
Materials and Methods 

Animal husbandry 

Schmidtea mediterranea clonal asexual strain CIW4 animals, starved for 7–14 days 

prior experimentation, were used for all experiments except for in situ hybridizations in 

embryos (Fig. 1). All animals utilized were healthy, not previously used in other 

procedures, and were of wild-type genotype. Animals were cultured in plastic containers 

or petri dishes for experiments, in 1x Montjuic water (1.6 mmol/l NaCl, 1.0 mmol/l CaCl2, 

1.0 mmol/l MgSO4, 0.1 mmol/l MgCl2, 0.1 mmol/l KCl and 1.2 mmol/l NaHCO3 prepared 

in Milli-Q water) at 20°C in the dark. Animals were fed blended calf liver. Schmidtea 

polychroa lines were generated by amputation of a starter animal and the line was 

initially propagated through successive rounds of amputation. After generating a large 

colony, lines were propagated through sexual reproduction. Animals were fed 

homogenized beef liver once a week and cleaned twice weekly. Animals were kept in 

the dark at 20°C and maintained in 1x Montjuic water. Egg capsules were collected and 

staged daily (68).  

Replication, size estimation and randomization 

At least two independent FISH and immunostaining experiments with a minimum of 

three animals/experiment were performed for the characterization of muscle guidepost 

cells in intact and regenerating adults and in embryos. For RNAi phenotype 

characterization, numbers of animals used in each staining are indicated in each panel. 

No sample size estimation was performed. Animals for all experiments were randomly 

selected from a large collection of clonal animals. All animals have been included in 

statistical analyses, no exclusions have been done. Images were randomized before 

quantification. 

2



Gene nomenclature 

Genes that encode proteins with a clear domain structure have been assigned a name 

accordingly but also identified using a transcriptome contig id number to facilitate 

identification (figs. S7 and S8).  

  

Drop-seq clustering and single-cell differential expression analysis 

To obtain transcriptomes for NMEs and NMCs, data from targeted single-cell 

sequencing of the planarian brain ((62), GEO accession number GSE111764, 

BrainClusteringDigitalExpressionMatrix.dge.txt.gz)) was used to identify cells positive 

for expression of notum (dd_Smed_v4_24180_0_1) and fz5/8-4 

(dd_Smed_v4_11823_0_1) and negative for expression of the anterior pole marker 

foxD (dd_Smed_v4_23249_0_1) and the neuronal markers ChAT 

(dd_Smed_v4_6208_0_1) and pc2 (dd_Smed_v4_1566_0_1) (log-scale expression of 

0.5 for all genes). To identify these cells within the single-cell sequencing data, the 

Seurat function WhichCells [subset.name=contig ID, accept.low=0.5] was used with 

Seurat package, v2.2 (69). Fifteen cells satisfied all gene expression thresholds 

(Cells_Head1_AAGTCTCACGCC, Cells_Head1_CAGACCTTCCCC, 

Cells_Head1_CGTGACTAAGAA, Cells_Head1_GGCGTGGTGACN, 

Cells_Head1_TAAATTCGATAG, Cells_Head1_TTTACTTTCGAT, 

Cells_Head2_AACGCCATTTCC, Cells_Head2_AGTATGAATATG, 

Cells_Head2_AGTCACTAACAA, Cells_Head2_CACCGTGTACTA, 

Cells_Head2_CCAGATAACGCA, Cells_Head2_CGTAACTATCGT, 

Cells_Head2_GGTTACAGCTTT, Cells_Head2_GTTCCATGAAGN, 

Cells_Head2_TGCTGTGCATCT). Of these fifteen cells, eight cells were assigned a 

muscle identity in (62) (Cells_Head2_AACGCCATTTCC, 

Cells_Head2_AGTATGAATATG, Cells_Head2_AGTCACTAACAA, 

Cells_Head2_CACCGTGTACTA, Cells_Head2_CCAGATAACGCA, 

Cells_Head2_CGTAACTATCGT, Cells_Head2_GGTTACAGCTTT, 

Cells_Head2_TGCTGTGCATCT). Additional data on identified cells can be found in 

Table S1 of (62). An expression matrix for all cells identified as muscle in the targeted 
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brain sequencing from (62) was generated, tagging the eight muscle cells above as 

positive and the remaining 522 muscle cells as negative. This expression matrix was 

used as input for the R package SCDE (70). SCDE analysis revealed a list of genes 

enriched in these putative guidepost cells. Genes were ranked by their ‘conservative 

expression’ value. To obtain transcriptomes for notum+ brain neurons, cells identified as 

neural from the targeted brain sequencing were combined with all cells identified as 

neural in the principal single-cell sequencing from (62). Cells positive for expression of 

both ChAT (log-scale expression of 2.5) and notum (log-scale expression of 2) were 

identified, as above. Thirteen cells satisfied both gene expression thresholds 

(Cells_Head_TCATCCACGCTT, Cells_Head_ACAATGTTTGGT, 

Cells_Head_GTCAGACTCAGN, Cells_Head_CCTGTCGGCTCN, 

Cells_Head_AGGGCGTAGTAA, Cells_Head2_GTCGTCGTTGCG, 

Cells_Head2_GGCCCGAGGATG, Cells_Whole_CGAACCAATAGT, 

Cells_Pharynx_AGTACAATGTGN, Cells_Head2_AAACCAAGCCAG, 

Cells_Head2_AGTTAGGCACAN, Cells_Pharynx_GGTAGGTTATCG, 

Cells_Pharynx_AAGTAGGCATCG). Of these thirteen cells, three had been isolated 

from the planarian pharynx (Cells_Pharynx_AGTACAATGTGN, 

Cells_Pharynx_GGTAGGTTATCG, Cells_Pharynx_AAGTAGGCATCG) and were thus 

discarded. Additional data on identified cells can be found in Table S1 of (62). An 

expression matrix for all ChAT+ neurons (2103 cells) was generated, tagging the name 

of each neuron as positive or negative for expression of notum. This expression matrix 

was used as input for analysis by SCDE, as above, revealing a list of genes enriched in 

notum+ neurons. Genes were ranked by their ‘conservative expression’ value.  

For all cells analyzed in Table S1, UMI counts were log normalized by dividing by the 

total number of UMIs per cell, then multiplying by 10,000. All calculations were 

performed in log space (i.e. ln(UMIs-per-10,000+1)). The fifty transcripts with the 

highest average normalized expression in the 8 putative guidepost-like cells were then 

identified and their expression was compared with 10 randomly chosen non-guidepost 

muscle cells (chosen from cluster 9 of the Drop-seq data), 10 randomly chosen ciliated 

epidermis cells (chosen from cluster 19 of the Drop-seq data), and 10 randomly chosen 

neural cells (chosen from clusters 0,1,5,17,20,23,24,25,26,27, and 28 of the Drop-seq 
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data). Averages indicate the average normalized UMI counts for each group of cells. 

Muscle enrichment/broad expression determinations were made using the online 

resource digiworm.wi.mit.edu from (62). Namely, genes enriched in clusters 7, 13, 14, 

or 16 of the main clustering data from (62), but not broadly expressed across most 

clusters, were designated muscle enriched. All of the top 50 transcripts expressed in the 

putative guidepost cells were either muscle enriched or broadly expressed, including in 

muscle. 

 

Gene cloning 

Homologs of guidance cues in planarians were cloned using the following primers:  

roboC (dd_Smed_v4_7921_0_1), fwd: 5’ atggtgccattgtcccgg; rv: 5’ aaccgagagttgccggtg;  

roboD (dd_Smed_v4_14150_0_1), fwd: 5’ tgctcaatcgtcagataccg; rv: 5’ 

accgggaattcgaaaagact 

unc-5A (dd_Smed_v4_10380_0_1), fwd: 5’ ttgctcctagcggtcttcat; rv: 5’ 

tgtacgcggaattgctactg 

unc-5B (dd_Smed_v4_10585_0_1), fwd: 5’ tcttgagccacaaccctttt; rv: 5’ 

ccagttcgatatccgaagga 

unc-5C (dd_Smed_v4_10730_0_1), fwd: 5’ccaactcgggaaattgaaga; rv: 5’ 

ccgaaacaaaaggtggagaa 

unc-5D (dd_Smed_v4_16435_0_1), fwd: 5’ ccctcaaggaacaaaatgga; rv: 5’ 

aaatttcccaatcgggtttc 

ephR-1 (dd_Smed_v4_16483_0_1), fwd: 5’ccgatcacttttcagccaat; rv: 5’ 

gtgaggttggctgattccat 

ephR-2 (dd_Smed_v4_16928_0_1), fwd: 5’gttcctctgatgtgcccagt; rv: 5’ 

agatccggcatgaatctgac 

ephrin (dd_Smed_v4_16552_0_1), fwd: 5’ tccagcaagatatgccgata; rv: 5’  

tgctgaaaaactgataattgaaaca. 
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ephrin (dd_Smed_v4_10687_0_1), fwd: 5’agtcattcacggtccaggc; rv: 5’ 

cccatgaaaaacaggttcaaaag 

arrowhead (dd_Smed_v4_47123_0_1), fwd: 5’ gttgcaaagctagctcaatttca;  

rv: 5’ acgggatatggattaacttgaca 

plexin (dd_Smed_v4_11934_0_1), fwd: 5’ gcgagtgtggtgggaaaaat; rv: 5’ 

ccaagacgcaccaagaacaa 

semaphorin-1 (dd_Smed_v4_12018_0_1), fwd: 5’acctgaaatccctttcactcgt;  

rv: 5’ tccagctgtgtaagagagga 

soxP-5 (dd_Smed_v4_9050_0_1) accession number: GenBank JX010525.1. 

All constructs were cloned from cDNA into the pGEM vector (Promega). These 

constructs were used to synthesize RNA probes and dsRNA for RNAi experiments. 

 

RNAi 

For RNAi experiments, dsRNA was synthesized by in vitro transcription reactions 

(Promega) using PCR-generated templates with flanking T7 promoters, followed by 

ethanol precipitation, and annealed after resuspension in water. The concentration of 

dsRNA varied in each prep between 4 and 7 µg/ml. dsRNA was then mixed with 

planarian food (liver) (36) and 2 μl of this mixture per animal (liver containing dsRNA) 

was used for feedings. For the guidance cue screen (fig. S8) animals were fed six times 

in three weeks. For the PCG screen (Fig. 5; fig. S9) animals were fed between six and 

ten times in three to five weeks until phenotype was observed. ovo RNAi animals for 

homeostasis experiments (Fig. 3, Fig. 5; fig. S9) were fed eight to twelve times during a 

four to six weeks. ovo RNAi regeneration experiments (eye resection and decapitation, 

Fig. 3) animals were fed eight times in four weeks. ovo RNAi animals for transplantation 

experiments were fed eight times in four weeks (Fig. 4; figs. S5 and S6). ndk; ndl4 RNAi 

animals were fed until posterior eyes appeared (8-12 feedings). For RNAi “wear off” 

experiments, animals were not fed for two months before a midline sagittal cut was 

performed (Fig. 5). arrowhead RNAi animals (Fig. 6; fig. S11) were fed six times over a 

period of three weeks. tolloid RNAi animals for regeneration experiments were fed only 
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once, and twice for homeostasis experiments (Fig. 6; fig. S10). soxP-5 RNAi animals 

were fed eight times in a four-week period of time (Fig. 6; figs. S12 and S13). All 

feedings were performed every other three days. In all cases, animals were fixed seven 

days after the last feeding. For regeneration experiments, animals were amputated into 

three pieces (head, trunk and tail pieces) one week after the last RNAi feeding. Seven 

days after amputation, trunk pieces were scored, and fixed for further analysis.  

  

Fluorescence in situ hybridizations and immunostainings 

RNA probes were synthesized and whole-mount FISH was performed (36). Briefly, 

animals were killed in 5% NAC and treated with proteinase K (2 μg/ml). Following 

overnight hybridizations, samples were washed twice in each of pre-hybridization buffer, 

1:1 pre-hybridization-2X SSC, 2X SSC, 0.2X SSC, PBS with Triton-X (PBST). 

Subsequently, blocking was performed in 10% Western Blocking Reagent (Roche, 

11921673001) PBST solution for DIG probes, or in 5% Horse serum and 5% casein for 

DNP and FITC probes. Antibody washes were then performed for one hour followed by 

tyramide development. Peroxidase inactivation with 1% sodium azide was done for 90 

minutes at room temperature. Brightfield images were taken with a Zeiss Discovery 

Microscope. Fluorescent images were taken with a Leica SP8 Confocal Microscope. 

Co-localization analyses of FISH signals were performed using Fiji/ImageJ. 3D 

reconstruction for the movies was performed using Imaris 3/4D Image Visualization and 

Analysis Software. For each channel, histograms of fluorescence intensity were used to 

determine the cut-off between signal and background. All FISH images shown are 

representative of all images taken in each condition, and are maximal intensity 

projections. All images, otherwise indicated, are anterior up. For immunostainings with 

anti-Arrestin antibody (VC-1) or anti-muscle antibody (6G10), animals were fixed as for 

in situ hybridizations, blocked in 3% BSA-PBST or in 10% Western Blocking Reagent 

(Roche, 11921673001) PBST solution, respectively, for one hour and then stained with 

the antibody of interest. The anti-muscle mouse monoclonal antibody 6G10 (RRID: 

AB_2619613) (71) was used in a 1:1000 dilution, the anti-Arrestin mouse monoclonal 

antibody VC-1 was used in a 1:5000 dilution, the anti-Arrestin rabbit polyclonal antibody 

and the anti-alpha tubulin antibody (Lab Vision Cat# MS-581, RRID: AB_144075) was 
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used in a 1:500 dilution, and an anti-mouse Alexa conjugated antibodies (Life Tech) 

were used in a 1:500 dilution. The pool of probes used for labelling muscle cells 

included troponin, tropomyosin, colF-2, colF-10 (Fig. 1, fig. S2).  

 

Schmidtea polychroa (Spol) fluorescence in situ hybridization  

Whole mount fluorescent in situ hybridization was performed as described above for 

Schmidtea mediterranea with the following modifications. 1) Stage 2-5 embryos were 

dissected out of egg capsules and fixed in 4% formaldehyde for two hours. Embryos 

were washed in PBSTx-0.5% for 10 minutes and dehydrated in 25%, 50%, 75%,100% 

PBSTx:Methanol for 10 minutes. Fixed embryos were not bleached and stored at -20°C. 

Proteinase K treatment was extended to 20 minutes. 2) Stage 6 and 7 embryos were 

dissected out of egg capsules and fixed in 4% formaldehyde for one hour. Embryos 

were washed in PBSTx-0.5% for 10 minutes and dehydrated in 25%, 50%, 75%,100% 

PBSTx:Methanol for 10 minutes each. Embryos were washed in PBSTx-0.5% for 10 

minutes and dehydrated in 25%, 50%, 75%,100% PBSTx:Methanol for 10 minutes. 

Fixed embryos were not bleached and stored at -20°C. Proteinase K treatment was 

extended to 15 minutes. 3) Hatchlings were treated with 5% NAC PBS with gentle 

rotation for 5 minutes and then fixed in 4% formaldehyde for one hour. Hatchlings were 

then washed in PBSTx-0.5% for 10 minutes and dehydrated in 25%, 50%, 75%,100% 

PBSTx:Methanol for 10 minutes. Hatchlings were stored at -20°C and bleached in 

formamide bleaching solution for one hour at room temperature. Proteinase K treatment 

was extended to 12 minutes. All embryos were mounted in Vectashield between two 

coverslips and both sides imaged on a Leica SP8 confocal microscope. 

  

Eye resections and eye transplantations 

In order to selectively resect eyes, animals were placed on moist filter paper on a cold 

block to limit movement, and the tip of a microsurgery blade was used to remove eyes. 

For eye transplants, after anesthesia using 0.2% Chloretone in planarian H2O (1,1,1-

Tricloro-2-methyl-2-propanol) for two minutes, a thin slit cut was made to desired 

locations of the recipient animals and a small hole was generated by gently moving the 

8



surgical blade up and down within the slit cut. Recipient animals were washed in 

Holtfreter’s Solution for 2 minutes and rested in 0.2% Chloretone for 2 minutes, briefly 

washed in Holtfreter’s Solution and transferred on the cold block to introduce the 

excised eyes. Eye resections were performed using a dissecting microscope by 

trimming the pigmented tissue around the eyes with a surgical blade, leaving only the 

white area and the visible optic cup of the eyes. The pigmented ventral side of this 

tissue was also trimmed away before transplantation. The eyes were gently pushed 

inside the previously generated holes in the recipient animals. Transplanted animals 

were immobilized using Type IV, 5% ultra-low melting agarose (Sigma) on top of 

WhatmanTM (GE Healthcare, Life Sciences) filter paper. Solidified gel was covered 

using Rasta Royale ultrathin rolling paper soaked in Holtfreter’s Solution. Transplanted 

animals were kept in 100C overnight and recovered by cutting the gel around and also 

on top of the animal. Animals were placed in planarian H2O and kept at 220C for 

recovery.  

 

Quantifications and statistical analysis 

  

Total numbers of NMEs and NMCs were counted based on expression of the markers 

notum and fz5/8-4, the location of their nuclei on the dorsal-ventral axis, and using as a 

reference the brain architecture with a DAPI nuclei staining. Total numbers of muscle 

guidepost cells were also counted and graph relative to the total length of the animal 

expressed in um.  

 

NME and NMC cell position and density maps were generated by building an idealized 

planarian visual circuit and positioning it in relation to the brain commissure and the 

anterior pole determined by DAPI staining and notum expression, respectively. This 

trace was placed on 4 (for ovo RNAi only) or 9 (for all other conditions) equal zones in 

the Adobe Illustrator Software and the approximate positions of NME and NMCs in 

relation to the photoreceptor axons, brain commissures and anterior poles was mapped 

manually. Heatmaps indicating relative positions of NME and NMCs were generated by 

counting the NME and NMCs that fall into each of the 9 zones. The range was 
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determined by the highest and the lowest total number of cells that were counted in 

each zone.  

 

Axonal trajectories were manually traced in the Adobe Illustrator Software after 

transferring a maximum intensity projection of the image containing the planarian visual 

circuitry into a new document. NME and NMCs were mapped onto the traces based on 

their position in relation to the visual axons using FIJI’s channels tool, determining the 

dorsal-ventral position for each cell. To determine the significance of axonal interactions 

with NME, NMC and NBCs (Fig. 2), axons from 6 to 10 separate eyes, for each group, 

were traced manually in the same manner described above. The trace maps were 

placed on a circular area that is divided into 36 equal sections (10 degrees each). NME, 

NMC and NBC cell distributions in reference to the center point of the circle (eye) were 

mapped and angular median values and 95% confidence intervals for cell positions was 

calculated for each group. NME/NMC/NBC numbers and the number of axonal 

intersections in each pie shaped section shown in Fig. 2 were counted and bar graphs 

were generated using GraphPad Prism software after linearizing the circular arenas. 

Coincidence of NMEs/NMCs/NBCs and axons was represented by a black box around 

the area they both occupy (fig. S3). Local axonal trajectories were traced in relation to 

NME and NMCs in ‘d7 after eye transplant’ animals and axons that extend within two 

NME or NMC cell diameters were mapped in circular fields. An overlay map of these 

circular fields was generated to build a density map of axons that project to the vicinity 

of NME and NMCs (Fig. 4; fig. S6).   

 

One-way ANOVA test followed by Dunnett’s multiple comparison test was used when 

analyzing more than two conditions. Unpaired Student's t-test was used when 

comparing two conditions. Mean ± SD is shown in all graphs. 

 

Captions for Tables: 

Table S1. Expression of muscle markers in notum+; fz5/8-4+ guidepost-like cells.  
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Table S2. SCDE analysis and list of enriched gene expression in NMEs/NMCs. 

Table S3. SCDE analysis and list of enriched gene expression in NBCs. 

Captions for Movies: 

Movie S1. Ventral to dorsal view of the visual system showing NMEs and NMCs (fz5-

8/4 (magenta); notum (green); anti-Arrestin (yellow)).  

Movie S2. Three-dimensional reconstruction of the visual system showing NBCs, NMEs 

and NMCs (notum (magenta); anti-Arrestin (cyan); muscle pool (yellow)).  
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Figure S1. Characterization of notum+; fz5/8-4+ cells associated with the visual 
system. (A) Dorsoventral view of the visual system showing notum+ cells associated 

with the visual system and ChAT+ neurons in the brain. (B-D) notum+; fz5/8-4+ cells 

associated with visual axons do not express eye-specific markers (B, C), or neuron-

specific markers (D). (E) Some fz5/8-4+; ChAT+ cells that do not express notum are 

observed near notum+; fz5/8-4+ cells associated with visual axons. Red boxes in 

cartoons show location of image taken.  

Scale bars, 50μm (A-E) and 10μm for all zoom-ins (D, E).  
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Figure S2. notum+; fz5/8-4+ cells associated with the visual system are muscle 
cells. (A) A notum+ muscle fiber (labeled with the muscle antibody 6G10) is associated 

with visual axons. (B) Head on view of dorsoventral muscle fibers (mhc-2+) shown along 

with the visual axons and notum+ cells. (C-F) notum+; fz5/8-4+ cells express muscle-

specific markers (F; muscle pool includes troponin, tropomyosin, colF-2, and colF-10.) 

Zoom-ins show co-localization. White arrows show coexpression of notum+ cells 

associated with the visual system and muscle markers. White dotted boxes show zoom-

in areas.  

Scale bars, 50μm (A-F) and 10μm for all zoom-ins (C-F).  
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Figure S2
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Figure S3. Association of NMEs, NMCs, and NBCs with visual axons during 
regeneration. (A) Histograms show the distribution of cells (NMCs, light pink top; 

NMEs, dark pink, middle; and NBCs, orange, bottom) and axons (blue) in different 

regeneration contexts: eye resection, top; decapitation, middle and bottom. (B) Axonal 

projections towards NMCs following unilateral eye resection. (C) Axonal projections 

towards NMEs/NMCs (pink) and NBCs (orange) at different timepoints following head 

amputation. Dotted pink and orange lines show where NMEs/NMCs and NBCs, 

respectively, are observed. Dotted white boxes show areas zoom-in below.  

Scale bars, 50μm (B, C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17



Figure S4
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Figure S4. NMEs and NMCs are specified independently of axons. (A) NMEs/NMCs 

are not observed associated with visual axons of transplanted eyes. (B) Presence of 

NMEs/NMCs in regenerating double-eye resected ovo RNAi animals after 30 days. 

Right: Mapping shows NME/NMC distributions in an idealized visual system cartoon. n 

indicates number of animals mapped. (C) Graph shows NME/NMC numbers in a 

regeneration time course in ovo RNAi animals. (D) Late regeneration timepoint of an 

ovo RNAi animal showing NMEs/NMCs. Right: Mapping shows NME/NMC distributions 

in an idealized visual system cartoon. n indicates number of animals mapped. Graph 

shows NME/NMC numbers.  

Scale bars, 50μm (A, B, D). 
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Figure S5. NMEs and NMCs facilitate visual axons patterning after eye 
transplantation. (A) Live images of wildtype eyes transplanted into ovo RNAi recipients 

7 days after transplantation. (B) Recapitulation of stereotypical visual axonal trajectory 

in ovo RNAi animals transplanted with a wildtype eye one day after double-eye 

resection. At this time, visual axons from original eyes still remained in the recipient 

animal. Cartoons show axonal tracings of the image above and position of NMEs, 

NMCs, and NBCs. (C) Recapitulation of stereotypical visual axonal trajectory in an ovo 

RNAi animal transplanted with a wildtype eye three days after double-eye resection. At 

this time, 86% of the recipient animals still have visual axons from the original eyes. 

Right: Graph shows NME/NMC numbers before and after eye transplantation. (D) 

Recapitulation of stereotypical visual axonal trajectory with more defasciculation in ovo 

RNAi animals transplanted with a wildtype eye 10-12 days after double-eye resection. 

At this time, only 12.5% of the recipient animals still have visual axons from the original 

eyes. Below: zoom-ins showing axonal projections of the transplanted eye in close 

association with NMEs and NMCs (black or white arrows). Cartoons on the left show 

summarized surgical procedure: animals were RNAi fed 8 times (8F), double-eye 

resected at day 0, and a single wildtype eye was transplanted one (B), three (C), or 10-

12 (A, D) days after resection. Animals were fixed 7 days after transplantation. Pink 

cells in cartoons are NMEs/NMCs, orange cells are NBCs. 

Scale bars, 50μm (B-D). 
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Figure S6. Visual axonal tracing following eye transplantation. (A) Example 

showing how quantification of the association between visual axons and NMEs/NMCs 

was performed. In orange lines, axonal tracings quantified below in individual circles. 

Right: Cartoon shows axonal tracings and NME/NMC/NBC distributions of the image 

shown on the left. Cartoons on the left show summarized surgical procedure: animals 

were RNAi fed 8 times (8F), double-eye resected at day 0, and a single wildtype eye 

was transplanted 10-12 days after resection. Animals were fixed 7 days after 

transplantation. (B) Axonal tracks interacting with individual guidepost-like cells after 

eye transplantation.  

Scale bar, 50μm (A). 
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Figure S7. Identification and coexpression of guidance cues and guidepost-like 
cells. (A) Structural domains of canonical guidance cue homolog proteins. (B) 

Expression of the guidance cues netrin-1, netrin-2, and slit in NMEs, NMCs, and NBCs 

of intact animals. 

Scale bars, 50μm (B). 
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Figure S8. Role of extrinsic guidance cues and PCGs in the positioning of NMEs 
and NMCs. (A) Top: NMEs/NMCs associated with visual axons 7 days following 

decapitation in different RNAi conditions. Bottom left: Density map shows NME/NMC 

distributions in an idealized visual system illustration. n indicates number of animals 

mapped. Bottom right: Heatmap shows number of NMEs/NMCs located in each 

quadrant. (B) NMEs/NMCs associated with visual axons 7 days following decapitation in 

different RNAi conditions. (C) Graph shows NME/NMC numbers in different RNAi 

conditions. (D) NMEs/NMCs associated with visual axons in uninjured roboC and ror-1 

RNAi animals.  

Scale bars, 50μm (A, B, D). 
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Figure S8
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Figure S9. NME and NMC placement requires positional information. (A) Ectopic 

NMEs/NMCs in different uninjured RNAi conditions. NMEs/NMCs can be observed 

before the nucleation of new ectopic eyes or projection of axons. (B) Illustration 

summarizing NME/NMC distribution in ndk RNAi animals before and after wearing off 

the RNAi and after sagittal amputation. (C) Presence (control) or absence (ovo RNAi) of 

visual axons and distribution of NMEs/NMCs in intact ndk; ndl-4 and notum RNAi 

animals. (D) Location of NMEs/NMCs changed following wnt5 and slit RNAi 

independently of eye cells.  

Scale bars, 50μm (A, C, D). 
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Figure S10. tolloid is required for NMC specification. (A) Dotted area shows how the 

width of axonal projections was quantified in Fig. 6. (B) Normal expression of the 

guidance cues slit and netrin-2 in uninjured tolloid RNAi animals. (C) Defasciculation of 

visual axons (white dotted line) and reduced numbers or complete absence of NMCs in 

a regenerating double-eye resected tolloid RNAi animal, and in an uninjured tolloid 

RNAi animal. Below, graphs show NME/NMC numbers in the different conditions. (D) 

Top left, cartoon shows summary of eye transplantation protocol. Top right, graph 

shows NME/NMC numbers after a wildtype eye transplantation in ovo or ovo/tolloid 

RNAi recipients. Below: Visual axons of eyes transplanted into ovo/tolloid RNAi 

recipients did not recapitulate the stereotypical route of the visual axonal trajectories. 

(E) Axons from wildtype eyes transplanted into netrin-1; netrin-2; ovo RNAi animals do 

not project contralaterally. Similarly, axons from DCC RNAi eyes transplanted into ovo 

RNAi recipients are aberrant and show disrupted projection patterns.  

Scale bars, 50μm (B-E). 
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Figure S11. arrowhead is required for NBC specification and optic chiasm 
regeneration. (A) Normal expression of the guidance cue netrin-2 in an arrowhead 

RNAi animal that did not regenerate the optic chiasm after head amputation. (B) Visual 

axons in regenerating control and arrowhead RNAi animals do not obviously follow 

other axonal bundles at the anterior commissure. (C) NBCs express the transcription 

factor arrowhead in regenerating animals. (D) Normal stereotypical visual axonal 

trajectories in a double-eye resected arrowhead RNAi animal that lacks NBCs (white 

dotted circles). Right: graph shows normal numbers of NMEs/NMCs in double-eye 

resected arrowhead RNAi animals. Dotted black lines in cartoons show amputation 

planes, red boxes show location of image taken. 

Scale bars, 50μm (A-D). 
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Figure S12. soxP-5 is required for NME and NMC specification. (A) Violin plot and 

dot plot show expression of soxP-5 in different cell types (62). Heatmap shows 

expression of muscle markers in guidepost-like cells, muscle, epidermal or neuronal 

cells (62). (B) Minor defasciculations following double-eye resections in a soxP-5 RNAi 

animal. Normal expression of the muscle marker colF-2 and anterior pole (notum+) in a 

soxP-5 RNAi animal. Right: Graph shows reduced numbers of NMEs/NMCs in double-

eye resected soxP-5 RNAi animals. (C) Normal blastema formation in a regenerating 

soxP-5 RNAi animal. (D) Images of regenerating soxP-5* RNAi animals showing 

defects in visual axonal wiring. *also shown in S12E, **also shown in Fig. 6K. (E) White 

box shows the area width used for quantification of the soxP-5* RNAi phenotype shown 

in graph on the right. (F) Quantification showing reduced number of NMEs/NMCs in 

soxP-5* animals and increased number of aberrant axon bundles.  

Scale bars: 50μm (B-D). 
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Figure S13. soxP-5* RNAi animals have normal muscle and brain architecture. (A) 

Normal expression of the muscle markers colF-2, mp-1, mhc-2; normal body wall 

muscle architecture (6G10 ab staining); normal regeneration of anterior pole cells 

(notum+); and normal brain architecture (DAPI) in a regenerating soxP-5* RNAi animal 

with an abnormal visual system. (B, C) Quantifications showing that total number of 

muscle anterior pole cells (B), and neuronal subsets NBCs, cintillo+, and gad+ cells (C) 

are unaffected in soxP-5* RNAi animals. (D) FISH showing a normal pattern of cintillo+ 

and gad+ neurons in a regenerating soxP-5* RNAi animal.  

Scale bars: 50μm (A, D). 
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