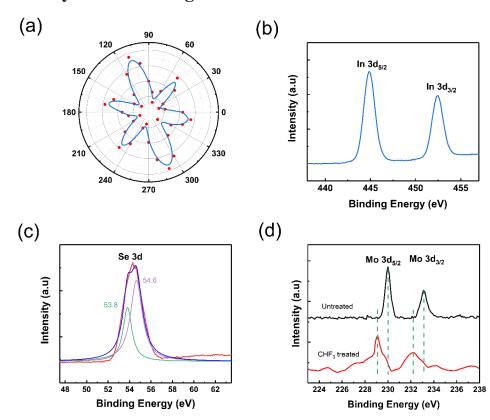
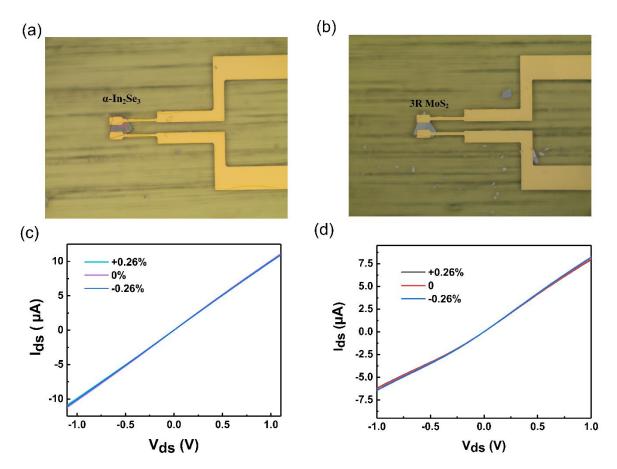
Supporting Information for

Strain Modulated Photoelectric Responses from a Flexible α -In₂Se₃/3R MoS₂ Heterojunction

Weifan Cai¹, Jingyuan Wang¹, Yongmin He², Sheng Liu³, Qihua Xiong³, Zheng Liu², Qing Zhang^{1, *}


¹Centre for Micro- & Nano-Electronics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

²School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

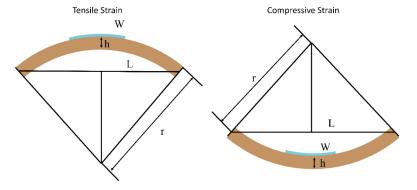

³Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore

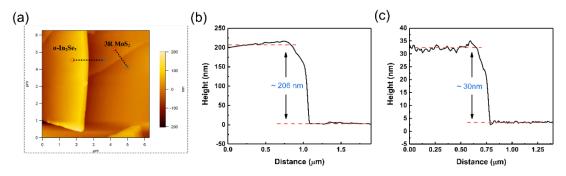
*Corresponding author. E-mail: eqzhang@ntu.edu.sg (Qing Zhang)

Supplementary Tables and Figures

Fig. S1 a Polarization dependence plot of SHG intensity of 3R MoS₂ flake in the heterojunction (**Fig. 1c**). The red dots are experimental data, and the blue solid lines are fitting lines. **b, c** XPS spectra of In 3d and Se 3d core orbital peaks from the α -In₂Se₃ flake. **d** Mo 3d core orbital peaks from the 3R MoS₂ flake before and after CHF₃ plasma treatment

Fig. S2 Optical images and *I-V* characteristics of α -In₂Se₃ and 3R MoS₂ flakes. **a** One pair of Cr/Au (10/150nm) electrodes were deposited on an α -In₂Se₃ flake. **b** One pair of Pd/Au (10/150nm) electrodes were deposited on a 3R MoS₂ flake. **c** *I-V* characteristics of the α -In₂Se₃ sample shown in **a** with no strain, a tensile strain of +0.26% and a compressive strain of -0.26%. **d** *I-V* characteristics of the 3R MoS₂ sample shown in **b** with no strain, a tensile strain of +0.26% and a compressive strain of -0.26%

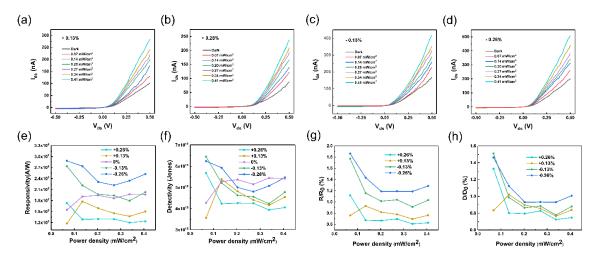



Fig. S3 Illustration of the mechanical strain applied onto the thin layers in blue

Since the dimensions of the α -In₂Se₃ and 3R MoS₂ flakes (~20 μ m long and a few tens of nanometer thick) are much smaller than the PI substrate deposited on the stainless steel (15 mm \times 15mm \times 300 μ m), the tensile and compressive strains exerted onto the flakes deposited onto

the PI substrate could be given by $\varepsilon = h/2r$, where h is the thickness of the PI substrate, L is the bended length of the device and r is the bending radius. The strain ε was calculated and shown in Table S1.

Table S1 Parameters for	calculating th	e applied	strains
--------------------------------	----------------	-----------	---------


H (μm)	L (mm)	r (mm)	3
300	14	11.74	0.13%
300	11.5	5.68	0.26%
300	8.5	4.31	0.35%

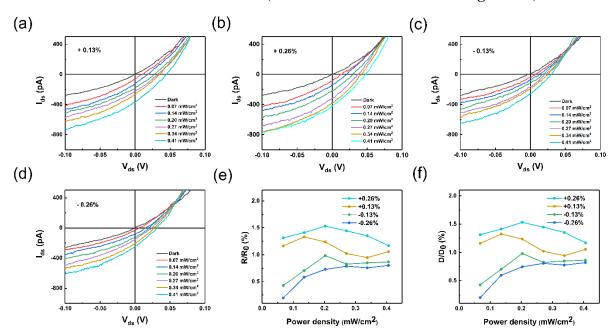

Fig. S4 a AFM image of the α -In₂Se₃/3R MoS₂ heterojunction (**Fig. 1c**). **b** Height profile of the α -In₂Se₃ flake. **c** Height profile of the 3R MoS₂ flake

Fig. S5 Photoresponse from the α-In₂Se₃/3R MoS₂ heterojunction (Fig. 1c) under several different light intensities under zero strain. **a** *I-V* characteristic under illumination intensity of 0.47 mW/cm² with different wavelengths. **b** *I-V* characteristics under the dark and 532 nm illumination with different intensities. **c** Current vs time under the 532 nm illumination intensity of 0.47 mW/cm². **d** *I-V* characteristics under the dark and 800 nm illumination with different intensities. **e** Current vs time under 800nm illumination intensity of 0.47 mW/cm² with zero bias voltage

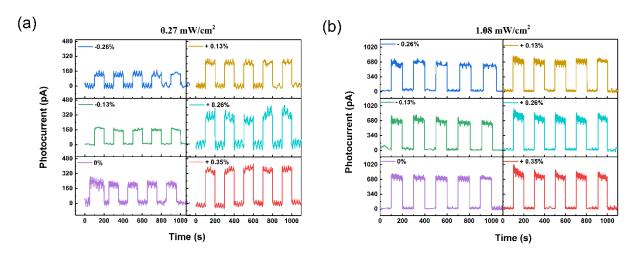


Fig. S6 a-d *I-V* characteristics of the α -In₂Se₃/3R MoS₂ heterojunction (Fig 1c) from -0.5 V to 0.5 V under the dark and various 532 nm light illumination intensities with the strain of +0.13%, +0.26%, -0.13% and -0.26%. **e-f** Responsivity, detectivity, relative change of the responsivity and relative change of detectivity with respect to that under zero strain as a function of the light intensities and strains under +0.5 V bias (The data were extracted from **Fig. S6a-d**)

Fig. S7 a-d *I-V* characteristics of the α -In₂Se₃/3R MoS₂ heterojunction (**Fig. 1c**) from -0.1 V to 0.1 V under the dark and illumination of 532 nm wavelength under different light intensities with the strain of +0.13%, +0.26%, -0.13% and -0.26%. **e, f** Relative change of the responsivity and detectivity with respect to that under zero strain as a function of the light intensities and strains under the bias voltage of -0.1 V (The data were extracted from **Fig. S7a-d**)

Nano-Micro Letters

Fig. S8 a, b *I-t* of the heterojunction (**Fig. 1c**) under zero bias and several strains at the 532 nm light intensity of 0.27 mW/cm^2 and 1.08 mW cm^{-2}