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I. SUPPLEMENTARY NOTE 1 - SECURITY ANALYSIS

This section documents the derivation of our lower bound on the quantity C∗(S), which is introduced in the main text.
C∗(S) is defined as the minimum H(Z|EΘ) (conditional entropy of Z given side-information EΘ) upon observing a CHSH
value of S. Recall that

H(Z|EΘ) := λH(A0|E) + (1− λ)H(A1|E) (1)

describes Eve’s uncertainty about the measurement outcome Z given Θ and is a keystone for determining the secret key
rate of our device-independent quantum key distribution (DIQKD) protocols.

Before diving into the derivation, we will furnish the definitions and notations of the quantum states, operators and
functionals that will be used throughout this section. In the main text, we considered a Bell scenario where two parties
Alice and Bob input measurement settings X ∈ {0, 1} and Y ∈ {0, 1, 2, 3} respectively into their devices and in return,
each device outputs a bit. We shall omit the measurement settings Y = 0, 1 for the entirety of this section as they do not
serve any role in the estimation of H(Z|EΘ).

Since we are working in a fully device-independent setting, we can assume that all measurements can be written as
projectors without any loss of generality (refer to the explanation in [1]). As such, we denote the projectors corresponding
to measurements A0, A1, B2, B3 as

A0 = {ΠA0
0 ,ΠA0

1 }, A1 = {ΠA1
0 ,ΠA1

1 }, B2 = {ΠB2
0 ,ΠB2

1 }, and B3 = {ΠB3
0 ,ΠB3

1 }, (2)

where the subscript of each projector denotes its corresponding measurement outcome. Therefore, the correlation mea-
surement operators are defined by

CA0 := ΠA0
0 −ΠA0

1 , CA1 := ΠA1
0 −ΠA1

1 , CB2 := ΠB2
0 −ΠB2

1 , and CB3 := ΠB3
0 −ΠB3

1 . (3)

The correlation measurement operators and the correlation function CXY = P (AX = BY |X,Y ) − P (AX 6= BY |X,Y )
defined in the main text is related via CXY = tr

(
ρ CAX ⊗ CBY

)
where ρ is the measured quantum state. Hence, the

CHSH operator is denoted as

CHSH := CA1 ⊗ CB2 − CA0 ⊗ CB2 − CA0 ⊗ CB3 − CA1 ⊗ CB3 . (4)

Furthermore, we denote the single round quantum state of Alice and Bob by ρAB and assume that Eve holds the purification
of this state. Thus, the joint state describing Alice, Bob, and Eve quantum systems is given by some pure state ψABE ,
whose Hilbert space dimension is unknown. Conventionally, the von Neumann entropy of a quantum state ρ is denoted
and defined by H(ρ) := − tr(ρ log ρ), we shall adopt the shorthand notation of

H(AB) = H(ρAB), H(B) = H(ρB), H(E) = H(ρE) . . . (5)

to denote the entropy of a specific subsystem, whenever the underlying state is clear from the context. Next, a classical-
quantum state after the action of Alice’s measurement, AX , is modelled by

ρAXBE =
∑

i∈{0,1}

|i〉〈i| ⊗ trA

(
(ΠAX

i ⊗ 1BE)ψABE(ΠAX
i ⊗ 1BE)

)
, (6)
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where |i〉〈i| indexes a classical register that stores the measurement outcomes. Thus, the conditional entropy H(AX |E) =
H(AXE)−H(E) is well-defined for any given joint quantum state describing Alice, Bob and Eve’s systems through the
above-mentioned relations.

Finally, we could state the proper mathematical definition of C∗(S) using the furnished definitions:

C∗(S) = inf
A0,A1,B2,B3

inf
ψABE

λH(A0|E) + (1− λ)H(A1|E)

s.th.: 〈CHSH〉ρAB = S. (7)

In the following subsections, we will provide the detailed derivation of our lower bound on the quantity C∗(S) and the
structure of the proceedings are organised as follows:

IA We start by following a well-known argument [1–3], which allows us to reformulate the estimation of conditional
entropy of Eve in a tripartite scenario into the estimation of entropy production on the Alice-Bob system.

I B We proceed by following the argument of Pironio et al.[4], which allows us to conclude that the worst case, i.e. the
optimal attack of Eve, can always be realised by Alice and Bob performing a convex combination of projective
measurements on a two qubit state. Even though the problem now may seem straightforward, it still requires the
application of a suite of non-trivial numerical and analytical methods. This is due to the fact that the simultaneous
optimisation over states and measurements is neither linear nor convex.

I C We then apply a new refined version of Pinsker’s inequality (see Thm. 1) that enables the estimation of entropies
via certain trace norms. The remaining problem of optimising over trace norms can then be bounded using an
efficient algorithm, which will be introduced in the follow subsections.

ID We first formulate the optimisation over the unknown quantum state as a semi-definite program (SDP).

I E Although the optimisation over Bob’s measurements is not convex, we formulated an efficient algorithm that
lower bounds this optimisation up to arbitrary precision.

I F At this stage, it only remains to optimise over Alice’s measurements. Similar to the previous subsection,
optimising over Alice’s measurements also result in an optimisation problem that is not a SDP. Since this optimisation
only involves a single parameter, which is the angle ϕ between Alice’s measurements, we could simply employ an
adaptive refining ε-net. This is possible as all operators involved in the previous steps can be explicitly bounded in
norm.

IG At this point we are able to compute reliable lower bounds on C∗(S) for any two-qubit strategy. Using IB, we are
able to compute the final C∗(S) for a discretised range of different Bell violations S on qubits and taking its convex
hull subsequently.

A. Reduction to locally accessible quantities

The defining advantage of quantum over classical cryptography stems from the fact that for a quantum system it is
possible to witness the action of Eve, given only access to the Alice-Bob subsystem. In this subsection, we will relate
the conditional entropy H(AX |E), which depends on Eve’s system, to quantities that only depends on Alice and Bob’s
systems. Such effort will allow us to circumvent the obstacle of having to perform optimisation over Eve’s quantum system
with unbounded Hilbert space dimension.

We begin by viewing any key generating measurement, AX , of the DIQKD protocol from the perspective of a larger
Hilbert space (similarly to the appendix of [2]) by introducing a classical memory AX that is used to store the measurement
outcome. We denote AinitX as the abelian algebra describing the initial (empty) state of the memory and φ as its associated
pure quantum state. As such, the process of measuring AX on Alice’s quantum system (modelled by von Neumann algebra
A) and recording the outcome into the memory can be described by a unitary evolution that transforms the pure initial
state ΨABE ⊗ φ into a final state ΨA′BEAX . Note that the unitary evolution also involves the transformation of A into
the post measurement state of a system A′. Hence, H(AX |E) can be understood as entropy production ∆H on the
memory-Eve system.

From the dilated perspective (see Fig. 1), the memory-Eve system is only one side of a bipartition, where the Alice-Bob
system is the other. Since the local von Neumann entropies on two sides of a bipartite pure state are equal (see Thm.2(c)
of [5]), the entropy production on the Alice-Bob system is equal to the entropy production of the memory-Eve system.
Consequently, we can conclude that

H(AX |E) = H(AXE)−H(E) = H(AXE)−H(AinitX E) (8)
= H(A′B)−H(AB) := ∆H (9)
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Fig. 1. The Stinespring dilated perspective: A key generating mea-
surement AX is regarded from the perspective of a higher Hilbert space
by including the action AX → Ainit

X on a classical memory (an abelian
algebra). From this perspective the global state before and after the
measurement is pure. In this case, due to the Araki-Lieb inequality (see
Thm.2(c) of [5]), the entropy production ∆H = H(AX |E) on the Eve-
Memory partition equals the entropy change on the Alice-Bob partition.
This allows us to bound H(AX |E) by measuring only on the Alice-Bob
partition, i.e. without accessing Eve’s system.

Therefore, we could restrict the values of H(AX |E) by only considering the transformation AB → A′B. A short calculation
(see [1–3]) shows that this transformation is described by the pinching channels, defined by

T0[ρ] : = (ΠA0
0 ⊗ 1) ρ (ΠA0

0 ⊗ 1) + (ΠA0
1 ⊗ 1) ρ (ΠA0

1 ⊗ 1)

T1[ρ] : = (ΠA1
0 ⊗ 1) ρ (ΠA1

0 ⊗ 1) + (ΠA1
1 ⊗ 1) ρ (ΠA1

1 ⊗ 1).

(10)

Following the definitions of the pinching channels, we have the identities T [ρ] = T ◦ T [ρ] = T ∗[ρ] and also f(T [ρ]) =
T [f(T [ρ])] when used within a functional calculus for a measurable function f . Hence, we can conclude that:

H(T [ρ])−H(ρ) = − tr(T [ρ] log(T [ρ])) + tr(ρ log(ρ))

= − tr(ρT ∗[log(T [ρ])]) + tr(ρ log(ρ))

= − tr(ρ log(T [ρ])) + tr(ρ log(ρ))

= D(ρ‖T [ρ]), (11)

where D(ρ‖σ) denotes the relative entropy. Therefore, we can rewrite the convex mixture of conditional entropies as

λH(A0|E) + (1− λ)H(A1|E)

= λH(T0[ρAB ])− λH(ρAB) + (1− λ)H(T1[ρAB ])− (1− λ)H(ρAB)

= λD(ρAB‖T0[ρAB ]) + (1− λ)D(ρAB‖T1[ρAB ]) (12)

Thus, we are able to bound Eve’s conditional uncertainty on the measurement outcomes from any convex mixture of
measurement bases by estimating the entropy production on the Alice-Bob system.

B. Restriction to qubits

In this subsection, we will show that for the purpose of bounding C∗(S), we could without loss of generality consider
Alice-Bob system as a convex combination of two-qubits states.

A fundamental theorem on the algebra generated by a pair of two projections [6–9], which will be in our case (ΠA0
0 ,ΠA1

0 )

such as (ΠB2
0 ,ΠB3

0 ), states that we can always find a representation of the respective system of Alice and Bob that allows
us to decompose the projectors into 2× 2 blocks and a commuting rest.

In particular, let KA, LA,KB and LB be pairwise commuting projectors and let

Q(θ) =

(
cos(θ/2)2 cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) sin(θ/2)2

)
(13)

be a family of 2× 2 projectors. Then, we can decompose

ΠA0
0 =

⊕
j

(
1 0
0 0

)
⊕KA and ΠA1

0 =
⊕
j

Q(ϕj)⊕ LA (14)
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ΠB2
0 =

⊕
l

(
1 0
0 0

)
⊕KB and ΠB3

0 =
⊕
l

Q(ωl)⊕ LB (15)

where {ϕj} and {ωl} are families of angles that can be obtained from the spectra of σ(ΠA0
0 + ΠA1

0 ) and σ(ΠB2
0 + ΠB3

0 )

respectively (see [9] for details). The representations of the remaining projectors ΠA0
1 ,ΠA1

1 ,ΠB2
1 and ΠB3

1 follow from the
identities

ΠAX
1 = 1−ΠAX

0 and ΠBY
1 = 1−ΠBY

0 . (16)

Furthermore, we can also always find channels TAblock, T
B
block and TABblock := TAblock⊗TBblock that diagonalise the entire systems

of Alice and Bob into the corresponding blocks of (14) and (15). Applying these channels on an arbitrary state ρAB will
therefore give us a corresponding decomposition

TABblock[ρAB ] =
⊕
jl

µjlρ
jl ⊕ µrestσrest, (17)

where σrest denotes the projection of ρAB into blocks that are commuting on either Alice’s and/or Bob’s side while the
coefficients µjl can be obtained by renormalising TABblock[ρAB ] blockwise (see [4]). As the pinching channels T0 and T1
commute with TABblock by construction and by using data processing, we can estimate

λD(ρAB‖T0[ρAB ]) + (1− λ)D(ρAB‖T1[ρAB ])

≥ λD(TABblock[ρAB ]‖T0 ◦ TABblock[ρAB ]) + (1− λ)D(TABblock[ρAB ]‖T1 ◦ TABblock[ρAB ]))

=
∑
jl

µil

(
λD(ρjlAB‖T0[ρjlAB ]) + (1− λ)D(ρjlAB‖T1[ρjlAB ])

)
+ µrest (λD(σrest‖T0[σrest]) + (1− λ)D(σrest‖T1[σrest])) .

(18)

Relating back to the constraint of optimisation (7), we have CHSH = TABblock[CHSH] which implies

tr (ρABCHSH) = S ⇔ tr
(
ρjlABCHSH

)
= Sjl and

∑
jl

µjlS
jl = S, (19)

where we already took into account that σrest will not play any role in the following optimisation as | tr(σrestCHSH)| ≤ 2

since the corresponding blocks commute on at least one side. Using the above relations, we can optimise every ρjlAB
individually and reformulate (7) as

C∗(S) = inf
A0,A1,B2,B3

inf
{µjl}∑
jl µjl≤1

inf
{Sjl}∑

jl µjlS
jl=S

∑
jl

µjl

infρjl λD(ρjlAB‖T0[ρjlAB ]) + (1− λ)D(ρjlAB‖T1[ρjlAB ])

s.th.: 〈CHSH〉ρjlAB = Sjl
(20)

In the above we lower bound infρjl [. . . ] by the function

C∗C4×4(S) = inf
ϕ,ω

infρjl λD(ρjlAB‖T0[ρjlAB ]) + (1− λ)D(ρjlAB‖T1[ρjlAB ])

s.th.: 〈CHSH〉ρjlAB = S
(21)

Since (21) is by construction independent of the specific angles of the underlying measurements A0, A1, B2, B3, we can
reduce the optimisation over all measurements A0, A1, B2, B3 to an optimisation over all possible {µjl}. Hence we can
conclude the bound

C∗(S) ≥ inf
A0,A1,B2,B3

inf
{µjl}∑
jl µjl≤1

inf
{Sjl}∑

jl µjlS
jl=S

∑
jl

µjl C∗C4×4(Sjl)

≥ inf
µ

∫ 2
√
2

S′=2

µ(dS′)C∗C4×4(S′)

s.th.: µ([2, 2
√

2]) ≤ 1, µ ≥ 0,

∫ 2
√
2

S′=2

µ(dS′)S′ = S, (22)
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by estimating the optimisation over all {µjl} of arbitrary length via an integral over a positive sub-normalised measure
µ. The boundaries of the above integration originate from the simple observation that S can not be larger than 2

√
2 and

that C∗C4×4(Sjl) = 0 for all S ≤ 2, which in fact also gives us the justification to ignore the σrest contribution in (18).
At this point, we can write down an explicit matrix representation of the CHSH operator. For reasons that will be clear

in the following steps, it is convenient to decompose the CHSH operator with respect to Bob’s measurements as

CHSH = F0 + bxFx + bzFz (23)

with

bx = sin(ω) bz = cos(ω)

F0 =

 cos(ϕ)− 1 0 − sin(ϕ) 0
0 1− cos(ϕ) 0 sin(ϕ)

− sin(ϕ) 0 1− cos(ϕ) 0
0 sin(ϕ) 0 cos(ϕ)− 1



Fx =


0 2 cos2

(
ϕ
2

)
0 − sin(ϕ)

2 cos2
(
ϕ
2

)
0 − sin(ϕ) 0

0 − sin(ϕ) 0 −2 cos2
(
ϕ
2

)
− sin(ϕ) 0 −2 cos2

(
ϕ
2

)
0



Fz =

 − cos(ϕ)− 1 0 sin(ϕ) 0
0 cos(ϕ) + 1 0 − sin(ϕ)

sin(ϕ) 0 cos(ϕ) + 1 0
0 − sin(ϕ) 0 − cos(ϕ)− 1

 (24)

and reformulate the optimisation over Bob’s angle ω as an optimisation over two parameters bx, bz fulfilling the constraint
b2x + b2z = 1. Hence our optimisation problem for a single two-qubit state reads

C∗C4×4(S) := inf
ϕ∈[0,π/2]

inf
(bx,bz)
b2x+b2z=1

infρ λD(ρ‖T0[ρ]) + (1− λ)D(ρ‖T1[ρ])

s.th.: 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S
, (25)

where we will, with a slight abuse of notation, denote the pinching channels for the reduced 2 × 2 measurements as T0
and T1 as well.

C. Estimating the relative entropy via the trace norm (Pinsker++)

In this subsection, we will show that a lower bound of C∗C4×4(S) is related to an optimisation with its objective function
given by a combination of trace norms. As such, this optimisation can be efficiently bounded as shown in the following
subsections. Here, we employ a refined version of Pinsker’s inequality provided in Theorem 1 (also see [10]): for a pinching
channel with two-outcomes we can lower bound the relative entropy between its input and output by their trace norm via

D(ρ‖TX [ρ]) ≥ log(2)− h2
(

1

2
− 1

2
‖ρ− TX [ρ]‖1

)
, (26)

where h2(p) = −p log p − (1 − p) log(1 − p) denotes the binary entropy function. Using the above inequality and the
concavity of the binary entropy, we could write

λD(ρ‖T0[ρ]) + (1− λ)D(ρ‖T1[ρ]) (27)

≥ log(2)− λh2
(

1

2
− 1

2
‖ρ− T0[ρ]‖1

)
− (1− λ)h2

(
1

2
− 1

2
‖ρ− T1[ρ]‖1

)
≥ log(2)− h2

(
1

2
− 1

2

(
λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

))
which is a monotonous function of the sum of the trace norms. Hence, we can employ the inequality

C∗C4×4(S) ≥ log(2)− h2
(

1

2
− 1

2
t

)
(28)

5



for any t ≤ t∗(S) that gives a lower bound on the optimisation

t∗(S) := inf
ϕ∈[0,π/2]

inf
(bx,bz)
b2x+b2z=1

infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S
(29)

The boxes in (29) highlight different stages in the optimisation that will be addressed individually in the following three
subsections.

D. Optimisation of ρ for fixed angles: reformulation as SDP

In this subsection, we will formulate the minimisation over ρ (black box in (29)) as a SDP, which can be solved using
existing numerical algorithms. To this end, we will use a well-known relation that the trace norm of a quadratic matrix
V can be represented by the minimisation (refer to [11])

‖V ‖1 = inf
K,L

1

2
tr(K + L) s.th.:

(
K V
V † L

)
≥ 0. (30)

over additional matrices K and L. We can explicitly expand the channels TX in terms of the measurement projectors,
which can be written as

ρ− T1(ρ) = ρQ(ϕ) +Q(ϕ)ρ− 2Q(ϕ)ρQ(ϕ) and ρ− T0(ρ) = ρQ(0) +Q(0)ρ− 2Q(0)ρQ(0). (31)

Hence, we can rewrite the minimisation over ρ as the following SDP:

infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S
(32)

= inf
ρ

K0,L0,K1,L1

λ tr(K0 + L0) + (1− λ) tr(K1 + L1)

s.th.:
(

K0 ρQ(0) +Q(0)ρ− 2Q(0)ρQ(0)
ρQ(0) +Q(0)ρ− 2Q(0)ρQ(0) L0

)
≥ 0

(
K1 ρQ(ϕ) +Q(ϕ)ρ− 2Q(ϕ)ρQ(ϕ)

ρQ(ϕ) +Q(ϕ)ρ− 2Q(ϕ)ρQ(ϕ) L1

)
≥ 0

tr (ρ(F0 + bxFx + bzFz)) = S. (33)

E. Optimisation of Bob’s angle: an outer approximation to bx, bz

The minimisation over Bob’s measurement angle (the magenta box in (29)) was formulated as an optimisation over
parameters (bx, bz) from a set

K = {(bx, bz)|b2x + b2z = 1}, (34)
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which can be interpreted as boundary of a circle with unit radius. Since the objective function of (29) does not explicitly
depends on (bx, bz), we could move this minimisation directly into the constraints and write

inf
bx,bz

b2x+b2z=1

infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S
(35)

=
infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: ∃(bx, bz) ∈ K : 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S
(36)

=

infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: sup
(bx,bz)∈K

〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ ≥ S.
(37)

Clearly, the above problem is no longer a convex optimisation problem but there exists a convex relaxation by replacing K
with any convex set P ⊇ K. We will replace K by a compact convex polytope P with finite set of vertices (plx, p

l
z). Since

the individual constraints in (35) are linear in bx, bz, it suffices to only consider points on these vertices. As such, we can
efficiently lower bound (35) via

(35) ≥
infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: sup
(bx,bz)∈P

〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ ≥ S
≥

inf l infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: 〈F0〉ρ + plx〈Fx〉ρ + plz〈Fz〉ρ ≥ S
(38)

The above structure can now be incorporated in a simple algorithm (illustrated in Fig. 2) that computes the optimisation
of Bob’s measurements via a sequence of lower bounds (also see [12, 13] where a similar method was used for 3-dimensional
problems). The algorithm is given by:

(i) Start by initiating P as a rectangle that contains K.

(ii) Use (32) to compute the value of (38) for every vertices (p1x, p
1
z) . . . (p

n
x , p

n
z ) of P.

(iii) Pick the first vertex bmin that attains the minimum in (38) and refine P by introducing a new edge to P that is
tangential to K. This will “cut off” bmin and create two new vertices (see Fig.2). Proceed to (ii).

Repeating (ii) and (iii) will give a progressive refinement of P that approaches the boundary of K from the outside at
the vicinity of those points (bx, bz) that realise the minimum of (29). It turns out that, this algorithm only requires a few
iterations to achieve a very high precision for our above-mentioned problem.

F. Optimisation of Alice’s angle: an ε-net for ϕ

For the representation given by equation (14), Alice’s measurement on her qubit is fully described by the angle ϕ, which
could take values in the interval [0, π/2]. Consequently, the minimisation over Alice’s measurement angle (cyan box in
(29)) is not an SDP.

In this subsection, we will show how one could obtain a bound on the minimisation over Alice’s measurement angle by
employing an ε-net. The basic idea of the ε-net is as follows: we split the interval [0, π/2] into smaller segments of size
2ε0 each centred around a discretised range-point ϕi. We then evaluate (29) (i.e. everything in the magenta box) on each
discretised range-point and subtract a pessimistic error ∆(ε0, ϕ) , which bounds how much would the value of (29) have
changed when evaluated on any other ϕ within the segment. Taking the minimal value over all segments will then give us
a lower bound on the whole optimisation (29)(cyan box).

Refining those segments into even smaller ones will give tighter lower bounds. In order to keep the total computational
cost low, we successively refine only the segment that gives the minimum value for a given round of the procedure. By doing
so, we arrive in a situation (see Fig.3) where we only have to improve our refinement around a single point corresponding
to the global minimum, i.e. the single ϕ that achieves C∗C4×4(S).

In order to bound the error of each segment, we will need to investigate the relation between the entire optimisation
and Alice’s measurement angle ϕ. Varying ϕ (see (14)) will affect the two inner optimisations of (29) in two ways: On

7



Fig. 2. Minimising ω: Iterative refinement
of P (magenta vertices, black edges) to iden-
tify the optimal ω in K (cyan semicircle). The
parameters considered in the diagram is given
by λ = 0.2, S = 2.4 and ϕ = 1.2. In every iter-
ation of our algorithm, we identify bmin (grey
circles), the vertex of P that gives the mini-
mum value of optimisation (38), and remove
it by introducing a new edge. In this example,
six iterations are sufficient to achieve a target
precision of 10−5.

one hand, since the objective function depends on ϕ via the T1(ρ), it will change with varying ϕ. On the other hand, the
feasible set of possible ρAB will change with varying ϕ since the CHSH operator, i.e. F0, Fx and Fz, depends on ϕ as well.

We will now address the dependence of the CHSH operator on ϕ. Without loss of generality we could have reformulated
(29) by considering all states that could achieve a Bell violation greater than or equals the observed CHSH value S as it
is a valid relaxation of the optimisation problem. This implies that for fixed ϕ we could also perform our optimisation
over the set

SSϕ := {ρ|〈CHSH|ϕ〉ρ ≥ S} . (39)

When we change ϕ to ϕ+ ε, on a segment specified by |ε| ≤ ε0, we have to consider a different set of states Ssϕ+ε. Hence,
the optimal solution on the whole segment around ϕ will be attained on a state from the set

SSε0ϕ :=
⋃
|ε|≤ε0

SSϕ+ε (40)

We consider the norm of the difference of the two CHSH operators and we have:

‖CHSH|ϕ − CHSH|ϕ−ε‖∞
= ‖(F0 + bxFx + bzFz)|ϕ − (F0 + bxFx + bzFz)|ϕ−ε‖∞
= 2‖(Q(ϕ)−Q(ϕ− ε))⊗ (CB2 + CB3)‖∞
≤ 4‖Q(ϕ)−Q(ϕ− ε)‖∞
≤ 4 max

ϕ,|ε|≤ε0
‖Q(ϕ)−Q(ϕ− ε)‖∞ (41)

= 4 max
ϕ,|ε|≤ε0

∥∥∥∥( cos(ϕ2 )2 − cos(ϕ−ε2 )2 cos(ϕ2 ) sin(ϕ2 )− cos(ϕ−ε2 ) sin(ϕ−ε2 )
cos(ϕ2 ) sin(ϕ2 )− cos(ϕ−ε2 ) sin(ϕ−ε2 ) sin(ϕ2 )2 − sin(ϕ−ε2 )2

)∥∥∥∥
∞

(42)

= 4 max
|ε|≤ε0

√
1

2
− 1

2
cos(ε) (43)

≤ 2ε0, (44)

where we assumed that b2x + b2z = 1 holds up to a negligible deviation as sufficient iterations are taken in the outer
approximation shown in Fig. 2 (otherwise, adding a further factor ≈ 1 + ε will be required). From the above relation, we
conclude that every state ρ that could attain a CHSH value S for measurements with the measurement angle ϕ + ε will
attain a CHSH value of at least S − 2ε0 with the measurements angle ϕ. Hence, we have the inclusion relation:

SSε0ϕ ⊆ S
S−2ε0
ϕ . (45)

8



Fig. 3. Adaptive refinement of the ε-net Lower bounds on H(Z|Eθ), by evaluating (28) on segments. (For comparison) The
magenta coloured points give the exact value of (29) for a discretised range of different ϕ. (The actual bound) The cyan coloured
line gives a pessimistic lower bound (not assuming continuity) valid for a segment of length ε0 centred around a specific ϕ. Fixing
the width of a segment, ε0, to be fine enough will give a tighter lower bound. In order to perform the computation efficiently, we
start with a rough discretised range with a large segment size. We then identify and refine the segment with the lowest estimate on
the target function H(Z|Eθ) and we repeat this procedure.

which means that we can perform optimisation (29) by replacing S with S − 2ε0 on each segment of size 2ε0 (see Fig. 4)
to obtain a reliable lower bound.

Fig. 4. Feasible sets: The optimisation for
a fixed ϕ runs over a set SS

ϕ , i.e. all states
with CHSH values larger than or equals to S.
Varying ϕ by not more than ε0 will not change
the CHSH value by more than 2ε0. Therefore,
the set SS−2ε0

ϕ includes all states that can at-
tain CHSH value larger than or equals to S for
some angle in the interval (ϕ− ε0, ϕ+ ε0).

We are now left with assessing the change in the objective of (29) introduced by varying ϕ, i.e. the error of the
functional. Using Hölder’s inequality, we can dualise the trace norm of an operator X as

‖X‖1 = sup
Y :‖Y ‖∞=1

tr(Y X) (46)

and for suitably chosen M ,N with ‖M‖∞ = ‖N‖∞ = 1, we can rewrite the objective of (29) as

fM,N (ϕ, ρ) := 〈λ{M,Q(0)} − λQ(0)MQ(0) + (1− λ){N,Q(ϕ)} − (1− λ)Q(ϕ)NQ(ϕ)〉ρ (47)

9



Here, we could bound the following expression by:

|fM,N (ϕ, ρ)− fM,N (ϕ+ ε, ρ)|

≤ (1− λ) sup
N,ϕ,ε

∥∥∥{N,Q(ϕ)} −Q(ϕ)NQ(ϕ)− {N,Q(ϕ+ ε)}+Q(ϕ+ ε)NQ(ϕ+ ε)
∥∥∥
∞

≤ (1− λ)4ε0 (48)

which follows after a short computation from the central estimate ‖(Q(ϕ) − Q(ϕ + ε))‖∞ ≤ ε0/2, which was already
computed in (44).

Thus, by combining (44) and (48), we can estimate the maximal error on a segment around some fixed ϕ. Applying
this estimate and the technique described above to (29), finally gives

t∗(S) = inf
ϕ∈[0,π/2]

inf
(bx,bz)
b2x+b2z=1

infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1

s.th.: 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S

≥ inf
ϕk∈I

inf
l

infρ λ ‖ρ− T0[ρ]‖1 + (1− λ) ‖ρ− T1[ρ]‖1 − 2(1− λ)εk0

s.th.: 〈F0〉ρ + bx〈Fx〉ρ + bz〈Fz〉ρ = S − 2εk0

(49)

where εk0 denotes the according segment width and ϕk ∈ I denote the angles which form the discretised range as described
above and in Fig. 3.

G. Worst case convex hull over two-qubit strategies:

By employing the techniques described in the previous subsections, we are able to compute the two-qubit function
C∗C4×4(S) point-wise up to arbitrary precision. The only remaining step for computing the desired bound C∗(S) is to
estimate (22). We will tackle this problem by defining a convex function C(S) that is smaller or equals to C∗C4×4(S) for
all S ∈ (2, 2

√
2), (see Fig. 5). Given such a function C(S), we can conclude that

C∗(S) = inf
µ:〈S′〉µ=S

∫ 2
√
2

S′=2

µ(dS′)C∗C4×4(S′)

≥ inf
µ:〈S′〉µ=S

∫ 2
√
2

S′=2

µ(dS′)C(S′)

= inf
µ:〈S′〉µ=S

C

(∫ 2
√
2

S′=2

µ(dS′)S′

)
= C(S). (50)

At this point, we note that the analytical result of [4], which is a special case of our computation for λ = 1, shows that
C∗C4×4(S) is convex. This means that we can set C(S) = C∗C4×4(S) in the case of λ = 1. The numerical evaluation of
C∗C4×4(S) suggest the same conclusion might actually hold for all λ ∈ (0, 1). However, we could not prove this analytically
and therefore, the following steps is necessary.

Fig. 5. Convex bound: given the value of C∗
C4×4(S) for a discretised

range of values · · · ≤ Si ≤ Si+1 ≤ . . . (magenta points) allows us to
estimate C∗

C4×4(S) from below by taking the floor on every interval (dot-
dashed black line). The extreme points of this graph are a subset of the
points marked by cyan squares. From this we can easily compute the
lower convex estimate C(S) (cyan line).

It is straight forward to see from the definition of (25) that C∗C4×4(S) is a monotonous non-decreasing function, i.e. we
have C∗C4×4(S1) ≤ C∗C4×4(S2) for S1 ≤ S2, since increasing S will impose more restrictions on Eve leaving her with a smaller
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set of possible attacks. The evaluation of C∗C4×4(S) for a discretised range of values S0 = 2 ≤ S1 ≤ S2 ≤ · · · ≤ SN = 2
√

2
will therefore enable us to estimate C∗C4×4(S) from below for all values of S by taking the floor

bC∗C4×4(S)c := C∗C4×4(Si) ∀S ∈ [Si, Si+1) (51)

on every interval [Si, Si+1). Since this function is now defined on every S and is never larger than C∗C4×4(S) itself,
computing its lower convex hull by applying a Legendre transformation twice will give us a valid convex estimate C(S)
(see Fig. 5).

H. A conjectured alternative proof

We observed from some numerical exploration that the states saturating optimisation (7) for λ = 1/2 appear to have
the following two properties:

1. The reduced state on AB is Bell-diagonal with only two nonzero eigenvalues.

2. The states satisfy Pg(A0|E) = Pg(A1|E), where Pg(AX |E) is Eve’s maximum probability of guessing the outcome
of measurement AX .

Letting ρE|AX denote Eve’s state conditioned on the outcomeAX , the first property would imply F (ρE|AX=0, ρE|AX=1)2 =

1 − d(ρE|AX=0, ρE|AX=1)2, where F is the root-fidelity and d is the trace distance. (This is because Eve’s states would
then be supported on a common qubit subspace, and this equality holds for qubit states when the states have the same
eigenvalues [14], which is indeed the case here [4].) Using the fact that we can assume AX to be uniform without loss of
generality, it would then follow from the bound in [15] and the relation d(ρE|AX=0, ρE|AX=1) = 2Pg(AX |E)− 1 that

H(AX |E) ≥ log(2)− h2
(

1− F (ρE|AX=0, ρE|AX=1)

2

)
= log(2)− h2

(
1−

√
4Pg(AX |E)(1− Pg(AX |E))

2

)
. (52)

Applying the second property would then imply1

1

2
H(A0|E) +

1

2
H(A1|E) ≥ log(2)− h2

(
1−

√
4Pg(AX |E)(1− Pg(AX |E))

2

)
for either X

= log(2)− h2

(
1−

√
4P avg

g (1− P avg
g )

2

)
, where P avg

g =
1

2
Pg(A0|E) +

1

2
Pg(A1|E). (53)

The key point of this reduction is that the maximum value of P avg
g (subject to a constraint on the CHSH value) can be

bounded by SDP methods [16–18]. We computed the corresponding bounds, and found that they matched closely with
the results obtained above. Hence if it could be proven that the two properties listed above indeed hold for the states
saturating the optimisation in (7), this would provide an alternative approach to deriving our results. The benefit of such
an approach is that it would be substantially faster, as it does not rely on computing an ε-net of points.

We remark that for the case λ = 1 (i.e. simply bounding the H(A0|E) term alone), we can prove that the first property
holds, and thus Eq. (52) must hold in that scenario. In that case, we find that substituting the known closed-form bound
on Pg(A0|E) in terms of the CHSH value [19] yields exactly the closed-form bound on H(A0|E) derived in Ref. [4]. This
can be viewed as an alternative method to derive the latter bound, and it may be of interest to study how this approach
could be generalised.

I. Approaches without the qubit reduction

Our analysis thus far relied on reducing the analysis to a qubit scenario. In principle, however, there are some approaches
which could be used to tackle the optimisation (7) without this reduction, and we shall now briefly outline these possibilities.
These approaches could potentially allow for more general applicability of our methods.

1 If the bound (52) were convex with respect to Pg(AX |E), the second property would not be required; unfortunately, the bound is instead
concave, so instead this approach only yields the desired final result if and only if the second property holds.
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The first approach consists of noting that the trace norm terms in the optimisation (29) can be rewritten using

‖ρ− T [ρ]‖1 = sup
−1≤M≤1

tr(M(ρ− T [ρ])) = sup
P

1

‖P‖∞
tr(P (ρ− T [ρ])) = sup

P

1

‖P‖∞
tr((P − T [P ])ρ), (54)

where supP is taken over all Hermitian P , and for the last equality we used the fact that pinching channels are self-adjoint.
Therefore, any choice of P yields a valid lower bound. In particular, if we choose P to be a (noncommutative) polynomial
function of the measurement operators, then lower-bounding tr((P − T [P ])ρ) is precisely a noncommutative polynomial
optimisation of the type studied in [18], which can be solved by SDP methods without reducing the analysis to qubits.
An advantage of this approach is that we can impose the full output statistics as constraints (similar to [1, 16, 17])
instead of just the CHSH value alone. As for the ‖P‖∞ term, it can be upper-bounded separately by noting that
‖P‖∞ = supσ | tr(Pσ)| = max{supσ tr(Pσ), supσ tr(−Pσ)}, where supσ is taken over all normalised density operators σ.
This is also of the right form to be bounded using the SDP method described in [18]. If P is chosen to be a polynomial
of low degree, the corresponding SDPs are quite tractable and can be solved quickly (in particular, they are substantially
simpler than the ones described in [1]).

Unfortunately, when we applied this method to the CHSH scenario, we were unable to find a choice of P that was
sufficiently robust to noise for practical purposes. While we did find that it can yield a tight bound at maximum CHSH
value, the bound quickly drops to zero once noise is added. It is not currently clear whether this is an inherent limitation
of this approach, or whether some better choice of P might overcome this difficulty. (A possible cause of this suboptimality
could be the fact that since the optimisations for tr((P −T [P ])ρ) and ‖P‖∞ were solved separately, this “decouples” them
from each other, resulting in worse bounds than would be obtained from tackling (54) directly. The choice of P that
certifies a tight bound at maximum CHSH violation was obtained by exploiting the fact that the states and measurements
which attain maximum CHSH value are essentially unique, up to trivial local operations. Therefore, we were able to find
an explicit operator P that saturates the variational characterisation in Eq. (54) and write it as a polynomial of those
measurement operators. However, some care was still needed to choose the polynomial in such a way that the bound on
‖P‖∞ is tight.)

A second approach is based on the method developed in [1]. To briefly summarise, the method described in that work
essentially yields some possible choices of vector ~µ and operator polynomials K0,K1 such that

H(AX |E) ≥ ~µ · ~γ − log〈KX〉, (55)

where ~γ is the list of all statistics estimated in the experiment (which could be, for instance, just the CHSH value alone
but could also be all output statistics instead). We now note that for any α > 0, we have log x ≤ x/α+ logα− 1 (this is
simply the tangent line to log x at the point x = α). Therefore, for any α0, α1 we would have

λH(A0|E) + (1− λ)H(A1|E) ≥ λ(~µ · ~γ − log〈K0〉) + (1− λ)(~µ · ~γ − log〈K1〉) (56)

≥ ~µ · ~γ −
〈
λ

α0
K0 +

1− λ
α1

K1

〉
− λ logα0 − (1− λ) logα1 + 1. (57)

In this final expression, 〈(λ/α0)K0 + ((1− λ)/α1)K1〉 is again an operator polynomial of a form which can be bounded
using the SDPs in [18] without requiring the qubit reduction. By optimising over choices of the two tangent points αX (as
well as the vector ~µ and operator polynomials KX), we were able to compute some bounds on the main optimisation (7),
imposing constraints based on the full output statistics. However, we found that while the resulting bounds are indeed
better than the bounds on H(A0|E) alone, the improvement was fairly small (in particular, the resulting curves were
worse than those shown in the main text). Hence we were also unable to use this approach to obtain tight bounds in this
situation, though in contrast to the first approach above, it performs well at moderate noise values rather than low noise
values. Again, it is not currently clear whether it might be possible to improve on this finding with a better choice of the
variational parameters αX , ~µ,KX . (In fact, the parameter ~µ could also be optimised separately for each term H(AX |E),
but this is computationally expensive.)

J. States saturating the bounds

As discussed in the main part, it is sufficient to only consider the cases λ = 1(fixed bases) and λ = 1/2(uniform basis
choice) within our protocol. For λ = 1 the (lower) bound C∗(S) resembles the one from Acìn et. al. [4], which was proven
to be optimal in the sense that it can be achieved by an explicit choice of states and measurements.

For λ = 1/2, we found heuristically that the bound C∗C4×4(S) appears to be saturated by states of the form

ρa = aψ+ + (1− a)ψ− (58)
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and measurements given by projectors

ΠA0
0 =

1

2

(
1 + sin(τ) cos(τ)

cos(τ) 1− sin(τ)

)
ΠA1

0 =

(
1 + sin(τ) − cos(τ)
− cos(τ) 1− sin(τ)

)
ΠB0

0 =
1

2

(
1 −1
−1 1

)
ΠB1

0 =

(
1 0
0 0

)
, (59)

with parameters (a, τ) given as optimisers of the program

k∗ := min
a,τ

4− 16(1− a)a sin(τ)2

s.th. : (4a− 2) cos(τ) + 2 sin(τ) = S
1

2
≤ a ≤ 1 0 ≤ τ ≤ π/2. (60)

Furthermore, we find numerically that the final lower bound on C(S) we obtained appears to be related to k∗ via

C(S) ≥ log(2)− h2

(
1

2
−
√
k∗

4

)
. (61)

However, our heuristic computations of the bound C∗C4×4(S) indicate that it is in fact nonconvex over a large range of
values of S, and hence the true C(S) bound (for systems of arbitrary dimension) cannot be saturated simply by qubit-
qubit systems, but rather only by “block-diagonal combinations” of such systems. In particular, this means that the states
described above cannot saturate either the C(S) bound or our final lower bound on it (for all S), though it may be possible
to do so using “block-diagonal combinations” of them.
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II. SUPPLEMENTARY NOTE 2 - SIMULATION WITH ALL-PHOTONIC SETUP

In this section, we present the simulated asymptotic key rate that one could achieve in an all-photonic experiment.
For all-photonic implementations the noise model presented in Ref. [20] gives a more realistic description than the white
noise considered in the main text. In this model, the source is modelled by a pair of two-mode squeeze vacua (TMSV)
over polarisation modes with mean photon number λ1 and λ2. Alice and Bob will then set the measurement angles to
be θAX and θBY where X ∈ {0, 1} and Y ∈ {0, 1, 2, 3} are their corresponding inputs. Both Alice and Bob will have
a pair of single-photon detectors, each with some imperfect quantum efficiency. We let the effective detection efficiency
(the total transmittivity between the source and each detector) be η. Furthermore, we assume that Alice and Bob will
give deterministic outputs whenever they observe no detection events. Finally, we also assume that the detectors have
negligible dark count rates.

Fig. 6. Asymptotic key rate for all-
photonic experiments. For this sim-
ulation, we use the model presented in
Ref. [20] and set the dark count rate of
the detectors to zero. We also assumed
that Alice and Bob assign determinis-
tic outputs whenever their detectors do
not click. We plot the lower bound on
the key rate as a function of detection
efficiency η. From the plot, we can see
that randomised key basis can improve
the achievable key rate in the lower de-
tection efficiency regime.

The corresponding key rate is presented in Fig. 6. To obtain these curves, we optimise the achievable key rates by
varying the mean photon number of the TMSV λ1 and λ2 as well as the measurement angles of Alice and Bob θAX θBY for
each value of η. Unfortunately, the improvement from employing the randomised key basis protocol is rather limited for
the all-photonic experiments. Remarkably, the required detection efficiency to achieve non-zero key rate remains extremely
demanding.
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III. SUPPLEMENTARY NOTE 3 - ADDITIONAL LEMMAS AND THEOREMS

Theorem 1 DI-Binary Pinsker++: (The following Thm. is a special case of Thm.1 in [10]) Let Q be a (not necessarily
rank one) projector on a finite dimensional Hilbert space of dimension d and let T be the pinching channel constructed
from Q via

T [ρ] = QρQ+ (1−Q)ρ(1−Q) = ρ+ 2QρQ− {Q, ρ}. (62)

For any state ρ, the following inequality holds:

D(ρ‖T [ρ]) ≥ log(2)− h2
(

1− ‖ρ− T [ρ]‖1
2

)
. (63)

For the proof of Thm. 1, we will require the following Lemmas:

Lemma 1 Gibbs variational principle for operators: Let L be a self-adjoint operator. For any quantum state ρ, the
following holds:

− tr (ρL) ≥ H(ρ)− log tr
(
eL
)
. (64)

Proof. Consider the thermal state σ = eL

tr(eL)
.

− tr(ρL) = − tr
(
ρ log eL

)
(65)

= − tr

(
ρ

(
log

eL

tr (eL)
+ log tr

(
eL
)))

(66)

= − tr

(
ρ log

eL

tr (eL)

)
− tr

(
ρ log tr

(
eL
))

(67)

= − tr (ρ log σ)− log tr
(
eL
)

(68)

≥ − tr (ρ log ρ)− log tr
(
eL
)

(69)

= H(ρ)− log tr
(
eL
)
, (70)

where we have used the positivity of the quantum relative entropy D (ρ||σ) = tr (ρ log ρ− ρ log σ).

Lemma 2 : For a quantum state χ and an operator A with spectral radius rspec(A) ≤ s, the following relation holds:

tr
(
χeA

)
≤ cosh(s) +

1

s
sinh(s) tr(χA). (71)

Proof. Firstly, we will find an upper bound to the exponential function in a fixed interval [−s, s]. The simplest ansatz is
to upper bound it with a linear function, which can be parameterise with α and β such that ex ≤ α+ βx. Such an upper
bound can be determined by demanding that the points of the exponential function at the boundaries of the interval
intersects with the linear function, i.e.

α± βs = e±s, (72)

which yields α = cosh(s), β = 1
s sinh(s). Hence, we obtain

tr
(
χeA

)
≤ tr

(
χ

[
cosh(s) +

1

s
sinh(s)A

])
(73)

= cosh(s) +
1

s
sinh(s) tr (χA) . (74)

Lemma 3 : For any projector Q and quantum state ρ, we have

‖ρ− T [ρ]‖1 ≤ 1 (75)
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Proof. We use equation (46) and projectors P and M = 2P − 1 to rewrite

sup
ρQ
‖ρ− T [ρ]‖1 = 2 sup

ρP Q
tr (P (ρ− T [ρ]))

= 2 sup
ρP Q
〈{P,Q} − 2QPQ〉ρ

= 2 sup
P Q
‖{P,Q} − 2QPQ‖∞ (76)

Using the usual block decomposition of the algebra generated by two projectors (P and Q) we can conclude that the
optimal solution of the above will be attained on 2× 2 matrices. We can assume without loss of generality that

P =

(
1 0
0 0

)
and Q =

(
cos(φ)2 cos(φ) sin(φ)

cos(φ) sin(φ) sin(φ)2

)
. (77)

Thus, we have

sup
φ

∥∥∥∥∥
{(

1 0
0 0

)
,

(
cos(φ)2 cos(φ) sin(φ)

cos(φ) sin(φ) sin(φ)2

)}

− 2

(
cos(φ)2 cos(φ) sin(φ)

cos(φ) sin(φ) sin(φ)2

)(
1 0
0 0

)(
cos(φ)2 cos(φ) sin(φ)

cos(φ) sin(φ) sin(φ)2

)∥∥∥∥∥
∞

=
1

2
. (78)

Proof of Pinsker++. The basic idea of this proof is to find a lower bound on D(ρ‖T [ρ]) in terms of ‖ρ−T [ρ]‖1 by bounding
the expression

inf
ρ
D(ρ‖T [ρ])− λ‖ρ− T [ρ]‖1 ≥ cλ (79)

from below by some cλ that only depends on a variational parameter λ ∈ R+ but not on ρ. Given such a cλ for all λ will
then allow us to obtain a bound on D via an inverse Legendre transformation

∀ρ : D(ρ‖T [ρ]) ≥ sup
λ∈R+

cλ + λ‖ρ− T [ρ]‖1 := f(‖ρ− T [ρ]‖1) (80)

Rewriting (79) with equation (46), M = 2P − 1 and Lem. 1 for L = log(T [ρ]) + 2λ(P − T [P ]) yields the following
inequality:

D (ρ||T [ρ])− λ‖ρ− T [ρ]‖1
≥ inf

ρ
inf

0≤P≤I
− tr (ρ(log(T [ρ]) +2λ(P − T [P ])))−H(ρ)

≥ inf
ρ

inf
0≤P≤I

− log tr
(
elog(T [ρ])+2λ(P−T [P ])

)
≥ − log sup

ρ
sup

0≤P≤I
tr
(
elog(T [ρ])+2λ(P−T [P ])

)
≥ − log sup

ρ
sup

0≤P≤I
tr
(
elog(T [ρ])e2λ(P−T [P ])

)
= − log sup

ρ
sup

0≤P≤I
tr
(
T [ρ] e2λ(P−T [P ])

)
, (81)

where we have applied the Golden-Thompson inequality tr(eA+B) ≤ tr(eAeB). Next, we use Lem. 2 with χ = T [ρ],
A = 2λ(P − T [P ]), which implies s = λ (see Lem. 3). This yields

Eq. (81) ≥ − log

(
cosh(s) + sup

ρ
sup

0≤P≤I

2λ

s
sinh(s) tr (T [ρ] (P − T [P ]))

)
= − log (cosh(λ))

(82)
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Hence, we know that

D (ρ||T [ρ]) ≥ − log (cosh(λ)) + λ‖ρ− T [ρ]‖1. (83)

Since this is true for all λ ≥ 0, the optimal bound can be found by maximizing the right hand side over λ ≥ 0, which gives

λmax = arccoth

(
1

‖ρ− T [ρ]‖1

)
. (84)

Inserting it back into (83), where we use the notation x = ‖ρ− T [ρ]‖1, yields

D (ρ||T [ρ]) ≥ − log

(
cosh

(
arccoth

(
1

x

)))
+ x arccoth

(
1

x

)
(85)

=
1

2

(
log
(
1− x2

)
+ x log

(
1 + x

1− x

))
(86)

=
1

2
(log(1 + x) + log(1− x) + x log(1 + x)− x log(1− x)) (87)

=
1 + x

2
log(1 + x) +

1− x
2

log(1− x) (88)

= log(2) +
1 + x

2
log

(
1 + x

2

)
+

1− x
2

log

(
1− x

2

)
(89)

= log(2)− h2
(

1− x
2

)
, (90)

which concludes the proof.
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IV. SUPPLEMENTARY NOTE 4 - FINITE-SIZE ANALYSIS

In this section, we give a condensed summary of the finite-size security proof based on the entropy accumulation
theorem [21, 22], with the details in an extended writeup [23]. As compared to previous results, the technical contributions
from this analysis are as follows. Firstly, it uses tighter finite-size bounds in several points as compared to [24, 25].
Additionally, we perform a different analysis regarding the effects of conditioning on success in the various protocol steps,
in order to accommodate practical error-correction protocols that may not have the appropriate form of correctness
guarantee required for the analysis in [24]. Furthermore, to apply the entropy accumulation theorem it is necessary to
define the protocol steps in such a way that the theorem can be applied to the channels in the protocol — in particular,
this requires finding appropriate choices for how to perform the sifting and parameter estimation steps (see below).

A. Security definitions

Before beginning the proof, we first need to formalize the security definitions that we aim to achieve. Following [24], we
choose the definitions stated below:

Definition 1. Consider a DIQKD protocol such that at the end, the honest parties either accept (producing keys KA

and KB of length `key for Alice and Bob respectively) or abort (producing an abort symbol ⊥ for all parties). It is said
to be εcom-complete and εsou-sound if the following properties hold:

• (Completeness) The honest protocol implementation aborts with probability at most εcom.

• (Soundness) For any implementation of the protocol, we have

Pr[accept]
1

2

∥∥∥∥∥σKAKBE′ −
(

1

2`key

∑
k

|kk〉〈kk |KAKB

)
⊗ σE′

∥∥∥∥∥
1

≤ εsou, (91)

where σ denotes the normalized state conditioned on the protocol accepting, and E′ denotes all side-information
registers available to the adversary at the end of the protocol.

In the security proof, it is convenient to use the fact that the soundness property is implied by a pair of slightly simpler
conditions, as shown in [26]. Specifically, to prove a DIQKD protocol is εsou-sound, it suffices to find εcorQKD, ε

sec
QKD such

that εsou ≥ εcorQKD + εsecQKD and the protocol is both εcorQKD-correct and ε
sec
QKD-secret, defined as follows:

Definition 2. A DIQKD protocol as described above is said to be εcorQKD-correct and ε
sec
QKD-secret if the following properties

hold:

• (Correctness) For any implementation of the protocol, we have

Pr[KA 6= KB ∧ accept] ≤ εcorQKD. (92)

• (Secrecy) For any implementation of the protocol, we have

Pr[accept]
1

2
‖σKAE′ − UKA ⊗ σE′‖1 ≤ ε

sec
QKD, (93)

where σ is as described in Definition 1, and UKA denotes the maximally mixed state (i.e. a uniformly random key
for Alice).

The parameters in these security definitions are not merely abstract values, but rather they have important operational
interpretations. The completeness parameter εcom is straightforward — it is simply the probability that the honest
devices abort. As for the soundness parameter εsou, an important consequence of the definition is regarding the notion
of composability, as follows [26]2: suppose one designs a larger protocol (for instance, the one-time-pad protocol) which
makes use of an ideal resource that generates a perfectly secret key whenever it does not abort. Furthermore, suppose one
proves that when that larger protocol is indeed using the ideal secret-key resource, the probability of some “failure” event

2 Strictly speaking, this interpretation was obtained for the standard QKD setting rather than the DIQKD setting — there are technical
issues in formalizing composable security for the latter, because of device-reuse attacks. However, these issues only affect the operational
interpretation of Definition 1; there are no issues in proving that the protocol satisfies this definition by itself.
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(no restrictions need to be imposed on what constitutes a failure, except that it be a well-defined event) is upper-bounded
by some value pfail. In that case, it can be shown [26] that if one replaces the ideal secret-key resource with a protocol
that is εsou-sound as defined above, then the probability of the failure event is still upper-bounded by pfail + εsou. In other
words, the soundness definition allows us to use an εsou-sound protocol in place of the ideal secret-key resource in a larger
protocol, with only an increase of at most εsou to the maximum probability of any failure event. Further details on this
topic can be found in [26].

B. Security proof sketch

Let n be the total number of rounds in the protocol. Let A and B denote the output strings that Alice and Bob
respectively obtain from the protocol; similarly, let X and Y denote their input strings. Let L denote the syndrome that
Alice sends to Bob, and let E denote all the other (quantum) side-information that Eve collects over the course of the
protocol (note that it may not have a tensor-product structure since we consider general attacks).

First, we need to describe the error-correction step in a bit more detail. We focus on the case where this step takes the
following form: the string L consists of two substrings LEC,Lh, such that LEC is what Bob uses to produce a guess Ã for
A, and Lh is a 2-universal hash of A which Bob uses to check whether his guess is correct (if the hash of his guess Ã does
not match Lh, Bob announces an abort of the protocol). Furthermore, we shall suppose that before the protocol begins, a
constant ECmax is chosen such that the length of LEC is at most ECmax (we allow the option of using an error-correction
procedure that sends a shorter LEC if the noise level encountered during execution of the protocol is lower than expected).
By using an error-correction step of this form, we shall argue below that the completeness and correctness conditions can
be satisfied if we choose suitable values for ECmax and the length of Lh.

Also, for the parameter-estimation analysis, instead of using the CHSH value in terms of correlators, it is easier to
consider the winning probability of the CHSH game. Specifically, view Alice and Bob’s outputs as taking values in {0, 1}
rather than {+1,−1}, and for outputs a, b ∈ {0, 1} from inputs x ∈ {0, 1}, y ∈ {2, 3} (in a test round), we say that Alice
and Bob win the CHSH game if a⊕b = x · (y−2). The probability w of winning the CHSH game (given uniformly random
inputs) is related to the correlator-based CHSH value S by the simple conversion S = 8w − 4. We shall suppose that the
honest devices are IID and achieve some CHSH winning probability wexp in each individual round.

For simplicity, we shall focus on the case where the protocol is performed with p = 1/2, since our results indicate that
this is optimal at higher noise levels. In that case, the inputs in the test rounds are uniformly random, so Alice and Bob
can indeed be considered to be playing the CHSH game in those rounds. Given this, it is easier to instead consider a
slightly different version of the parameter-estimation step, which differs somewhat from more commonly studied QKD
protocols, but facilitates a technical application of the entropy accumulation theorem to prove security against general
attacks [23]. Specifically, parameter estimation is performed as follows: introducing a tolerance value δtol, Bob will check
that the number of test rounds that won the CHSH game is at least (wexp − δtol)qn, and also that the number of test
rounds that lost the CHSH game is at most (1 − wexp + δtol)qn. (Performing both of these checks allows for a technical
optimization in the finite-size security analysis; see [23]. Also, note that we do not “normalize” by dividing by the number
of test rounds that actually occurred — the qn factor is computed directly from the protocol parameters. Our results
indicate [23] that this form of parameter estimation incurs certain losses compared to the more standard form, but it
remains an open question whether the latter can be formalised in a manner compatible with the entropy accumulation
theorem.) If either of these conditions is not satisfied, Bob aborts the protocol at that step.

In the previous sections, we have derived a lower bound on λH(A0|E) + (1 − λ)H(A1|E) as a function of the CHSH
value S (for the choice p = 1/2 we have λ = 1 − λ = 1/2). Now, let r(w) denote such a lower bound, but in terms of
the CHSH winning probability w instead, and with the additional condition that it be an affine function (this could be
obtained in principle as part of the Legendre-transform process we described in Sec. IG, though in practice we found it
more efficient to use the approach described in [23]). With this in mind, we now define a function

g(w) =
1 + q

2
r(w), (94)

which can be informally interpreted as a lower bound on the entropy “accumulated” in one round of the protocol. (The
prefactor is to account for the fact that Alice and Bob sift out generation rounds which they have chosen different inputs3.
To maintain compatibility with entropy accumulation, we interpret the sifting step as Alice and Bob setting their outcomes
to some deterministic values whenever their inputs differ, rather than truly “discarding” those rounds.)

With this in mind, we can state the security guarantees of the protocol [23]:

3 To optimize the keyrates, we include the test rounds in the contribution to the entropy; see [23].
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Theorem 2 : Take any εcomEC , εcomPE , εEA, εPA, εh, εs, ε
′
s, ε
′′
s ∈ (0, 1] such that εs > ε′s + 2ε′′s , and any α ∈ (1, 2), α′ ∈

(1, 1 + 2/V ′), β ∈ [g(0), g(1)], q ∈ (0, 1), where V ′ = 2 log 7. For p = 1/2, the described protocol is (εcomEC + εcomPE )-complete
and (max{εEA, εPA + 2εs}+ 2εh)-sound when performed with ECmax satisfying Eq. (99), and δtol, `key satisfying

εcomPE ≥ Bn,qwexp
(b(wexp − δtol)qnc) +Bn,1−q+qwexp

(b(1− q + wexpq − δtolq)nc), (95)

`key ≤ ng(wexp − δtol)− n
(α− 1) ln 2

2
V 2 − n(α− 1)2K2

α − nq − n
(
α′ − 1

4

)
V ′2

−
ϑε′s
α− 1

−
ϑε′′s
α′ − 1

−
(

α

α− 1
+

α′

α′ − 1
− 2

)
log

1

εEA
− 3ϑεs−ε′s−2ε′′s

− ECmax −
⌈

log

(
1

εh

)⌉
− 2 log

1

εPA
+ 2, (96)

where V and Kα are constants (depending on q, g, β and α) that can be explicitly computed [22, 23], ϑε is defined as

ϑε = log
1

1−
√

1− ε2
, (97)

and Bn,p(k) denotes the cumulative distribution function of a binomial distribution with parameters (n, p):

Bn,p(k) = Pr
X∼Binom(n,p)

[X ≤ k] . (98)

The variables listed at the start of Theorem 2 can be considered to be variational parameters that should be chosen to
optimize the keyrate as much as possible. To get a sense of the asymptotic scaling, it can be shown [21–23] that as n→∞,
we can choose these parameters in such a manner that δtol, q → 0 and the key-length expression (96) is dominated by
the terms ng(wexp − δtol) and ECmax. By taking Eq. (99) for the latter, this yields an asymptotic keyrate of essentially4

(1/2) (
∑
xH(Ax|E)−

∑
xH(Ax|Bx)) as expected.

We now sketch the proof of the above theorem, by considering those variational parameters to take some fixed values,
and then showing that indeed the desired security claims (as functions of these values) hold.

Completeness: To show that this condition holds, we impose the requirement that ECmax is long enough such that
for the honest devices, Bob can use LEC and B to produce a guess for A that is correct with probability at least 1− εcomEC .
From the results of [21, 27], this is possible as long as ECmax is chosen such that5

ECmax ≥ nhhon +
√
n (2 log 5)

√
log

2

ε̃2s
+ 2 log

1

εcomEC − ε̃s
+ 4, (99)

where ε̃s ∈ [0, εcomEC ) is another parameter that can be optimized over, and

hhon =
1− q

4
(H(A0|B0)hon +H(A1|B1)hon) + qh2(wexp), (100)

where the subscript hon denotes that the terms should be computed with respect to the honest behaviour, and for
simplicity we have assumed that the honest devices win the CHSH game with the same probability wexp for all input
pairs. Having imposed this requirement (that Bob’s guess is correct with probability at least 1 − εcomEC ) on the honest
protocol, we see that the probability that it aborts during the error-correction step (because the hashes of Ã and A
do not match) is at most εcomEC . Furthermore, since the honest devices win the CHSH game with probability wexp, and
the parameter-estimation step accepts when the number of test rounds that won (resp. lost) the CHSH game is at least
(wexp − δtol)qn (resp. at most (1 − wexp + δtol)qn), it is not hard to show that the probability that the honest protocol
aborts during the parameter-estimation step is at most εcomPE as defined in Eq. (95) (because in the honest protocol, the
number of test rounds that win/lose the CHSH game follows a binomial distribution). Applying the union bound to these
different ways the protocol could abort, we see the protocol is (εcomEC + εcomPE )-complete as claimed.

4 Technically, H(Ax|E) and H(Ax|Bx) refer to single-round quantities and are hence only well-defined when the rounds are IID, i.e. the values
of these quantities are the same in all rounds. However, the asymptotic rate we have described for Theorem 2 is essentially analogous in
the sense that (1/2)

∑
xH(Ax|E) is replaced by a lower bound g(wexp − δtol) that, informally speaking, holds for all rounds. (As for the

H(Ax|Bx) terms, they are computed with respect to the honest behaviour, which is indeed IID.)
5 Other error-correction procedures are possible in principle; see [23] for further discussion.
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Soundness: To prove the claim of (max{εEA, εPA + 2εs} + 2εh)-soundness, we argue the protocol is εh-correct and
(max{εEA, εPA + 2εs}+ εh)-secret, as follows:

Correctness: To satisfy this condition, we shall set the length of Lh to be dlog(1/εh)e. By the defining property of
2-universal hashing, for a hash of this length, the probability that two different strings hash to the same value is at most
εh. Since KA and KB are produced from A and Ã respectively, a straightforward calculation shows that this implies
Pr[KA 6= KB ∧ accept] ≤ εh as well, and hence we have that the protocol is εh-correct.

Secrecy: The main challenge is in proving this condition holds. To slightly improve the keyrates, in proving Theorem 2
we impose (see [23, 24]) that Alice’s test-round outputs are not sent in plaintext to Bob, but rather they are compressed
into an error-correction syndrome as well. In that case, strictly speaking Bob is performing parameter estimation using
his guess Ã rather than A itself, but it can be shown [23] that roughly speaking, the fact that we have εh-correctness
as shown above implies that we can perform the analysis conditioned on Ã = A, at the cost of increasing the secrecy
parameter by εh. We will not further discuss this point here, except to remember to add εh to the secrecy parameter at
the end.

At the end of the protocol Eve holds the registers XYLE, and the final privacy amplification step in the protocol
was performed by Alice on the register A (and by Bob on Ã). The fundamental property of privacy amplification is
basically that it produces a final key satisfying the secrecy definition, with length related to the smoothed min-entropy
of A conditioned on XYLE. More specifically [23, 28], as long as we set the length of the privacy-amplification output
(i.e. the final key) to satisfy

`key ≤ Hεs
min(A|XYLE) + 2− 2 log

1

εPA
, (101)

we will get an (εPA+2εs)-secret key (putting aside several technicalities about conditioning on the various steps accepting).
Hence to find a bound on the final achievable key length, it suffices to give a lower bound on Hεs

min(A|XYLE). To do so,
we first apply a chain rule [29] to get

Hεs
min(A|XYLE) ≥ Hεs

min(A|XYE)− len(L)

≥ Hεs
min(A|XYE)− ECmax −

⌈
log

(
1

εh

)⌉
, (102)

reducing our task to bounding Hεs
min(A|XYE). This is achieved by using the entropy accumulation theorem, which yields

a lower bound on the smoothed min-entropy of a state produced by a sequence of channels (which in this case we basically
take to correspond to the rounds of the protocol). Specifically, the entropy accumulation theorem can be used to show
that one of the following must be true: (1) the probability of the parameter-estimation step accepting is at most εEA, or
(2) conditioned on accepting, we have the lower bound

Hεs
min(A|XYE) > ng(wexp − δtol)− n

(α− 1) ln 2

2
V 2 − n(α− 1)2K2

α − nq − n
(
α′ − 1

4

)
V ′2

−
ϑε′s
α− 1

−
ϑε′′s
α′ − 1

−
(

α

α− 1
+

α′

α′ − 1

)
log

1

εEA
− 3ϑεs−ε′s−2ε′′s . (103)

In case (1), the secrecy condition immediately holds with secrecy parameter εEA. In case (2), the sequence of equa-
tions (101)–(103) tells us that we can get an (εPA + 2εs)-secret key with length given by (96)6. Recalling to add
the εh correction because parameter estimation is performed with Ã rather than A, we conclude the protocol is
(max{εEA, εPA + 2εs}+ εh)-secret.

In the above, we have described the key rates for general attacks. If we make the assumption of collective attacks,
then the completeness and correctness proofs proceed in exactly the same way — only the secrecy proof needs to be
modified. The main modification (ignoring some technical details) is that the bound (103) is replaced with one based
on the asymptotic equipartition property (we use the version presented in [21]), which holds for IID states. The resulting
rates are higher than those resulting from (103), since the asymptotic equipartition property exploits the assumption of

6 To be precise, the expression (96) has a slightly improved dependence on εEA by keeping track of the event conditioning in a more precise
statement of privacy amplification (Eq. (101)), but we defer the details to [23].
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an IID structure for the states.
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