Supplementary Information

FOR

The Tridecaptins: Non-Ribosomal Peptides That Selectively Target Gram-

Negative Bacteria

Samantha J. Bann,^a Ross D. Ballantine^a and Stephen A. Cochrane*^a

^a School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, UK, BT9 5AG

*To whom correspondence should be addressed.

Email: <u>s.cochrane@qub.ac.uk</u>

Contains chemical structures of all natural and synthetic tridecaptin analogues reported to date, with MIC data and also toxicity and haemolytic data, where available.

TABLE OF CONTENTS

Contonto	Page
Contents	Number
Analogues 1 – 4:	S1, S3
J. Shoji et al., J. Antibiot. 1978 , 31 (7), 646–651.	
T. Kato et al, J. Antibiot. 1978 , 31, 652–661.	
J. Shoji <i>et al., J. Antibiot.</i> 1979 , <i>32</i> (4), 313–319.	
C. T. Lohans et al., J. Am. Chem. Soc. 2012, 134 (48), 19540–19543.	
Analogues 5 – 8 :	S2, S3
J. Shoji et al., J. Antibiot. 1978 , 31 (7), 646–651.	
T. Kato <i>et al., J. Antibiot.</i> 1979 , <i>32</i> (4), 305–312.	
J. Shoji <i>et al., J. Antibiot.</i> 1979 , <i>32</i> (4), 313–319.	
Analogues 9 – 11:	S2, S3
J. Shoji et al., J. Antibiot. 1978 , 31 (7), 646–651.	
T. Kato <i>et al., J. Antibiot.</i> 1979 , <i>32</i> (4), 305–312.	
J. Shoji <i>et al., J. Antibiot.</i> 1979 , <i>32</i> (4), 313–319.	
Analogues 1, 12 – 32: S. A. Cochrane <i>et al., J. Med. Chem.</i> 2014, 57, 1127–1131.	S4
Analogues 33 – 40 : S. A. Cochrane <i>et al., J. Med. Chem.</i> 2015 , 58 (24), 9779–9785.	S9
Analogues 41 – 53 : S. A. Cochrane <i>et al., ChemBioChem</i> 2014 , 15 (9), 1295–1299.	S13
Analogues 54 – 61 : R. D. Ballantine <i>et al., Chem. Commun.</i> 2018 , 54, 10634–10637.	S16
Analogues 62 – 68 : R. D. Ballantine <i>et al., MedChemComm</i> 2019 , 10, 484–487.	S18
Analogues 69 – 84: S. J. Bann et al., J. Med. Chem. 2019, 62, 10466–10472.	S21
Analogue 85: W. Wang et al., Anal. Bioanal. Chem. 2019, 411, 4017–4023.	S25
Analogues 86 – 91: S. A. Cochrane et al., Org. Biomol. Chem. 2015, 13 (21), 6073–6081.	S26
Analogue 92: M. Jangra et al., Antimicrob. Agents Chemother. 2019, 63 (6), e00338-19.	S28
Analogues 93 – 98 : M Jangra <i>et al., Sci. Rep.</i> 2019 , 9 (18870),	S30
doi.org/10.1038/s41598-019-54716-8.	

Isolation of Tridecaptins A, B and C

J. Shoji, H. Hinoo, R. Sakazaki, T. Kato, Y. Wakisaka, M. Mayama, S. M. and H. M. J. Antibiot. **1978**, 31 (7), 646-651.

The Structure of Tridecaptin A (Studies on Antibiotics From the Genus Bacillus. XXIV) Kato, T., Hinoo, H., Shoji, J. *J. Antibiot.* **1978**, 31, 652-661.

The Structures of Tridecaptins B and C

Kato, T.; Sakazaki, R.; Hinoo, H.; Shoji, J. J. Antibiot. 1979, 32 (4), 305-312.

Resolution of Peptide Antibiotics, Cerexins and Tridecaptins, By High Performance Liquid Chromatography (Studies on Antibiotics From the Genus Bacillus. XXVI) Shoji, J.; Kato, T.; Terabe, S.; Konaka, R. *J. Antibiot.* **1979**, 32 (4), 313-319.

Structural Characterization of the Highly Cyclized Lantibiotic Paenicidin A via a Partial Desulfurization/Reduction Strategy

Lohans, C. T.; Huang, Z.; Van Belkum, M. J.; Giroud, M.; Sit, C. S.; Steels, E. M.; Zheng, J.; Whittal, R. M.; McMullen, L. M.; Vederas, J. C. *J. Am. Chem. Soc.* **2012**, 134 (48), 19540-19543.

Tridecaptin A analogues were isolated as mixtures of fatty acid variants.

1a. $\operatorname{TriA}_{\alpha(1)}$: $R_1 = aiC_9h^3$, $R_2 = Me$, 5 = D-Trp **1b.** $\operatorname{TriA}_{\alpha(1)}$: $R_1 = aiC_{11}h^3$, $R_2 = Me$, 5 = D-Trp **1c.** $\operatorname{TriA}_{\alpha(1)}$: $R_1 = iC_{11}h^3$, $R_2 = Me$, 5 = D-Trp

3a. TriA₃: R₁ = $aiC_{11}h^3$, R₂ = Me, 5 = D-Trp **3b.** TriA₃: R₁ = $iC_{11}h^3$, R₂ = Me, 5 = D-Trp **2.** TriA_{$\beta(2)}: R₁ = <math>aiC_9h^3$, R₂ = H, 5 = D-Trp</sub>

4a. TriA₄: R₁ = $aiC_{11}h^3$, R₂ = Me, 5 = D-Phe **4b.** TriA₄: R₁ = $iC_{11}h^3$, R₂ = Me, 5 = D-Phe

9. $\operatorname{TriC}_{\alpha 1}$: $R_1 = aiC_{11}h^3$, $R_2 = H$ **10.** $\operatorname{TriC}_{\alpha 2}$: $R_1 = iC_{10}h^3$, $R_2 = H$ **11.** $\operatorname{TriC}_{\beta 1}$: $R_1 = aiC_{11}h^3$, $R_2 = Me$

J. Shoji, H. Hinoo, R. Sakazaki, T. Kato, Y. Wakis 31 (7), 646–651.	aka, M. Mayama	, S. M. and H. M. J.	Antibiot. 1978 ,			
	Analogue					
Bacterial strain and	А	В	С			
associated MIC (µg/mL)						
Bacillus subtilis PCI 219	12.5	12.5	6.25			
Staphylococcus aureus FDA 209P JC-1	50	25	12.5			
S. aureus Smith	50	25	12.5			
S. aureus 80257	50	25	12.5			
Streptococcus pyogenes C-203	50	25	12.5			
Diplococcus pneumoniae	>50	50	25			
Escherichia coli NIHJ JC-2	6.25	12.5	6.25			
E. coli EC-14	3.13	6.25	6.25			
E. coli 80750	6.25	6.25	3.13			
Klebsiella pneumoniae	6.25	12.5	6.25			
Salmonella typhimurium	6.25	12.5	6.25			
Pseudomonas aeruginosa Ps-24	50	50	25			
Proteus vulgaris CN-329	50	>50	>50			
Proteus mirabilis PR-4	>50	>50	>50			

Table S1. MIC values of TriA, B and C analogues against various bacterial strains.

Synthesis and Structure-Activity Relationship Studies of N-Terminal Analogues of the Antimicrobial Peptide Tridecaptin A_1

Cochrane, S. A.; Lohans, C. T.; Brandelli, J. R.; Mulvey, G.; Armstrong, G. D.; Vederas, J. C. *J. Med. Chem.* **2014**, 57, 1127-1131.

S5

29. Apa-TriA₁

30. Aaa-TriA₁

31. PEG-TriA1

32. Bio-TriA₁

					М	IC (µg/mL)				
Analogue	Escherichia coli ATCC 25922	Salmonella enterica ATCC 13311	Pseudomonas aeruginosa ATCC 27853	Campylobacter jejuni NCTC 11168	Klebsiella pneumoniae ATCC 13883	Acinetobacter baumannii ATCC 19606	Enterococcus faecalis ATCC 29212	Staphylococcus aureus ATCC 29213	Listeria monocytogenes ATCC 19434	Enterococcus faecium ATCC 19434
1	3.13	6.25	50	1.56	3.13	12.5	>100	>100	50	>100
12	3.13	6.25	50	3.13	6.25	12.5	>100	>100	100	>100
13	6.25	6.25	50	1.56	6.25	25	>100	>100	100	>100
14	12.5	25	100	3.13	12.5	50	>100	>100	>100	>100
15	100	100	100	>100	50	>100	>100	>100	>100	>100
16	3.13	6.25	25	0.78	3.13	12.5	100	100	25	50
17	50	100	>100	100	50	>100 >100		>100	>100	>100
18	12.5	25	>100	12.5	25	100	>100	>100	>100	>100
19	3.13	6.25	50	3.13	3.13	25	>100	>100	100	>100
20	6.25	12.5	50	1.56	6.25	12.5	>100	>100	50	>100
21	12.5	6.25	100	0.78	12.5	50	100	100	25	100
22	6.25	12.5	>100	0.4	6.25	12.5	>100	>100	25	100
23	6.25	12.5	>100	0.4	6.25	12.5	>100	>100	25	100
24	12.5	50	>100	0.4	12.5	50	>100	>100	50	100
25	>100	>100	>100	12.5	>100	>100	>100	>100	>100	>100
26	>100	>100	>100	50	>100	>100	>100	>100	>100	>100
27	6.25	6.25	>100	0.78	6.25	12.5	50	100	12.5	25
28	6.25	>100	>100	1.56	100	>100	>100	>100	100	>100
29	6.25	12.5	>100	1.56	12.5	25	>100	>100	50	>100
30	6.25	6.25	50	1.56	12.5	12.5	50	50	25	50
31	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
32	50	50	>100	50	50	>100	>100	>100	>100	>100

Table S2. MIC values of N-Terminal TriA1 analogues against various bacterial strains.

Cochrane, S. A.; Lohans, C. T.; Brandelli, J. R.; Mulvey, G.; Armstrong, G. D.; Vederas, J. C. J. Med. Chem. 2014 , 57, 1127–1131.									
Analogue ^a	% haemolysis ^b	IC₅₀ (μg/mL)⁰							
1	3.2	200							
15	0.5								
16	4.7	100							
18	0.8								
24	82.2								
27	100								

Table S3. Toxicity data for N-Terminal $TriA_1$ analogues.

^{*a*} All peptides were tested at 83 μg/mL. ^{*b*} Haemolytic assays were run in triplicate. Absorbance of each sample was measured at 415 nm and percent haemolysis due to the corresponding peptide was calculated relative to Triton X-100 (taken as 100%). ^{*c*} Cytotoxicity was determined against HEK 293 cell line with the respective absorbance of each cell measured at 570 nm.

Synthesis of Tridecaptin-Antibiotic Conjugates with in Vivo Activity against Gram-Negative Bacteria Cochrane, S. A.; Li, X.; He, S.; Yu, M.; Wu, M.; Vederas, J. C. *J. Med. Chem.* **2015**, 58 (24), 9779-9785.

Table S4. MIC values of Tridecaptin-Antibiotic conjugates against various bacterial strains.

Cochrane, S. A.; Li, X.; He, S.; Yu, M.; Wu, M.; Vederas, J. C. J. Med. Chem. 2015 , 58 (24), 9779–9785.										
	MIC (μg/mL)									
Analogue	<i>E. coli</i> ATCC 25922	K. pneumoniae ATCC 13883	MDR <i>Kp</i> ATCC 700603	<i>A. baumannii</i> ATCC 19606	MDR <i>Ab</i> ATCC BAA-1605					
35	50	50	200	50	25					
36	12.5	3.13	12.5	6.25	6.25					
37	25	100	200	25	25					
38	12.5	100	25	25	50					
39	25	50	100	25	50					
40	3.13	6.25	100	6.25	6.25					

Key Residues in Octyl-Tridecaptin A₁ Analogues Linked to Stable Secondary Structures in the Membrane Cochrane, S. A.; Findlay, B.; Vederas, J. C.; Ratemi, E. S. *ChemBioChem* **2014**, 15 (9), 1295-1299.

47. Oct-TriA₁ (Ala7)

48. Oct-TriA₁ (D-Ala8)

51. Oct-TriA₁ (Ala11)

52. Oct-TriA₁ (D-Ala12)

53. Ent-Oct-TriA₁

Cochrane, S. A.; Findlay, B.; Vederas, J. C.; Ratemi, E. S. ChemBioChem 2014 , 15 (9), 1295–1299.												
	MIC (µg/mL)											
Analogue	<i>E. coli</i> ATCC 25922	S. enterica ATCC 13311	P. aeruginosa ATCC 27853	<i>C. jejuni</i> NCTC 11168	K. pneumoniae ATCC 13883	A. baumannii ATCC 19606	<i>E. faecalis</i> ATCC 29212	S. aureus ATCC 29213	L. monocytogenes ATCC 15313	<i>E. faecium</i> ATCC 19434		
16	3.13	6.25	25	1.56	3.13	12.5	100	100	25	50		
41	6.25	6.25	25	1.56	3.13	25	>100	>100	>100	>100		
42	12.5	12.5	>100	12.5	6.25	>100	>100	>100	>100	>100		
43	3.13	12.5	100	6.25	6.25	50	>100	>100	>100	>100		
44	6.25	6.25	25	6.25	6.25	12.5	>100	>100	>100	>100		
45	25	100	100	50	50	100	>100	>100	>100	>100		
46	3.13	6.25	100	6.25	6.25	12.5	>100	>100	>100	>100		
47	12.5	25	>100	12.5	12.5	25	>100	>100	>100	>100		
48	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100		
49	12.5	12.5	50	6.25	12.5	100	>100	>100	>100	>100		
50	6.25	6.25	12.5	3.13	6.25	25	>100	>100	25	>100		
51	6.25	12.5	25	3.13	6.25	50	>100	>100	>100	>100		
52	50	25	50	12.5	25	>100	>100	>100	>100	>100		
53	12.5	12.5	25	12.5	12.5	12.5	100	100	100	100		

Table S5. MIC values of alanine derivatives of Oct-TriA₁ against various bacterial strains.

Rational design of new cyclic analogues of the antimicrobial lipopeptide tridecaptin A₁

Ballantine, R. D.; Li, Y. X.; Qian, P. Y.; Cochrane, S. A. Chem. Commun. 2018, 54, 10634-10637.

60. Oct-*c*TriA₁ (*p*-Xyl)

61. Oct-cTriA₁ (Biphenyl)

Ballantine, R. D.; Li, Y. X.;	allantine, R. D.; Li, Y. X.; Qian, P. Y.; Cochrane, S. A. Chem. Commun. 2018 , 54, 10634–10637.												
		MIC (μg/mL)											
Analogue	E. coli NCTC 12241	<i>S. aureus</i> NCTC 10788	K. pneumoniae NCTC 9633	A. baumannii NCTC 13304	E. cloacae NCTC 5920								
16	0.39	25											
54	>50	>50											
55	>50	>50											
56	>50	>50											
57	>50	>50											
58	6.3	>50	6.3	6.3	12.5								
59	6.3	>50	6.3	12.5	12.5								
60	6.3	>50	6.3	12.5	12.5								
61	>50	>50	>50	>50	>50								

Table S6. MIC values of cyclic Oct-TriA $_1$ analogues against various bacterial strains.

Tridecaptin-inspired antimicrobial peptides with activity against multidrug-resistant Gram-negative bacteria

Ballantine, R. D.; McCallion, C. E.; Nassour, E.; Tokajian, S.; Cochrane, S. A. *MedChemComm* **2019**, 10, 484-487.

S20

о∽он

∏ N O H

 NH_2

Ballantine, R. D.; McCallion, C. E.; Nassour, E.; Tokajian, S.; Cochrane, S. A. MedChemComm 2019 , 10, 484–487.												
	MIC (μg/mL)											
Analogue	A. baumannii	<i>Ab</i> ACM 11	<i>Ab</i> ACM 29	E. cloacae	K. pneumoniae	<i>Кр</i> IMP 170	<i>Кр</i> IMP 177	<i>Кр</i> IMP 204	<i>Кр</i> IMP 216	<i>Кр</i> IMP 485	P. Pseudoalcaligenes	
16	12.5	25	25	3.13	6.25	6.25	6.25	12.5	6.25	6.25	50	
62	25	100	50	6.25	12.5	12.5	25	12.5	12.5	12.5	50	
63	100	50	50	25	100	25	25	25	25	25	12.5	
64	50	25	50	25	50	25	25	25	25	25	25	
65	12.5	50	50	6.25	12.5	25	25	25	6.25	25	50	
66	6.25	25	25	25	50	50	25	50	25	25	100	
67	25	25	50	12.5	50	25	12.5	12.5	12.5	12.5	6.25	
68	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	

Table S7. MIC values for economical Oct-TriA $_1$ and A $_2$ analogues against various bacterial strains.

Table S8. Haemolytic activity of economical Oct-TriA $_1$ and A $_2$ analogues.

Ballantine, R. D.; McCallion, C. E.; Nassour, E.; Tokajian, S.; Cochrane, S. A. MedChemComm 2019 , 10, 484–487.								
Analogue ^a % haemolysis ^b								
16	89.6							
62	52.1							
63	66.7							
64	71.4							
65	77.5							
66	86.4							
67	39.8							
68	2.8							

^{*a*} All peptides were tested at 100 μg/mL. ^{*b*} Haemolytic assays were run in triplicate. Absorbance of each sample was measured at 415 nm and percent haemolysis due to the corresponding peptide was calculated relative to Triton X-100 (taken as 100%).

A Chemical-Intervention Strategy To Circumvent Peptide Hydrolysis by D-Stereoselective Peptidases Bann, S. J.; Ballantine, R. D.; McCallion, C. E.; Qian, P.-Y.; Li, Y.-X.; Cochrane, S. A. J. Med. Chem.

2019, 62, 10466-10472.

75. Oct-TriA₂ (Aib3, NMePhe9)

76. Oct-TriA₂ (Dab8)

77. Oct-TriA₂ (Sar6)

79. Oct-TriA₂ (Sar6, NMePhe9)

81. Oct-TriA₁ (Sar6, *N*MePhe9)

82. Oct-TriA₁ (Sar6, α MePhe9)

83. Oct-TriA₂ (D-Ala2, Sar6, *N*MePhe9)

84. Oct-TriA₂ (D-Val2, Sar6, NMePhe9)

Table S9. MIC values of stabilised Oct-TriA₁ and A₂ analogues against representative Gram-negative and positive bacteria.

a. Cnem. 20 .	19 , 62, 10466–10472.							
	MIC (µg/mL)							
Analogue	<i>E. coli</i> NCTC 12241	S. aureus NCTC 10788						
62	1.56	50						
69	>50	>50						
70	>50	>50						
71	>50	>50						
72	6.25	>50						
73	>50	>50						
74	>50	>50						
75	>50	>50						
76	ND	ND						
77	3.13	>50						
78	3.13	>50						
79	6.25	>50						
80	>50	>50						
81	3.13	>50						
82	>50	>50						
83	>50	>50						
84	>50	>50						

Bann, S. J.; Ballantine, R. D.; McCallion, C. E.; Qian, PY.; Li, YX.; Cochrane, S. A. J. Med. Chem. 2019 , 62, 10466–10472.								
Analogue ^a % haemolysis ^b								
62 53								
72	30							
77	38							
79	60							
83	78							

Table S10. Haemolytic activity of stabilised Oct-TriA₂ analogues. ^{*a*} All peptides were tested at 100 μg/mL. ^{*b*} Haemolytic assays were run in triplicate. Absorbance of each sample was measured at 415 nm and percent haemolysis due to the corresponding peptide was calculated relative to Triton X-100 (taken as 100%).

A tridecaptin-based fluorescent probe for differential staining of Gram-negative bacteria

Wang, W.; Wang, Y.; Lin, L.; Song, Y.; Yang, C. J. Anal. Bioanal. Chem. 2019, 411, 4017-4023.

Studies on tridecaptin $\rm B_1$, a lipopeptide with activity against multidrug resistant Gram-negative bacteria

Cochrane, S. A.; Lohans, C. T.; van Belkum, M. J.; Bels, M. A.; Vederas, J. C. *Org. Biomol. Chem.* **2015**, 13 (21), 6073-6081.

90. (6R)-methyl anthracenyl derivative

91. (6S)-methyl anthracenyl derivative

Table S11. MIC values of $TriB_1$ analogues against various bacterial strains.

Cochrane,	Cochrane, S. A.; Lohans, C. T.; van Belkum, M. J.; Bels, M. A.; Vederas, J. C. Org. Biomol. Chem. 2015 , 13 (21), 6073–6081.											
	MIC (μg/mL)											
Analogue	<i>E. coli</i> ATCC 25922	S. enterica ATCC 13311	P. aeruginosa ATCC 27853	K. pneumoniae ATCC 13883	K. pneumoniae ATCC 700603	A. baumannii ATCC 19606	A. baumannii ATCC BAA 1605	E. faecalis ATCC 29212	S. aureus ATCC 29213	Bacillus cereus ATCC 21928	Bacillus mycoides ATCC 21929	
86	6.25	3.13	12.5	6.25	3.13	25	25	>100	>100	>100	>100	
87	12.5	6.25	25	6.25	6.25	50	25	>100	>100	>100	>100	
88	12.5	12.5	25	12.5	6.25	50	50	>100	>100	>100	>100	
89	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	

Tridecaptin M, a New Variant Discovered in Mud Bacterium, Shows Activity against Colistin- and Extremely Drug-Resistant *Enterobacteriaceae*

Jangra, M.; Kaur, M.; Tambat, R.; Rana, R.; Maurya, S. K.; Khatri, N.; Ghafur, A.; Nandanwar, H. *Antimicrob. Agents Chemother.* **2019**, 63 (6), e00338-19.

92. TriM₁

Table S12. MIC values of TriM ₁ against various bacterial strains
--

Strain	MIC (µg/mL)
K. pneumoniae ATCC 700603	4
Кр АТСС ВАА-1705	2
Кр АТСС ВАА-1706	4
Kp ATCC BAA-2146	2
<i>Kp</i> ATCC 15380	1
<i>Kp</i> ATCC 29665	0.5
Kp subsp. rhinoscleromatis ATCC 13384	4
K. oxytoca MTCC 8295	2
Enterobacter aerogenes MTCC 10208	4
E. cloacae MTCC 509	4
E. coli ATCC 25922	4
<i>Ec</i> ATCC 35218	4
Ec 9062 (clinical isolate)	4
Ec 7932 (clinical isolate)	4
P. aeruginosa ATCC 27853	16
A. baumannii ATCC 19606	>32
S. enterica ATCC 10708	4
eumoniae MDR (polymyxin-sensitive) (19 clinical strains ∴range)	2 - 8

Table S13. MIC values of TriM₁ against colistin-resistant *K. pneumoniae* and MDR *E. coli*.

Strain	MIC (μg/mL)
K. pneumoniae	
(clinical isolates)	
AH-1	2
AH-2	2
AH-3	2
AH-4	2
AH-5	2
AH-6	2
AH-7	2
AH-8	2
AH-9	2
AH-10	2
AH-11	2
AH-12	2
AH-13	2
AH-14	2
AH-15	2
AH-16	2
AH-17	2
AH-18	2
AH-19	2
<i>E. coli</i> (food isolates)	
CF-23	4
CF-45	4
CF-47	4

Jangra, M.; Kaur, M.; Tambat, R.; Rana, R.; Maurya, S. K.; Khatri, N.; Ghafur, A.; Nandanwar, H. Antimicrob. Agents Chemother. 2019 , 63 (6), e00338-19.						
Analogue	IC₅₀ (µg/mL) [♭]					
92	0	>250				

^{*a*} Haemolysis at 100 μ g/mL. However, >50% haemolysis was observed at a peptide concentration of 200 μ g/mL. Assays were run in triplicate, with two biological repeats, and absorbance of each sample was measured at 570 nm while percent haemolysis due to the corresponding peptide was calculated relative to Triton X-100 (taken as 100%). ^{*b*} Peptide concentrations of 0 – 250 μ g/mL were tested against HEK 293 and J774 cell lines. Assays were run in triplicate and compared to PBS standard (taken as 100%).

Table S14.Toxicity data for $Tri M_1$.

Purification and biological activity of natural variants synthesized by tridecaptin M gene cluster and in vitro drug-kinetics of this antibiotic class

Jangra, M.; Kaur, M.; Podia, M.; Tambat, R.; Singh, V.; Chandal, N.; Mahey, N.; Maurya, N.; Nandanwar, H. *Sci. Rep.* 2019, 9 (18870), doi.org/10.1038/s41598-019-54716-8.

98. TriM₁₁: Residues 1-7 could not be conclusively determined

Table S15. MIC values of $TriM_1 - M_{11}$ analogues against various bacterial strains.

Jangra, M.; Kaur, M.; Podia, M.; Tambat, R.; Singh, V.; Chandal, N.; Mahey, N.; Maurya, N.; Nandanwar, H. Sci. Rep. 2019, 9 (18870), doi.org/10.1038/s41598-019-54716-8.											
	MIC (µg/mL)										
Analogue	K. pneumoniae ATCC 700603	K. pneumoniae AH-3 (Col-R)	K. pneumoniae AH-16 (Col-R)	E. coli CF-23 (mcr-1)	P. mirabilis MTCC 1429	Serratia marcescens MTCC 97	K. pneumoniae P3R (M1-R)	K. pneumoniae GMCH 13	K. pneumoniae GMCH 15	A. baumannii ATCC 19606	P. aeruginosa ATCC 27853
92	4	4	4	4	>16	8	64	8	16	64	>128
93	8	8	>16	16	>16	>16	>32	ND	ND	>32	>32
94	16	16	16	16	16	8	16	ND	ND	>32	>32
95	4	4	2	4	>16	16	16	ND	ND	>32	>32
96	8	8	8	16	>16	8	16	ND	ND	>32	>32
97	4	8	4	4	>16	16	128	ND	ND	128	>128
98	2	1	1	1	4	4	8	4	2	4	8

Table S16. Haemolytic activity of $TriM_1 - TriM_{11}$ analogues.

Jangra, M.; Kaur, M.; Podia, M.; Tambat, R.; Singh, V.; Chandal, N.; Mahey, N.; Maurya, N.; Nandanwar, H. Sci. Rep. 2019, 9 (18870), doi.org/10.1038/s41598-019-54716-8.				
Analogue ^a	% haemolysis ^b			
92	10			
93	2			
94	0			
95	17			
96	1			
97	78			
98	50			

^e Peptide concentration of 128 μg/mL. ^b Percent haemolysis due to the corresponding peptide was calculated relative to Triton X-100 (taken as 100%). Exact data points were not provided therefore values were approximated from the graph provided.