Supplementary information: Transcriptome-wide association
analysis of brain structures yields insights into pleiotropy with

complex neuropsychiatric traits
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Supplementary Figure 1: Significant gene-trait associations discovered in UKB
cross-tissue TWAS analysis of ROI volumes (n=19,629 subjects). FUMA: associa-
tions identified in FUMA; MAGMA: associations identified in MAGMA; FUMA&MAGMA:
associations identified in both FUMA and MAGMA analysis; UTMOST new: novel associ-
ations identified in cross-tissue TWAS analysis.
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Supplementary Figure 2: Significant gene-trait associations discovered in
UKB cross-tissue TWAS analysis of DTI parameters (n=17,706 subjects).
FUMA: associations identified in FUMA; MAGMA: associations identified in MAGMA;

FUMA&MAGMA: associations identified in both FUMA and MAGMA analysis; UTMOST
new: novel associations identified in cross-tissue TWAS analysis.
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Supplementary Figure 3: Selected significant gene-trait associations discovered
in UKB cross-tissue TWAS analysis of 211 neuroimaging traits (n=19,629 sub-
jects for ROI volumes and 17,706 for DTI parameters). FUMA: associations iden-
tified in FUMA; MAGMA: associations identified in MAGMA; FUMA&MAGMA: associa-
tions identified in both FUMA and MAGMA analysis; UTMOST new: novel associations
identified in cross-tissue TWAS analysis.
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Supplementary Figure 4: UKB significant genes that can be validated in one or
more of the five validation datasets (n=537 subjects for PNC, 860 subjects for
ADNI, 461 subjects for PING, 334 subjects for HCP, and 13,193 subjects for
ENIGMA). FUMA/MAGMA: genes identified in FUMA or MAGMA analysis; UTMOST-
DTT: genes identified in cross-tissue TWAS analysis for DTI parameters; UTMOST-Volume:
genes identified in cross-tissue TWAS analysis for ROI volumes; UTMOST-Both: genes
identified in cross-tissue TWAS analysis for both DTT parameters and ROI volumes.
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Supplementary Figure 5: Additional significant genes and their associations iden-
tified in UKB cross-tissue TWAS analysis of ROI volumes (n=19,629 subjects).
These genes were not identified in previous GWAS MAGMA and FUMA analysis of the
same dataset.
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Supplementary Figure 6: Additional significant genes and their associations iden-
tified in UKB cross-tissue TWAS analysis of ROI volumes (n=17,706 subjects).
These genes were not identified in previous GWAS MAGMA and FUMA analysis of the
same dataset.
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Supplementary Figure 7: Significant gene-trait associations discovered in UKB
brain tissue-specific TWAS analysis of ROI volumes (n=19,629 subjects).
FUMA: associations identified in FUMA; MAGMA: associations identified in MAGMA;
FUMA&MAGMA: associations identified in both FUMA and MAGMA analysis; UTMOST

brain: novel associations identified in brain tissue-specific TWAS analysis.
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Supplementary Figure 8: Significant gene-trait associations discovered in UKB
brain tissue-specific TWAS analysis of DTI parameters (n=17,706 subjects).
FUMA: associations identified in FUMA; MAGMA: associations identified in MAGMA;
FUMA&MAGMA: associations identified in both FUMA and MAGMA analysis; UTMOST
brain: novel associations identified in brain tissue-specific TWAS analysis.
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Supplementary Figure 9: Significant gene-trait associations discovered in UKB
cross-tissue TWAS analysis of ROI volumes (n=19,629 subjects). Brain-tissue:
associations identified in UKB brain tissue-specific analysis; Both: associations identified in
both UKB brain tissue-specific analysis and FUMA or MAGMA analysis; Cross-tissue new:
novel associations identifed in cross-tissue TWAS analysis.
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Supplementary Figure 10: Significant gene-trait associations discovered in UKB
cross-tissue TWAS analysis of DTI parameters (n=17,706 subjects). Brain-tissue:
associations identified in UKB brain tissue-specific analysis; Both: associations identified in
both UKB brain tissue-specific analysis and FUMA or MAGMA analysis; Cross-tissue new:
novel associations identifed in cross-tissue TWAS analysis.
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Supplementary Figure 11: Prediction accuracy (incremental R-squared) of signif-
icant gene-based polygenic risk scores constructed by UKB-derived TWAS sum-
mary statistics (n=17,706 subjects) on the three independent datasets (PING,
PNC, HCP). We display the 23 DTT parameters that are significant in all the three datasets
after the Bonferroni correction.
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Supplementary Figure 12: Prediction accuracy (incremental R-squared) of
gene-based polygenic risk scores constructed by UKB-derived TWAS sum-
mary statistics conditioning on variant-based PRS constructed by UKB-derived
GWAS summary statistics (n=19,629 subjects) on the four independent datasets
(ADNI, PING, PNC, HCP). We display the 28 ROI volumes whose TWAS PRS are sig-
nificant in all the four datasets after the Bonferroni correction.
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Supplementary Figure 13: Prediction accuracy (incremental R-squared) of both
gene-based polygenic risk scores constructed by UKB-derived TWAS summary
statistics and variant-based PRS constructed by UKB-derived GWAS summary
statistics (n=19,629 subjects) on the four independent datasets (ADNI, PING,

PNC, HCP). We display the 28 ROI volumes whose TWAS PRS are significant in all the
four datasets after the Bonferroni correction.
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Supplementary Figure 14:
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nificant in all the four datasets after the Bonferroni correction.
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Prediction accuracy (incremental R-squared) of
variant-based PRS constructed by UKB-derived GWAS summary statistics
conditioning on gene-based polygenic risk scores constructed by UKB-derived
TWAS summary statistics (n=19,629 subjects) on the four independent datasets
(ADNI, PING, PNC, HCP). We display the 28 ROI volumes whose TWAS PRS are sig-
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Supplementary Figure 15: Relationship between mean incremental prediction
R-squared of significant gene-based polygenic risk scores and the sample size
of reference panels. The polygenic risk scores were constructed on each GTEx reference
panel by UKB-derived GWAS summary statistics (n=19,629 subjects for ROI volumes and
17,706 for DTI parameters, respectively)
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2 Supplementary Note

2.1 Detailed steps to construct and evaluate (Gene-based PRS

2.1.1 Obtain imputed gene expression

The FUSION [4] software was used to impute gene expression levels in UKB, ADNI, HCP,
PNC, and PING datasets using individual-level genetic data. Specifically, we downloaded the
pre-computed expression reference weights from http://gusevlab.org/projects/fusion/
for 52 non-TCGA reference panels (13 GETx v7 brain tissues, 35 GTEx v7 other tissues,
1 non-GETx brain tissue, and 3 non-GETx other tissues). Then, we generated individual-

level imputed gene expression for each reference panel using the wutilsmake_score.R script
from FUSION and PLINK.

2.1.2 Estimate the effect size of imputed gene expression

We used the UKB dataset as our training data to estimate the effect size of each imputed
gene expression for each of the 52 reference panel. The effect size was estimated in a linear
regression model for each gene, while adjusting for the age (at imaging), age-squared, sex,
age-sex interaction, age-squared-sex interaction, as well as the top 40 genetic principle com-
ponents. For ROI volumes, we also included total brain volume (for ROIs other than total
brain volume itself) as a covariate. We also saved the associated p-value for each estimated
effect size, which was used to threshold genes in next step.

2.1.3 Construct the gene-based PRS

With effect sizes estimated from the UKB dataset, we generated the gene-based TWAS PRS
in ADNI, HCP, PNC, and PING datasets by summarizing across imputed gene expressions,
weighted by their effect sizes. Specifically, the gene-based TWAS PRS for subject i, reference
panel 7, and given p-value threshold ¢; can be expressed as

PRSZ]k = Zwﬂ . Gijl . 1(Pvaljl < Ck),
l

where wj; is the estimated effect size of gene [ in reference panel j, Pvalj is the associated
p-value of wj;, Gyj is the imputed gene expression of gene [ in reference panel j for subject
1, and ¢, is the kth p-value threshold. We tried 17 p-value thresholds for gene selection: 1,
0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 0.001, 10~%, 107®, 1076, 107, and 5 x 10~5.

2.1.4 Evaluate the gene-based PRS

The prediction accuracy of using gene-based PRS to predict neuroimaging trait was estimated
and tested in linear regression model (R version 3.5.0), adjusting for the effects of age and

17


http://gusevlab.org/projects/fusion/

sex. Specifically, we constructed the following two linear models
Phenotype ~ covariates (ml),

and

Phenotype ~ TW AS_PRS + covariates (m2),

and the difference of the R-squared between m2 and ml was regarded as the phenotypic
variation that can be additionally explained by gene-based PRS. We reported the best pre-
diction performance across the 17 p-value thresholds. Next, we considered the following 2
linear models

Phenotype ~ GW AS_PRS + covariates (m3),

and

Phenotype ~ TWAS_PRS + GWAS_PRS + covariates (m4).

We measured the additional prediction accuracy of TWAS PRS conditioning on GWAS PRS
by comparing the R-squared of models m4 and m3, the additional prediction accuracy of
GWAS PRS conditioning on TWAS PRS using models m4 and m2, and calculated the
additional phenotypic variation that can be jointly explained by GWAS and TWAS PRS
using models m4 and ml.

2.1.5 Gene-Based PRS with colocalization

We have also incorporated colocalization information into the gene-based PRS and checked
the robustness of the performance. The colocalization information was estimated by MOLOC
analysis [3]. Specifically, we input the UKB GWAS summary statistics and meta-analyzed
non-UKB GWAS summary statistics, and then performed MOLOC using each of the 49
GTEx v8 tissues separately for all of our 211 neuroimaging traits. For each gene, MOLOC
estimated the posterior probability (PP) of having a colocalized signal shared among the
three datasets (UKB GWAS, non-UKB GWAS, and GTEx eQTL). We used this PP to
further weight the genes when constructing the gene-based PRS. That is, we let MOLOC-
weighted gene-based PRS to be ), wifg’\i@, where w; is the maximum of PP across different
reference panels for the ¢th gene, B\Z is the estimated gene effect size of the ith gene from the
training data (UKB GWAS), and G is the imputed gene expression of the ith gene in the
testing data (non-UKB GWAS). The only difference between MOLOC-weighted PRS and
our original gene-level PRS is that our original gene-level PRS did not use w;s. For genes
not present in the MOLOC results, we set w; to be 0.5 X minimum PP across all the genes.
Intuitively, w; uses the colocalization information to weight these genes and prioritizes the
genes with high PP. The mean R-squared of MOLOC-weighted PRS for our neuroimaging
traits was 2.27%, which was similar to the mean R-squared of our original gene-level PRS
(2.34%, Wilcoxon rank test p-value = 0.88). Overall, our results may suggest that our
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gene-based PRS analysis is resilient to typical confounding factors or distinct causal variants
related by LD.

2.2 GWAS on validation cohorts

In this study, we made use of summary-level data from six studies for validation, whose
GWAS analysis details can be found in [9, [10] for HCP, PING, PNC, and ADNI; and [11 [5]
for ENIGMA (ENIGMA2 and the ENIGMA-CHARGE collaboration).

The GWAS of HCP, PING, PNC, and ADNI cohorts only considered the unrelated
European ancestry individuals (based on self-reported race, ethnic, and family information)
in GWAS [9, 10]. The following genetic variants data quality controls (QQCs) were performed
on each dataset: 1) exclude subjects with more than 10% missing genotypes; 2) exclude
variants with minor allele frequency less than 0.01; 3) exclude variants with larger than 10%
missing genotyping rate; 4) exclude variants that failed the Hardy-Weinberg test at 1 x 107
level; and 5) remove variants with imputation INFO score less than 0.8.

ENIGMA brought together numerous studies and performed meta-analysis GWAS [, [5].
The main discovery GWAS in ENIGMA was performed on European ancestry. Studies
of unrelated individuals performed a linear regression analyses whereas studies of related
individuals used linear mixed models to account for familial relationships. In ENIGMA,
both samples as well as variants underwent similar quality control procedures based on
genetic homogeneity, call rate (less than 95%), minor allele frequency (MAF < 0.01), and
Hardy-Weinberg Equilibrium (HWE p-value less than 1 x107%). Good quality variants were
used as input for imputation to the 1000 Genomes reference panel (phase 1, version 3).
Variants that were poorly imputed (R? < 0.5) or uncommon (MAF < 0.5%) were removed.

2.3 UTMOST training using GTEx v8 data

The cross-tissue gene expression imputation models were trained based on genotype data,
expression data, and other covariates downloaded from GTEx portal (GTEx V8) [2]. The
genotype data were pruned with PLINK to remove highly correlated SNPs [7]. The ex-
pression levels for each sample were adjusted for other covariates including sex, sequencing
platform, top three principal components of genotype data, and the top probabilistic estima-
tion of expression residuals (PEER) to remove potential confounding effects [8]. The models
were then trained using CTIMP (Cross Tissue gene expression IMPutation) across 49 tissues
[6].

In terms of the cis-SNPs used in imputation models, we used rsid as the SNP reference.
For a given tissue, the imputation models for a specific gene were saved as multiple records
in the database. Each record corresponded to the weight of an rsid with respect to a gene.
As for the range of cis-SNPs for a gene, we used the corresponding gene reference build
(GRCh38 for GTEx v8) to identify the cis-SNPs.

19



PING Methods

Part of the data used in the preparation of this article were obtained from the Pediatric
Imaging, Neurocognition and Genetics (PING) Study database (http://ping.chd.ucsd.
edu/)). PING was launched in 2009 by the National Institute on Drug Abuse (NIDA) and
the Eunice Kennedy Shriver National Institute Of Child Health & Human Development
(NICHD) as a 2-year project of the American Recovery and Reinvestment Act. The primary
goal of PING has been to create a data resource of highly standardized and carefully curated
magnetic resonance imaging (MRI) data, comprehensive genotyping data, and developmental
and neuropsychological assessments for a large cohort of developing children aged 3 to 20
years. The scientific aim of the project is, by openly sharing these data, to amplify the
power and productivity of investigations of healthy and disordered development in children,
and to increase understanding of the origins of variation in neurobehavioral phenotypes. For
up-to-date information, see http://ping.chd.ucsd.edu/.

ADNI Methods

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a 60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California — San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2.
To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate
in the research, consisting of cognitively normal older individuals, people with early or late
MCI, and people with early AD. The follow up duration of each group is specified in the
protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1
and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see
www.adni-info.org.
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