## SUPPLEMENTARY INFORMATION



**Supplementary Fig. 1. Role of adipocyte** *NBR1* in the control of adiposity. **a** Fat tissue weight of eWAT, iWAT, BAT from adipocyte-specific knock out male mice at 10 - 12 weeks of age.  $Sqstm1^{tif}$  (n = 7),  $Sqstm1^{AKO}$  (n = 6),  $Nbr1^{tif}$  (n = 11),  $Nbr1^{AKO}$  (n = 7),  $Sqstm1^{tif}$  (n = 5) and  $Sqstm1^{AKO}$  Nbr1<sup>AKO</sup> (n = 5). p = 0.0417 (eWAT), p = 0.0138 (iWAT)  $Sqstm1^{AKO}$  vs  $Sqstm1^{tif}$ . **b**, **c** Body weight (**b**) and fat tissue weight (**c**) of gWAT, iWAT, BAT from adipocyte-specific knock out female mice at 20 - 25 weeks of age. Results are presented as change fold related to individual controls.  $Sqstm1^{tif}$  (n = 4),  $Sqstm1^{AKO}$  (n = 4),  $Sqstm1^{tif}$ Nbr1<sup>tif</sup> (n = 5) and  $Sqstm1^{AKO}$ Nbr1<sup>AKO</sup> (n = 5). gWAT: gonadal WAT. **d** Adipocyte size measurement from H&E staining of eWAT from adipocyte-specific knock out male mice at 25 - 28 weeks of age (n = 4, per genotype). Distribution arrange and frequency was shown. **e** Quantification of CLS number in eWAT from staining described in (**d**) (n = 4, per genotype). CLS: clown-like structure. **f** qPCR analysis of macrophage marker F4/80 (encoded by *Adgre1*) in eWAT. Results are presented as change fold related to individual to individual controls. WT (n = 9),  $Sqstm1^{-t}$  (n = 9),  $Nbr1^{-t}$  (n = 9) and  $Sqstm1^{-t}$ Nbr1<sup>-t-</sup> (n = 10). Data are presented as mean ± s.e.m (**a** - **f**). \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001. Two tailed Student's T-test (**a** - **f**). Source data are provided as a Source Data file.



Supplementary Fig. 2. Role of adipocyte *NBR1* in the control of insulin resistance. Insulin tolerance test (ITT) were performed in male mice at 25 - 28 weeks of age. Results are presented as raw values.  $Sqstm1^{fif}$  (n = 7),  $Sqstm1^{Ako}$  (n = 6),  $Nbr1^{fif}$  (n = 7),  $Nbr1^{AKO}$  (n = 6),  $Sqstm1^{fif}$  (n = 8) and  $Sqstm1^{AKO}$  Nbr1^{AKO} (n = 11). Data are presented as mean ± s.e.m. \*p < 0.05, \*\*p < 0.01. Two-way ANOVA followed by Bonferroni's post-test. Source data are provided as a Source Data file.



**Supplementary Fig. 3. Role of** *NBR1* **in systemic energy expenditure. a**, **b** Food intake (**a**) and sum of all directed ambulatory locomotor activity (**b**) were determined in male mice at 50 - 55 weeks-old using an automated indirect calorimetry system (CLAMS). *Sqstm1*<sup>f/f</sup> (n = 7), *Sqstm1*<sup>AKO</sup> (n = 6), *Nbr1*<sup>f/f</sup> (n = 5), *Nbr1*<sup>AKO</sup> (n = 4), *Sqstm1*<sup>f/f</sup> (n = 7) and *Sqstm1*<sup>AKO</sup>*Nbr1*<sup>AKO</sup> (n = 8). Results are presented as mean  $\pm$  s.e.m (**a**, **b**). Two-tailed Student's T-test (**a**, **b**). Source data are provided as a Source Data file.



Supplementary Fig. 4. Role of NBR1 in adaptive thermogenesis in BAT and inguinal WAT. **a**,**b** Male mice at 25-weeks of age were subjected to acute cold exposure (4°C) for 7 hours to stimulate brown thermogenesis. **a** Rectal core temperature was measured for consecutive 6 hours. *Nbr1*<sup>t/f</sup> (n = 6), *Nbr1*<sup>AKO</sup> (n = 6). Two-way ANOVA followed by Bonferroni's post-test. Data are presented as mean  $\pm$  s.e.m. **b** Representative H&E staining in BAT of indicated mice (n = 3, per genotype). Scale bar = 100 µm. **c** Male mice at 25-weeks of age were injected with CL316,243 or saline as control for consecutive 5 days. Representative H&E staining in iWAT of indicated mice (n = 3, per genotype). Scale bar = 100 µm. Source data are provided as a Source Data file.



Supplementary Fig. 5. p62 and NBR1 interact with PPAR $\gamma$  and controls its regulation thermogenesis in brown adipocytes. a Representative immunoblotting of p62 and NBR1 levels during brown adipocyte differentiation. Densitometric quantification from 3 independent experiments was shown. **b**, **c** Endogenous interaction of PPAR $\gamma$  with p62 and NBR1. p62 (**b**) or

PPAR $\gamma$  (c) immunoprecipitates from nuclear lysates extracted from ISO and rosiglitazone-treated brown adipocytes were analyzed for the levels of specified proteins. Densitometric quantification was shown (n = 3 independent experiments for both). **d** HEK293T cells were transfected with HAp62, HA-NBR1 and FLAG-tagged PPAR $\gamma$ . Anti-FLAG immunoprecipitates were analyzed by immunoblotting and densitometric quantification was shown (n = 3 independent experiments). **e** HEK293T cells were transfected with cDNA vectors expressing WT/mutants of HA-p62 or HA-NBR1, and GST-PPAR $\gamma$ . The interacting proteins were pulled down using glutathione-beads against GST-PPAR $\gamma$  and analyzed by immunoblotting. Densitometric quantification was shown (n = 3, independent experiments). Data are presented as mean ± s.e.m (**a** - **e**). \**p* < 0.05, \*\**p* <0.01, \*\*\**p* <0.001 for Two tailed Student's T-test (**a** - **e**). Source data are provided as a Source Data file.

## Supplementary Table 1. Quantitative PCR primer sequences

| Gene   | Forward                  | Reverse                  |
|--------|--------------------------|--------------------------|
| Symbol |                          |                          |
| Ldlr   | CAACAATGGTGGCTGTTCCCACAT | ACTCACACTTGTAGCTGCCTTCCA |
| Fasn   | CTTCAACCTGGCCATGGTTTT    | GTTGGCGAAGCCGTAGTTAGTT   |
| Srebf1 | TATGGAGGGCATGAAACCCGAAGT | TTGACCTGGCTATCCTCAAAGGCT |
| Srebf2 | ATGGAGACCCTCACGGA        | TGCTGTTGTTGCCACTG        |
| Hmgcr  | TCAGTGGGAACTATTGCACCG    | TGGAATGACGGCTTCACAAAC    |
| Ucp1   | TCTTCTCAGCCGGAGTTTCAGCTT | ACCTTGGATCTGAAGGCGGACTTT |
| Dio2   | AAGGCTGCCGAATGTCAACGAATG | TGCTGGTTCAGACTCACCTTGGAA |
| Cox7α  | CAGCGTCATGGTCAGTCTGT     | AGAAAACCGTGTGGCAGAGA     |
| Pgc1a  | AGCTGTGTTTGACGACAAATC    | CGACACGGAGAGTTAAAGGAAG   |
| CIDEa  | ATCACAACTGGCCTGGTTACG    | TACTACCCGGTGTCCATTTCT    |
| Adgre1 | TGTCTGACAATTGGGATCTGCCCT | ATAGCTTCCGAGAGTGTTGTGGCA |
| 18s    | GTAACCCGTTGAACCCATT      | CCATCCAATCGGTAGTAGCG     |