs, hetero-specific pairs and single worms of 272 

each species, we calculated the expected number of single and mated pairs according to the null 273 

hypothesis of random pairing (e.g., in the Exp. 1, the expected number of homo-specifically 274 

paired S. haematobium males equals the total number of S. haematobium males times the total 275 

number of S. haematobium females over the total number of females). Expected and observed 276 

numbers of homo- and hetero-specific pairs were then compared using Chi-square tests. 277 
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You add these published primers but you do not add the published primers for the cercariae sexing, either have both or none as necessary. 

Highlight
I think somewhere it is worth explaining that all cercariae do not develop into adults. Also, how can you be sure you have retrieved all the worms, particularly immature females which are hard to find. 

Highlight
this data needs to be clearly shown on table 3 as it is difficult to interpret at the moment. 



14 

 

RNA extraction and transcriptome sequencing of homo- and hetero-specific S. haematobium 278 

and S. bovis male and female pairs 279 

After portal perfusion of the hamsters containing the homo-specific and hetero-specific paired 280 

worms (homo-specific pairing control 1 and 2, and hetero-specific pairing control 1 and 2), 281 

paired adult worms were isolated to constitute separate triplicates of males and females homo-282 

specifically paired, and triplicates of males and females hetero-specifically paired. Pools of 10-283 

12 worms were gathered in 2ml microtubes and immediately frozen in liquid nitrogen before 284 

they were stored at -80°C. TRIzoltm RNA extraction and subsequent paired-end Illumina HiSeq 285 

4000 PE100 sequencing technology was performed on the samples. Briefly, pools of adult 286 

worms were subsequently grounded with two steel balls using Retsch MM400 cryobrush (2 287 

pulses at 300Hz for 15s). Total RNA was extracted using the TRIzoltm Thermo Fisher Scientific 288 

protocol (ref: 15596018) slightly modified as each reagent volumes were halved. Total RNA 289 

was eluted in 44 µl of ultrapure water before undergoing a DNase treatment using Thermofisher 290 

Scientific Turbo DNA-free kit. RNA was then purified on a column using the Qiagen RNeasy 291 

mini kit and eluted in 42μl of ultrapure water. Quality and concentration were assessed by 292 

spectrophotometry with the Agilent 2100 Bioanalyzer system and using the Agilent RNA 6000 293 

nano kit. Further details are available at Environmental and Evolutionary Epigenetics Webpage 294 

(http://methdb.univ-perp.fr/epievo/).  295 

Illumina libraries construction and high-throughput sequencing 296 

cDNA library construction and sequencing were performed at the Génome Québec platform. 297 

The TruSeq stranded mRNA library construction kit (Illumina Inc., USA) was used following 298 

the manufacturer's protocol on 300 ng of total RNA per sample. Sequencing of the 24 samples 299 

was performed in 2x100 bp paired-end on a Illumina HiSeq 4000. Sequencing data are available 300 

at the NCBI-SRA under the BioProject PRJNA491632. 301 
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Transcriptomic analysis of hetero-specific pairing vs. homo-specific pairing effect 302 

Raw sequencing reads were analysed on the Galaxy instance of the IHPE laboratory [70,71] 303 

implemented on the local server of our laboratory. First, raw reads were subjected to quality 304 

assessment and sequencing adaptor trimming. For this we used the set of tools based on 305 

FASTX-toolkit [72], as well as Cutadapt program (Galaxy Version 1.16.1) to remove adapter 306 

sequences from Fastq files [73]. At last each sample reads were associated into pairs using the 307 

FASTQ interlacer/de-interlace programs (Galaxy Version 1.1). Processed reads were mapped 308 

using RNA-star Galaxy Version 2.6.0b-1 [74] to the S. haematobium reference genome [43] 309 

downloaded from the Schistosoma Genomic Resources website SchistoDB  310 

(http://schistodb.net/common/downloads/Current_Release/ShaematobiumEgypt/fasta/data/). 311 

Exon-intron structure was thereafter reconstructed for each mapping BAM file using Cufflinks 312 

transcript assembly Galaxy Version 2.2.1.2, by setting the max intron length at 50000, but 313 

without any correction parameters [75]. Finally, in order to create a reference transcriptome 314 

representative of S. haematobium and S. bovis male and female reads, we merged all cufflinks 315 

data with Cuffmerge Galaxy Version 2.2.1.2 [75] without using any guide or reference. This 316 

enabled us to create a representative reference transcriptome of both species and both sexes 317 

using the same reference genome. The Genomic DNA intervals of each newly assembled genes 318 

of this reference transcriptome was extracted from S. haematobium reference genome and 319 

converted into a Fasta file. 320 

The number of reads per transcripts for each sample (i.e., the read abundance representative of 321 

each gene) was quantified using HTseq-count Galaxy Version 0.9.1 on the reference 322 

transcriptome, setting the overlap resolution mode on “union” [76]. Finally, we evaluated the 323 

differential gene expression levels between homo-specific and hetero-specific worms for each 324 

species and each sex separately using DESeq2 Version 1.28.1 [77] run on R version 4.0.0 [78]. 325 
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We carried out four types of comparisons which respectively focused on S. haematobium males, 326 

S. haematobium females, S. bovis males and S. bovis females and contrasted genes expression 327 

profiles between hetero-specifically paired individuals and homo-specifically paired 328 

individuals. Differential gene expression results were filtered on the adjusted P-value 329 

(Benjamini-Hochberg multiple testing based False Discovery Rate (FDR)) and considered 330 

significant when ≤ 5%.  331 

Functional annotation 332 

Using our BLAST local server, we annotated entirely the de novo assembled transcriptome by 333 

Blastx search against the non-redundant database of the NCBI. We conserved only the longest 334 

unique transcript (TCONS) of each representative gene (XLOC) for Blastx search and 335 

subsequent analysis. Output XML files were used for gene ontologies (GO) mapping and 336 

annotation using Blast2Go version 4.1.9 [44]. Finally, enrichment Fisher’s exact tests were 337 

performed on up and down regulated set of genes focusing on biological process (BP) ontology 338 

terms. The P-value for significance was set to 5% False Discovery Rate (FDR). 339 

 340 

Results  341 

Mating choice experiments 342 

Limited choice: Experiments 1 to 4: 343 

Details on the number of worms recovered from each hamster and whether they were paired or 344 

single in limited choice experiments are summarized in Table 3. Regardless of the sex and the 345 

species of the worms choosing to pair with either an homo-specific or an hetero-specific partner 346 

(i.e., S. haematobium males, S. haematobium females, S. bovis males and S. bovis females, in 347 

Exp. 1, 2, 3 and 4 respectively, Table 3) both homo-specific and hetero-specific pairs were 348 

observed (Table 3, Exp. 1–4). Also, in each limited choice experiments (Exp. 1–4) we 349 
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consistently obtained an excess of both homo-specific and hetero-specific potential partners 350 

that remained single whereas all choosing partners (the one being the focus of each experiment) 351 

were paired (Table 3). This indicates that the choosing partner in each experiment was not 352 

limited in its choice by the number of homo- nor hetero-specific partner. 353 

Specifically, regarding S. haematobium males’ choice (Table 3, Exp. 1) the number of homo- 354 

and hetero-specific pairs was significantly different from those expected under the random 355 

mating hypothesis (χ2=11.10; d.f.=4; p-value= 0.049, Table 3). This was due in particular, to a 356 

bias toward hetero-specific pairs in only one hamster (hamster number 3, see Table 3). 357 

Regarding S. haematobium females’ choice (Table 3, Exp. 2) at the contrary, the numbers of 358 

homo-specific pairs and hetero-specific pairs were not significantly different from expectations 359 

under the random mating hypothesis (χ2=3.118; d.f.=4; p-value=0.682, Table 3). In the 360 

experiment 3 that focused on S. bovis males’ choice, the number of paired worms recovered 361 

was extremely low, due to premature death of two hamsters and only two hamsters had enough 362 

worms to be analysed, although in this case statistics should be interpreted with caution (Table 363 

3, Exp. 3). Nevertheless, the numbers of homo-specific pairs and hetero-specific pairs were 364 

once again not significantly different from expectations under the random mating hypothesis 365 

(χ2=4.522; d.f.=1; p-value=0.104, Table 3). Finally, regarding S. bovis females’ choice (Table 366 

3, Exp. 4) similarly we did not found a significant difference between the numbers of observed 367 

and expected homo-specific pairs and hetero-specific pairs under random mating hypothesis 368 

(χ2=3.246; d.f.=4; p-value=0.662, Table 3). Overall, when analysing all limited choice 369 

experiments together (i.e., Exp. 1 to 4) no significant difference was recorded between the 370 

number of observed homo- and hetero-specific pairs and the number of homo- and hetero-371 

specific pairs expected in a random mating scenario (χ2=21.71, d.f.=16, p-value=0.152, Table 372 

3).   373 
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Table 3. Summarized information of experiments one to four (limited choice). For each 374 

experiment are displayed the sex and the species of the choosing partner, the number of 375 

observed homo- and hetero-specific pairs and the number of (non-choosing) partners remained 376 

single. Sh stands for S. haematobium and Sb stands for S. bovis. Expected number of pairs 377 

regarding a random mating and initial partners frequencies are given into brackets. Chi-square 378 

statistic, degree of freedom and p-value are given for each hamster, for each experiment and 379 

for all experiment combined. * indicates significant results.  380 

Exp. Host  
Choosing 

partner 

Homo-

sp. 

pairs 

Hetero

-sp. 

pairs 

Homo-

sp. 

singles 

Hetero

-sp. 

single 

χ2-

statisti

c 

d.f. 
p-

value 

1 1 ♂ Sh 11 (14) 14 (11) 20 9 1.838 1 0.175 

1 2 ♂ Sh 11 (15) 22 (18) 15 11 1.543 1 0.214 

1 3 ♂ Sh 14 (20) 16 (10) 25 4 5.057 1 0.025* 

1 4 ♂ Sh 9 (9) 6 (6) 36 26 0.015 1 0.903 

1 5 ♂ Sh 10 (13) 10 (7) 41 15 2.651 1 0.103 

Total Exp. 1       11.104 4 0.049* 

2 1 ♀ Sh 10 (9) 2 (4) 7 5 0.908 1 0.341 

2 2 ♀ Sh 6 (5) 1 (2) 0 1 0.429 1 0.513 

2 3 ♀ Sh 12 (10) 3 (5) 11 10 1.688 1 0.194 

2 4 ♀ Sh 16 (15) 3 (4) 6 2 0.094 1 0.759 

2 5 ♀ Sh 12 (12) 13 (13) 11 12 <0.001 1 0.993 

Total Exp. 2       3.118 4 0.682 

3 2 ♂ Sb 4 (2) 0 (2) 46 55 4.400 1 0.036 

3 3 ♂ Sb 2 (1) 1 (2) 22 32 0.742 1 0.389 

Total Exp. 3         4.522 1 0.104 

4 1 ♀ Sb 15 (12) 17 (20) 4 14 1.070 1 0.301 

4 2 ♀ Sb 10 (8) 25 (28) 2 19 1.061 1 0.303 

4 3 ♀ Sb 3 (3) 8 (8) 4 13 0.030 1 0.862 

4 4 ♀ Sb 9 (8) 15 (16) 8 19 0.188 1 0.665 

4 5 ♀ Sb 49 (49) 15 (15) 18 5 0.007 1 0.932 

Total Exp. 4       3.246 4 0.662 

Total all 

Exp.           21.719 16 0.152 

381 
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Full choice: Experiment 5 382 

Details on the number of worms recovered from each hamster and whether they were paired or 383 

single in limited full choice experiments are summarized in Table 4. When all partner choices 384 

were allowed between males and females S. haematobium and S. bovis, four combinations of 385 

pairing were obtained: two being homo-specific  (♂ Sh x ♀ Sh and ♂ Sb x ♀ Sb, Table 4) and 386 

two being hetero-specific (♂ Sh x ♀ Sb and ♂ Sb x ♀ Sh, Table 4).  There was also an excess 387 

of males and females of both species remaining single, suggesting that all possible choices were 388 

not limited by partner availability (Table 4). Regarding the number of homo-specific and 389 

hetero-specific pairs observed between S. haematobium and S. bovis, Chi-square tests did not 390 

reveal significant departure from random mating hypothesis, when the number of each 391 

combination of pairing was analysed in each hamster separately and also when analysing all 392 

replicate together (Table 4). 393 

 394 

Table 4. Summarized information of experiment 5 (full choice). For each combination (i.e., 395 

sex and species) are given the number of observed pairs and the number of single partners 396 

remained single. Sh stands for S. haematobium and Sb stands for S. bovis. Expected number of 397 

pairs from a random mating and given the initial partners frequencies are indicated into 398 

brackets. Chi squared statistics, degree of freedom and p-value are given per hamster and for 399 

the whole experiment.  400 

Host 

no. 

♂Sh 

x 

♀ Sh 

♂Sb 

x 

♀ Sb 

♂Sh 

x 

♀ Sb 

♂Sb 

x 

♀ Sh 

♂ 

Sh 

♂ 

Sb 

♀ 

Sh 

♀ 

Sb 

χ2-

statistic 
d.f. 

p-

value 

1 1 (2) 

29 

(24) 5 (9) 4 (5) 8 5 4 9 3.358 3 0.340 

2 8 (8) 2 (1) 5 (4) 1 (2) 8 3 23 8 1.786 3 0.618 

3 7 (5) 2 (2) 1 (2) 2 (3) 6 5 19 11 2.307 3 0.511 

4 4 (4) 6 (3) 3 (4) 1 (3) 10 4 13 11 4.806 3 0.187 

5 5 (6) 1 (1) 6 (6) 2 (1) 20 3 17 16 0.796 3 0.850 

Total                 13.053 12 0.365 

  401 
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Transcriptomic response in homo- vs. hetero-specific pairs 402 

RNA sequencing, transcriptome assembly and gene annotation of the homo- and hetero-specific 403 

pairs 404 

Each condition (i.e., homo-specifically paired S. haematobium, hetero-specifically paired S. 405 

haematobium, homo-specifically paired S. bovis, and hetero-specifically paired S. bovis) 406 

composed of three biological replicates were analysed separately for males and females (24 407 

samples). Between ~24.7 and ~42.3 million high quality Illumina HiSeq 4000 PE100 RNA-seq 408 

reads were obtained after sequencing of the 24 samples. After quality control and adaptor 409 

trimming, between ~19.2 and ~33,1 million reads were uniquely mapped on S. haematobium 410 

reference genome and counted  for gene expression analysis [43]. Counted reads represented 411 

~78% of raw reads, with 51% providing from S. haematobium and 48% providing from S. bovis 412 

(Supplementary Table S1).  413 

The reference transcriptome assembly on which tests were carried out, was composed of 73,171 414 

putative isoform sequences identified as TCONS, and 18,648 unique genes identified as 415 

XLOCS. We conserved the longest isoform (TCONS) for each gene (XLOC) for subsequent 416 

annotation. The GTF and Fasta file of this transcriptome are available in a Figshare repository 417 

(https://figshare.com/s/2f299e6f53c94f4a6168). Blast annotations and Gene Ontology terms of 418 

the complete reference transcriptome are available in Supplementary File S1, Sheet 1. On the 419 

18,648 genes, 14,414 found at least one hit following Blastx analysis, and 12,332 of them were 420 

mapped to at least one GO term using Blast2GO [44].  421 

Differential gene expression 422 

Quantification of read abundance as well as differential gene expression analysis were 423 

performed on the 18,648 genes for each homo- and hetero-specific condition (Supplementary 424 

File S1, Sheet 2 and 3-6, respectively). The heatmap of the sample-to-sample distances as well 425 
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as the principal component analysis plot are presented in Fig 2. A total of 1,277 genes (~7%) 426 

were differentially expressed in at least one of the four homo- vs. hetero-specific comparisons 427 

with a FDR <5% (Supplementary File S1, Sheet7). Of these, 1,234 (97%) had a match using 428 

Blastx against the non-redundant database of the NCBI and 1,088 (85%) were mapped and 429 

successfully annotated with at least one GO term using Blast2GO [44] (Supplementary File S1 430 

Sheet 7).  431 

Fig 2. Differentiation between the samples in term of gene expression profiles. Principal 432 

component plot of the samples a) and Heatmap of the sample-to-sample distances b).  433 

Most of the differentially expressed genes were identified in S. haematobium males, with 1,166 434 

genes differentially expressed between the hetero-specific and homo-specific pairing 435 

conditions (734 over-expressed and 432 under-expressed in hetero-specific paired males 436 

compared to homo-specific ones). Log2-Fold changes were quite low with only one of these 437 

1,166 DEG having a Log2-Fold Change higher than 1.5 and none had Log2-Fold change lower 438 

than -1.5 (Fig 3, Supplementary File S1 Sheet 7). In S. haematobium females 47 genes were 439 

differentially expressed between hetero- vs. homo-specific conditions (22 over-expressed and 440 

25 under-expressed in hetero-specific females). Among these 47 DEG, 6 had Log2-Fold 441 

changes higher than 1.5 and one had a Log2-Fold change lower than -1.5 (Fig 3, Supplementary 442 

File S1 Sheet 7). In S. bovis females, 88 genes were differentially expressed between hetero- 443 

vs. homo-specific conditions (58 over-expressed and 30 under-expressed in hetero-specific 444 

females). Among these 88 DEG, 48 had Log2-Fold changes higher than 1.5 and 11 had Log2-445 

Fold changes lower than -1.5 (Fig 3, Supplementary File S1 Sheet 7). Finally, no genes 446 

differentially expressed were identified in S. bovis males. Significantly (p<5%) over- and 447 

under-expressed genes (XLOC) for each comparison as well as their annotation are synthetized 448 

in Supplementary File S1, Sheet 7.   449 
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Fig 3. Genes expression profile in hetero-specifically compared to homo-specifically 450 

paired worms. Volcano plots showing the log transformed adjusted p-values (i.e., FDR) and 451 

the log fold changes for the 18,648 unique genes of the reference transcriptome assembly for 452 

S. haematobium males a), S. haematobium females b), S. bovis females c) and S. bovis males 453 

d). Black dots refer to non-significant genes regarding their expression profile (over an FDR of 454 

5%). Red dots refer to differentially expressed genes at a FDR of 5%, green dots refer to 455 

differentially expressed genes at a FDR between 5% and 1% and blue dots refer to differentially 456 

expressed genes at a FDR between 1% and 1 ‰. 457 

Gene Ontology and enrichment analysis of the differentially expressed genes  458 

Gene ontology categories significantly enriched in either over- or under-expressed genes were 459 

found in S. haematobium males (Fig 4, Supplementary File S1, Sheet 8) whereas in S. 460 

haematobium females, S. bovis males and females (in which fewer differentially expressed 461 

genes were detected), no GO term were significantly enriched.  462 

Fig 4. Biological processes impacted by hetero-specific pairing in males S. haematobium. 463 

Barplot showing the biological processes significantly enriched in differentially expressed 464 

genes, either over-expressed or under-expressed in hetero-specific condition compared to 465 

homo-specific condition, in S. haematobium males.  466 

 467 

In S. haematobium males, Biological processes enriched in under-expressed genes (in hetero-468 

specific paired males compared to homo-specific ones) were related to signal transduction, 469 

notably through neuronal processes (synaptic transmission, cholinergic, chemical synaptic 470 

transmission, postsynaptic, G protein−coupled receptor signaling pathway), development 471 

(anatomical structure development), metabolism (glycogen biosynthetic process, negative 472 

regulation of endopeptidase activity), transmembrane transport (potassium ion transmembrane 473 

transport), response to stimuli (response to drug, peptidyl−proline hydroxylation, cell redox 474 

homeostasis) and cell adhesion (homophilic cell adhesion via plasma membrane adhesion 475 

molecules) (Fig 4, Supplementary File S1, Sheet 8).  476 
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On the other hand, Biological processes enriched in over-expressed genes (in hetero-specific 477 

males) were related to signal transduction including again some neuronal processes (e.g., 478 

transmembrane receptor protein tyrosine kinase signaling pathway, regulation of Ras protein 479 

signal transduction, regulation of axon extension), metabolism (e.g., proteolysis involved in 480 

cellular protein catabolic process, phosphatidylcholine metabolic process, long−chain fatty acid 481 

metabolic process, lipid droplet organization), response to stimuli (e.g., response to other 482 

organism, phagocytosis, cellular response to chemical stimulus), transmembrane transport (e.g., 483 

anion transmembrane transport, vesicle fusion, regulation of vesicle−mediated transport, 484 

inorganic cation import across plasma membrane, exocytosis, positive regulation of Notch 485 

signaling pathway), localization (e.g., establishment of localization in cell), locomotion (e.g., 486 

regulation of locomotion, microtubule−based process, actin filament organization) and also cell 487 

adhesion (e.g., cell junction assembly) (Fig 4, Supplementary File S1, Sheet 8).  488 

No GO terms were found enriched neither in over- nor under-expressed genes in S. bovis and 489 

haematobium hetero- vs. homo-specifically paired females (Supplementary file S1, Sheet 7). 490 

However, based on annotations, in S. haematobium females, we found differentially expressed 491 

genes that corresponded to genetic mobile elements (e.g., XLOC_014282: integrase core 492 

domain, XLOC_014741: TPA: endonuclease-reverse transcriptase, XLOC_009783: 493 

endonuclease-reverse transcriptase), genes involved in transmembrane transport (e.g., 494 

XLOC_009318: phosphatase methylesterase 1 (S33 family) and XLOC_010891: Calcium-495 

binding mitochondrial carrier S -1), stress response including oxidation-reduction processes 496 

(e.g., XLOC_017856: heat shock, XLOC_012518: epidermal retil dehydrogese 2 and 497 

XLOC_018492: iron-dependent peroxidase) and other functions such as reproduction, or 498 

development (e.g., XLOC_015776: egg CP391S, XLOC_007823: Craniofacial development 499 

2). Similarly, in S. bovis females, we found differentially expressed genes that corresponded to 500 

genetic mobile elements as well (e.g., XLOC_017328: R-directed D polymerase from 501 
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transposon X-element, XLOC_018050: R-directed D polymerase from mobile element jockey-502 

like or XLOC_018156: gag-pol poly), genes involved ion transport (e.g., XLOC_008268: Bile 503 

salt export pump, XLOC_003851: sodium-coupled neutral amino acid transporter 9 isoform X2 504 

and XLOC_005754: Y+L amino acid transporter), response to stress (e.g., XLOC_017856: heat 505 

shock and XLOC_009339: Universal stress) and as well other function such as reproduction, 506 

growth or metabolism (e.g., XLOC_014939: early growth response, XLOC_015393: 507 

Syptotagmin-1, XLOC_016728:  egg CP391S-like and XLOC_012591: Cathepsin B-like 508 

cysteine proteinase precursor). Hence, for S. haematobium and S. bovis females, differentially 509 

expressed genes were quite similar in term of function, regardless of their expression profile 510 

(under- or over-expression in hetero-specific pairs) and regardless of the schistosome species. 511 

Discussion 512 

In this study we aimed to investigate potential reproduction isolation mechanisms in two 513 

schistosome species causing major debilitating parasitic diseases worldwide and that show 514 

evidences for extensive hybridization in nature [34,45]. Specifically, we tested whether 515 

hybridization between S. haematobium and S. bovis could be constrained or promoted by mate 516 

choices and whether these mate choices are associated with specific transcriptomic profiles in 517 

hetero- and homo-specifically paired individuals. We overall showed that mate choice of S. 518 

haematobium and S. bovis occurred in a random fashion and seems to depend only on partner 519 

relative abundances. Also, we did not detect any major transcriptomic changes in hetero-520 

specifically paired males and females S. haematobium and S. bovis compared to homo-521 

specifically paired individuals. These results suggest that these two species lack any other pre-522 

zygotic barrier than habitat isolation by the host which would make them more prone to 523 

hybridize. 524 
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In this work, first, we showed that the two frequently co-endemic species S. haematobium and 525 

S. bovis readily pair with no preferences for neither homo-specific nor hetero-specific 526 

associations in simultaneous infections. The only exception was found in S. haematobium 527 

male’s choice that appeared to be biased toward hetero-specific pairing. This observation may 528 

reveal S. haematobium male’s preference for the S. bovis females or a higher competence of S. 529 

bovis females, which may be better at pairing compared to S. haematobium females. Such 530 

results were for instance previously found for S. haematobium males when competing with S. 531 

intercalatum [27], S. mattheii [46] or S. mansoni [47]. However, since the bias toward hetero-532 

specific pairing in the experiment Exp. 1 was mainly due to abundant hetero-specific pairs in 533 

only one hamster over the five used, this result should be considered with caution. Further 534 

caution is also required since the full choice experiment did not confirm such a bias toward 535 

hetero-specific pairing with S. bovis females. Consequently, our different mate choice 536 

experiments (limited and full choice) rather indicate no differences in competitiveness and that 537 

S. haematobium and S. bovis males and females tend to mate randomly, which suggest that 538 

there is no behavioural barriers preventing hetero-specific pairing once both species co-infect 539 

the same definitive host.  540 

The second part of this study aimed to assess the transcriptomic profiles associated with hetero-541 

specific and homo-specific pairings between S haematobum and S. bovis. Since different 542 

species might constitute a different stimulus for the other partner, we expected at first to find a 543 

strong impact of the hetero-specific pairing, and especially on female transcriptomes compared 544 

to males since they respond to males’ stimuli for their sexual maturation [21]. However, only 545 

few differentially expressed genes (i.e., from zero for S. bovis mate choice to 1 166 for S. 546 

haematobium mate choice) were observed in both male and females. In particular, no 547 

differentially expressed genes were identified in S. bovis males depending on homo- vs. hetero-548 

specific pairing, and biological processes enriched in differentially expressed genes were 549 
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identified only for S. haematobium male pairing. Also, most of differentially expressed genes 550 

identified presented low Log2-Fold changes (notably in S. haematobium males where only one 551 

DEG exceeded a Log2-Fold change of 1.5).  Thus, the influence of hetero-specific pairing on 552 

male and female adult worms of both species in terms of number of differentially expressed 553 

genes, related biological processes and gene expression level was not striking. Such a result 554 

suggests that both species may be highly receptive to each other since no major transcriptomic 555 

adjustments are induced by hetero-specific pairings. This observation is hence consistent with 556 

our precedent mating experiments that suggest random pairing between both species and further 557 

show that there is no major physiological nor molecular barriers making hetero-specific 558 

pairings less prone to occur.   559 

Although pairings between male and female S. haematobium and S. bovis did not result in many 560 

differentially expressed genes, males S. haematobium appeared to be the most affected by the 561 

pairing status. More differentially expressed genes identified in males, and in particular more 562 

over-expressed genes in males involved in hetero-specific pairs (i.e., 734 over-expressed 563 

whereas only 432 were under-expressed) was somehow puzzling. Generally, during mating 564 

more transcriptomic changes have been identified in females compared to males [14,48,49]. 565 

Our result might thus be due to a lower variability in the transcriptomic profiles of the different 566 

biological replicates of S. haematobium males in comparison to others simply technically easing 567 

the identification of differentially expressed genes. Also, it is worth noting that although S. 568 

haematobium males had more genes differentially expressed, females had overall higher log2 569 

Fold Change for their differentially expressed genes. Alternatively, although non-exclusive, 570 

males could indeed display a more transcriptomic adjustments than females, for instance in 571 

order to properly initiate female maturation depending on their species. Nevertheless, since we 572 

did not identify any differentially expressed genes in S. bovis males, and also because the log2-573 

Fold change of the DEG identified in S. haematobium males were low, it seems difficult to 574 
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conclude that one or the other sex is preferentially impacted during hetero-specific pairing, or 575 

that one species is more prone to initiate females species sexual maturation. Our results rather 576 

suggest that overall, only few transcriptomic adjustments are associated with hetero-specific 577 

pairing between S. bovis and S. haematobium.  578 

Among these transcriptomic adjustments associated with the pairing status of the worms, it is 579 

worth noting that some genes and processes had functions that could be linked to male-female 580 

interactions notably linked to reproductive functions as suggested by other studies. Notably, 581 

among female schistosomes, we found three genes encoding egg proteins that were 582 

differentially expressed in S. haematobium and/or S. bovis females, and that are well-known 583 

female-associated gene products [50]. Similarly, a transcript matching the Syptotagmin-1 gene 584 

was under-expressed in hetero-specifically paired females S. bovis.  Syptotagmin-1 is notably 585 

known to have a female-specific expression as well as to be regulated during pairing [48]. 586 

Finally, we found two differentially expressed genes in females S. bovis matching with 587 

cathepsin B and L, two genes that encode digestive enzymes specifically expressed by females 588 

when pairing [50]. Similarly, in S. haematobium males, we found several genes and biological 589 

processes related to male-female interaction. Indeed the first insights into the molecular basis 590 

of male and female interaction with a particular interest in the pairing process, proliferation, 591 

differentiation and maturation of female gonads have underlined the major role of signal 592 

transduction cascades and particularly signalling pathways such as the TGF-beta and Ras (e.g., 593 

receptor tyrosine kinase coupled pathway) signalling pathways [51–57]. Also, those pathways, 594 

notably the TGF-beta signaling pathway are known to induce the production of the 595 

gynecophoric canal protein by males during pairing which is a trigger for females maturation 596 

[52]. Interestingly, in this work, among genes whose expression was affected by homo- vs. 597 

hetero-specific pairing in S. haematobium males, we notably found the TGF-beta signal 598 

transducer gene but also two gynecophoral canal protein genes, and both transmembrane 599 
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receptor protein tyrosine kinase signaling pathway and regulation of Ras protein signal 600 

transduction processes were enriched in over-expressed genes in hetero-specific pairs. Also 601 

echoing more recent studies on the gonad specific and pairing-dependent transcriptomes of 602 

male schistosomes, we found several biological processes enriched either in over- or under-603 

expressed genes in S. haematobium males that were involved in neuronal processes which have 604 

been shown to be associated with such male-female interaction patterns [14,49]. We 605 

consequently found that genes and processes impacted by homo- vs hetero-specific pairing in 606 

S. haematobium and S. bovis at least partly overlapped those generally affected during male-607 

female regular homo-specific interactions. These results suggest that both species may have 608 

maintained similar patterns of interactions between males and females allowing them to 609 

reproduce. A moderate regulation of these genes during pairing with another species may thus 610 

allow quite easily the two parasite species to overcome their relatedness and divergence 611 

resulting in successful hetero-specific mating.   612 

However, it is worth noting that among the differentially expressed genes identified, the 613 

majority of them was also related to processes that were not particularly documented to be 614 

impacted during male-female interactions (e.g., genetic mobile elements, response to drug and 615 

stimuli, oxidation-reduction, cell-adhesion, metabolism). This hence suggests that genes 616 

impacted during homo- vs hetero-specific pairings in schistosomes also rely on processes that 617 

exceed male-female interaction and that notably seem related to stress response. These 618 

functions related to stimuli responses (that include oxidation-reduction processes as well as the 619 

genetic mobile elements we found, [58,59]), could indicate that at least at the molecular level 620 

schistosome species may respond to an hetero-specific signal as a stress although this does not 621 

seem to impede the success of such an hetero-specific mating. Alternatively, the pairing status 622 

(i.e., homo-specific or hetero-specific) could impact worms’ response to external stimuli 623 

including host stimuli. In particular hetero-specific S. haematobium males when compared to 624 
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homo-specific males, under-expressed a fair amount of genes involved in response to drugs 625 

(e.g., multidrug and toxin extrusion, Multidrug and toxin extrusion 2, Multidrug resistance or 626 

Multidrug resistance-associated), which may raise important questions regarding schistosome 627 

drug response in the context of co-infection and hybridization. More generally, many other 628 

genes potentially involved in the encounter, interaction, and communication of the two species 629 

genomes have arisen from this work. Further attention is thus needed to decipher the role of 630 

each of them in a hybridization and speciation context.  631 

More generally, our work opens new avenue regarding the understanding of the mechanisms 632 

allowing or preventing hybridization between schistosome species. Several recent studies have 633 

presented evidences of introgression between S. haematobium and S. bovis [36,37,60]. Our 634 

main finding of a lack of proper pre-zygotic barrier preserving the genetic integrity of S. 635 

haematobium and S. bovis is strongly in line with these recent observations. Actually, the two 636 

sister species S. haematobium and S. bovis have diverged relatively recently compared to other 637 

schistosomes, thus the genetic distance between both species is probably not sufficient to avoid 638 

successful interbreeding and both species genomes are presumably highly permeable to each 639 

other’s alleles [61]. The karyotype of species is also important regarding the success of 640 

hybridization. Importantly S. haematobium and S. bovis have retained the same karyotype with 641 

n=8 chromosome pairs including sex chromosomes that are morphologically similar [62]. To 642 

produce viable offspring, both species could have thus retained similar processes allowing them 643 

to find their partner in the host, pair and reproduce. An important requirement for schistosomes 644 

to reproduce is their ability to locate each other in the hosts. In the case of hetero-specific 645 

pairing, the ability of the two partners to encounter and locate each other in the same host was 646 

originally thought to constitute the main mechanism allowing S. haematobium and S. bovis to 647 

keep their genetic integrity. Also, these two species live in different host compartments (i.e., S. 648 

haematobium lives in the urogenital vessels whereas S. bovis lives in the mesenteric vessels) 649 
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this tropism differences could as well contribute to make their encounter less likely within the 650 

same host. Although this barrier by the host might exist it nevertheless seems to be weak since 651 

hybrids can form easily in hamsters. Hence, the lack of any further pre-zygotic barrier implies 652 

that, in area where S. haematobium and S. bovis are co-occurring as well as their respective 653 

hosts, hybrids and introgressed individuals should be more likely to be found. So far 654 

introgression between S. haematobium and S. bovis is thought to be the result of an ancient 655 

event rather than an ongoing process [60]. However, since such hybrids may present heterosis 656 

and be more virulent compared to their parental species individuals, the understanding of the 657 

consequences of schistosome hybridization is a necessary next step to better anticipate the 658 

consequences in terms of disease dynamics and spread.  659 

 660 

In conclusion, in this integrative study of S. haematobium and S. bovis behavioural and 661 

physiological isolation mechanisms we showed that natural hybridization between S. 662 

haematobium and S. bovis lack any strong pre-zygotic barrier but the one conditioned by their 663 

host specificity. Our data suggest that no mate recognition system mitigate hybridization 664 

between these two species and that no major transcriptomic adjustments are associated with 665 

hetero-specific pairings. This suggests that the two species remain sufficiently coadapted to 666 

each other to allow an efficient reproduction once in contact. This weak pre-zygotic barrier we 667 

exemplified may thus partly explain the high prevalence of such hybrids and echoes recent 668 

evidence of introgression between the two species. Because such hybrids may display an higher 669 

fitness compared to pure species, one could expect to find increased prevalence and intensities 670 

of schistosomiasis in areas where hybridization occurs which could run the risk of the spread 671 

of the disease in new environments. Ultimately, this could lead to new issues in the disease 672 

control, and alteration in the efficacy of current chemotherapeutic treatments. 673 
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