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Supplementary Note 1 Theoretical Background

1.1 The Classification Problem

Let (X, Y ) be a pair of random variables, jointly sampled from F := FX,Y = FX|Y FY , with density
denoted fX,Y . Let X be a multivariate vector-valued random variable, such that its realizations live in
p dimensional Euclidean space, x ∈ Rp. Let Y be a categorical random variable, whose realizations
are discrete, y ∈ {0, . . . C − 1}. The goal of a classification problem is to find a function g(x) such that
its output tends to be the true class label y:

g∗(x) := argmax
g∈G

P[g(x) = y]. (1)

When the joint distribution of the data is known, then the Bayes optimal solution is:

g∗(x) := argmax
y

fy,x = argmax
y

fx|yfy = argmax
y
{log fx|y + log fy} (2)

Denote expected misclassification rate of classifier g for a given joint distribution F ,

LFg := E[g(x) 6= y] :=

∫
P[g(x) 6= y]fx,ydxdy, (3)

where E is the expectation, which in this case, is with respect to FXY . For brevity, we often simply write
Lg, and we define L∗ := Lg∗ .

1.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is an approach to classification that uses a linear function of the
first two moments of the distribution of the data. More specifically, let µj = E[FX|Y=j ] denote the
class conditional mean, and let Σ = E[F 2

X ] denote the joint covariance matrix, and the class priors are
πj = P[Y = j]. Using this notation, we can define the LDA classifier:

gLDA(x) := argmin
y

[
1

2
(x− µy)TΣ−1(x− µy)− log πy

]
, (4)

Let LFLDA be the expected misclassification rate of the above classifier for distribution F . Assuming
equal class prior and centered means, re-arranging a bit, we obtain

gLDA(x) := argmin
y

xTΣ−1µy. (5)



2

In words, the LDA classifier chooses the class that maximizes the magnitude of the projection of an
input vector x onto Σ−1µy. When there are only two classes, letting δ = µ0 − µ1, the above further
simplifies to

g2LDA(x) := I{xTΣ−1δ > 0}. (6)

Note that the equal class prior and centered means assumptions merely changes the threshold constant
from 0 to some other constant.

1.3 LDA Model

A statistical model is a family of distributions indexed by a parameter θ ∈ Θ, Fθ = {Fθ : θ ∈ Θ}.
Consider the special case of the above where FX|Y=y is a multivariate Gaussian distribution,N (µy,Σ),
where each class has its own mean, but all classes have the same covariance. We refer to this model
as the LDA model. Let θ = (π,µ,Σ), and let ΘC−LDA = (4C ,Rp×C ,Rp×p�0 ), where µ = (µ1, . . . ,µC),
4C is the C dimensional simplex, that is 4C = {x : xi ≥ 0∀i,

∑
i xi = 1}, and Rp×p�0 is the set of

positive definite p × p matrices. Denote FLDA = {Fθ : θ ∈ ΘLDA}. The following lemma is well known
[5]:

Lemma 1. LFLDA = LF∗ for any F ∈ FLDA.

Supplementary Note 2 Formal Definition of LOL and Related Classifiers

Let A ∈ Rd×p be a “projection matrix”, that is, a matrix that projects p-dimensional data into a d-
dimensional subspace. The question that motivated this work is: what is the best projection matrix
that we can estimate, to use to “pre-process” the data prior to classifying the data? Projecting the
data x onto a low-dimensional subspace, and then classifying via LDA in that subspace is equivalent to
redefining the parameters in the low-dimensional subspace, ΣA = AΣAT ∈ Rd×d and δA = Aδ ∈ Rd,
and then using gLDA in the low-dimensional space. When C = 2, π0 = π1, and (µ0 + µ1)/2 = 0, this
amounts to:

gdA(x) := I{(Ax)TΣ−1
A δA > 0}, where A ∈ Rd×p. (7)

Let LdA :=
∫
P[gdA(x) = y]fx,ydxdy. Our goal therefore is to be able to choose A for a given parameter

setting θ = (π, δ,Σ), such that LA is as small as possible (note that LA will never be smaller than L∗).

In the naive case where (ΣA, δA) are known, we seek to solve the following linear optimization problem:

minimize
A

E[I{xTATΣ−1
A δA > 0} 6= y]

subject to A ∈ Rd×p.
(8)

When (ΣA, δA) are not known, however, the optimization problem becomes non-convex. With ΣA and
δA as above:

minimize
A,Σ,δ

E[I{xTATΣ−1
A δA > 0} 6= y]

subject to A ∈ Rd×p.
(9)

While there are numerous approaches to solve related convex optimization problems through various
sets of assumptions [10, 15], we do not consider such techniques in this manuscript theoretically. This
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is because assuming either a structure for ΣA or δA presupposes an understanding of the properties
of the feature space for wide data, which is often unsuitable if the dataset is large or has considerable
complexity.

Let A = {A : A ∈ Rk×p, k ≤ p}, Ad = {A : A ∈ Rd×p}, and let A∗ ⊂ A be the set of A that
minimizes Supp. Eq. (9), and letA∗ ∈ A∗. Let L∗A = LA∗ be the misclassification rate for anyA ∈ A∗,
that is, L∗A is the Bayes optimal misclassification rate for the classifier that composes A with LDA.

In our opinion, Supp. Eq. (9) is the simplest supervised manifold learning problem there is: a two-class
classification problem, where the data are multivariate Gaussians with shared, unknown covariances,
the manifold is linear, and the classification is done via LDA. Nonetheless, solving Supp. Eq. (9) is
difficult, because we do not know how to evaluate the integral analytically, and we do not know any
algorithms that are guaranteed to find the global optimum in finite time. We proceed by studying a few
natural choices for A.

2.1 Bayes Optimal Projection

Lemma 2. δTΣ−1 ∈ A∗

Proof. Let B = (Σ−1δ)T = δT(Σ−1)T = δTΣ−1, so that BT = Σ−1δ, and plugging this in to Supp.
Eq. (7). By the above, and noting the symmetry and invertibility of Σ:

ΣB = BΣBT = δTΣ−1Σ(δTΣ−1)T

= δTΣ−1ΣΣ−1δ = δTΣ−1δ

⇒ Σ−1
B = δ−1Σδ

T−1

δδδB = Bδ = δTΣ−1δ

We obtain:

gB(x) = I{xTBTΣ−1
B δB > 0}

= I{xT(Σ−1δ)(Σ−1
B δB) > 0} plugging in B

= I{xT(Σ−1δ)(δ−1Σδ
T−1δTΣ−1δ) > 0} plug in ΣB, δB from above

= I{xTΣ−1δ > 0}

In other words, letting B be the Bayes optimal projection recovers the Bayes classifier, as it should.
Or, more formally, for any F ∈ FLDA, LδTΣ−1 = L∗.

2.2 Principle Components Analysis (PCA) Projection

Principle Components Analysis (PCA) finds the directions of maximal variance in a dataset. PCA is
closely related to eigendecompositions and singular value decompositions (SVD). In particular, the
top left singular vector of a matrix X ∈ Rp×n, whose columns are centered, is the eigenvector with
the largest eigenvalue of the centered covariance matrix XXT. SVD enables one to estimate this
eigenvector without ever forming the outer product matrix, because SVD factorizes a matrix X into
USV T, where U and V are orthonormal p× n matrices, and S is a diagonal matrix, whose diagonal
values are decreasing, s1 ≥ s2 ≥ · · · > sn. Defining U = [u1,u2, . . . ,un], where each ui ∈ Rp,
then ui is the ith eigenvector, and si is the square root of the ith eigenvalue of XXT. Let APCA

d =
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[u1, . . . ,ud] be the truncated PCA orthonormal matrix, and let Id×p denote a d× p dimensional identity
matrix.

The PCA matrix is perhaps the most obvious choice of an orthonormal matrix for several reasons. First,
truncated PCA minimizes the squared error loss between the original data matrix and all possible rank
d representations:

argmin
A∈Rd×p

∥∥X −ATA
∥∥2

F
. (10)

Second, the ubiquity of PCA has led to a large number of highly optimized numerical libraries for com-
puting PCA (for example, LAPACK [2]).

In this supervised setting, we consider two different variants of PCA, each based on centering the data
differently. For the first one, which we refer to as “pooled PCA” (or just PCA for brevity), we center the
data by subtracting the “pooled mean” from each sample, that is, we let x̃i = x− µ, where µ = E[x].
For the second, which we refer to as “class conditional PCA”, we center the data by subtracting the
“class-conditional mean” from each sample, that is, we let x̃i = x− µy, where µy = E[x|Y = y].

Notationally, let Ud = [u1, . . . ,ud] ∈ Rp×d, and note that UT
dUd = Id×d and UdU

T
d = Ip×p. Sim-

ilarly, let USUT = Σ, and US−1UT = Σ−1. Let Sd be the matrix whose diagonal entries are the
eigenvalues, up to the dth one, that is Sd(i, j) = si for i = j ≤ d and zero otherwise. Similarly,
Σd = USdU

T = UdSdU
T
d . Reduced-rank LDA (rrLDA) is a regularized LDA algorithm. Specifi-

cally, rather than using the full rank covariance matrix, it uses a rank-d approximation. Formally, let
gLDA := I{xΣ−1δ > 0} be the LDA classifier, and let gdLDA := I{xΣ−1

d δ > 0} be the regularized
LDA classifier, that is, the LDA classifier where the the bottom p − d eigenvalues of the covariance
matrix are set to zero.

Lemma 3. Using class-conditional PCA to pre-process the data, then using LDA on the projected data,
is equivalent to rrLDA.

Proof. Plugging Ud into Eq. (7) for A, and considering only the left side of the operand, we have

(Ax)TΣ−1
A δA = xTATAΣ−1ATAδ,

= xTUdU
T
dΣ−1UdU

T
d δ,

= xTUdU
T
dUS

−1UTUdU
T
d δ,

= xTUdId×pS
−1Ip×dU

T
d δ,

= xTUdS
−1
d U

T
d δ,

= xTΣ−1
d δ.

The implication of this lemma is that if one desires to implement rrLDA, rather than first learning the
eigenvectors and then learning LDA, one can instead directly implement regularized LDA by setting
the bottom p− d eigenvalues to zero. This latter approach removes the requirement to run SVD twice,
therefore reducing the computational burden as well as the possibility of numerical instability issues.
We therefore refer to the projection composed of d eigenvectors of the class-conditionally centered
covariance matrices, Ad

LDA.
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2.3 Linear Optimal Low-Rank (LOL) Projection

The basic idea of LOL is to use both δ and the top d eigenvectors of the class-conditionally cen-
tered covariance. When there are only two classes, δ = µ0 − µ1. When there are C > 2 classes,
there are

(
C
2

)
= C!

2(C−2)! pairwise combinations, δij = µi − µj for all i 6= j. However, since
(
C
2

)
is

nearly C2, when C is large, this would mean incorporating many mean difference vectors. Note that
[δ1,2, δ1,3, . . . , δC−1,C ] is in fact a rank C − 1 matrix, because it is a linear function of the C different
means. Therefore, we only need C − 1 differences to span the space of all pairwise differences. To
mitigate numerical instability issues, we adopt the following convention. For each class, estimate the
expected mean and the number of samples per class, µc and πc. Sort the means in order of decreasing
πc, so that π(1) > π(2) > · · · > π(C). Then, subtract µ(1) from all other means: δi = µ(1) − µ(i), for
i = 2, . . . , C. Finally, δ = [δ2, . . . , δC ].

Given δ andAd−1
LDA , to obtain LOL naïvely, we could simply concatenate the two,Ad

LOL,naive = [δ,Ad−1
LDA ].

Recall that eigenvectors are orthonormal. To maintain orthonormality between the eigenvectors and
vectors of δ, we could easily apply Gram-Schmidt, Ad

LOL,naive = Orth([δ,Ad−1
LDA ]). In practice, this

orthogonalization step does not matter much, so we ignore it hereafter. To ensure that δ and Σ are
balanced appropriately, we normalize each vector in δ to have norm unity. Formally, let δ̃j = δj/ ‖δj‖,
where δj is the jth difference of the mean vector and let Ad

LOL = [δ̃,A
d−(C−1)
LDA ].

When the distribution of the data is not provided, each of the above terms must be estimated from the
data. We use the maximum likelihood estimators for each, specifically:

nc =

n∑
i=1

I{yi = c}, (11)

π̂c =
nc
n
, (12)

µ̂ =
1

n

n∑
i=1

xi, (13)

µ̂c =
1

nc

n∑
i=1

xiI{yi = c}. (14)

For completeness, below we provide pseudocode for learning the sample version of LOL. The popula-
tion version does not require the estimation of the parameters.

2.4 rrLDA is rotationally invariant

For certain classification tasks, the observed dimensions (or features) have intrinsic value, e.g. when
simple interpretability is desired. However, in many other contexts, interpretability is less important
[3]. When the exploitation task at hand is invariant to rotations, then we have no reason to restrict
our search space to be sparse in the observed dimensions. For example, we can consider sparsity
in the eigenvector basis. Let W be a rotation matrix, that is W ∈ W = {W : W T = W−1 and
det(W ) = 1}. Moreover, let W ◦ F denote the distribution F after transformation by an operator W .
For example, if F = N (µ,Σ) then W ◦ F = N (Wµ,WΣW T).

Definition 1. A rotationally invariant classifier has the following property:

LFg = LW◦Fg , F ∈ F and W ∈ W. (15)
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In words, the Bayes risk of using classifier g on distribution F is unchanged if F is first rotated.

Now, we can state the main lemma of this subsection: rrLDA is rotationally invariant.

Lemma 4. LFLDA = LW◦FLDA , for any F ∈ F .

Proof. rrLDA is in fact simply thresholding xTΣ−1δ whenever its value is larger than some constant.
Thus, we can demonstrate rotational invariance by demonstrating that xTΣ−1δ is rotationally invariant.

(Wx)T(WΣW T)−1Wδ = xTW T(WUSUTW T)−1Wδ by substituting USUT for Σ

= xTW T(ŨSŨ
T

)−1Wδ by letting Ũ = WU

= xTW T(ŨS−1Ũ
T

)Wδ by the laws of matrix inverse

= xTW TWUS−1UTW TWδ by un-substituting WU = Ũ

= xTUS−1UTδ because W TW = I

= xTΣ−1δ by un-substituting US−1UT = Σ

One implication of this lemma is that we can reparameterize without loss of generality. Specifically,
defining W := UT yields a change of variables: Σ 7→ S and δ 7→ UTδ := δ′′, where S is a diagonal
covariance matrix. Moreover, let d = (σ1, . . . , σD)T be the vector of eigenvalues, thenS−1δ′ = d−1�δ̃,
where � is the Hadamard (entrywise) product. The LDA classifier may therefore be encoded by a unit
vector, d̃ := 1

md
−1 � δ̃′, and its magnitude, m :=

∥∥∥d−1 � δ̃
∥∥∥. This will be useful later.

2.5 Rotation of Projection Based Linear Classifiers

By a similar argument as above, one can easily show that:

(AWx)T(AWΣW TAT)−1AWδ = xT(W TAT)(AW )Σ−1(W TAT)(AW )δ (16)

= xTY TY Σ−1Y TY δ (17)

= xTZΣ−1ZTδ (18)

= xT(ZΣZT)−1δ = xTΣ̃
−1

d δ, (19)

where Y = AW ∈ Rd×p so that Z = Y TY is a symmetric p× p matrix of rank d. In other words,
rotating and then projecting is equivalent to a change of basis. The implications of the above is:

Lemma 5. gA is rotationally invariant if and only if span(A)=span(Σd). In other words, rrLDA is the
only rotationally invariant projection.
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2.6 Low-Rank Canonical Correlation Analysis

We now contrast LOL and low-rank CCA. For discriminant analysis, low-rank CCA corresponds to
finding the eigenvectors of S†XSB where

SX =
∑
i

(Xi − X̄)(Xi − X̄)>; X̄ =
∑
i

Xi (20)

is the sample covariance matrix of the Xi, S
†
X is the inverse of SX (or Moore-Penrose pseudo-inverse

of SX if SX is not invertible), and

SB =
n0

n
(X̄0 − X̄)(X̄0 − X̄)> +

n1

n
(X̄1 − X̄)(X̄1 − X̄)>; X̄j =

∑
i : Yi=j

Xi for j ∈ {0, 1} (21)

is the between class covariance matrix [18]. It is widely known (see section 11.5 of [16]) that if SX is
invertible then the above formulation reduces to that of Fisher L, namely that of finding v̂ satisfying

v̂ = argmax
v 6=0

v>SBv

v>SW v
(22)

SW =
∑

i : Yi=0

(Xi − X̄0)(Xi − X̄0)> +
∑

i : Yi=1

(Xi − X̄1)(Xi − X̄1)>; (23)

where SW is the pooled within-sample covariance matrix and SX = SW + SB . In the context of our
current paper where X is assumed to be high-dimensional, it is well-known that SX is not a good
estimator of the population covariance matrix ΣX = E[(X − µ)(X − µ)>] and thus computing S−1

X is
suboptimal for subsequent inference unless some form of regularization is employed. Our consideration
of low-rank linear transformations AX provides one principled approach to regularizations of high-
dimensional SX . In contrasts, the above (unregularized) formulation of low-rank CCA frequently yields
discrimination direction vectors corresponding to “maximum data piling” (MDP) directions [1, 18] in
high-dimensional settings (and always yield maximum data piling directions when p ≥ n). These MDP
directions lead to perfect discrimination of the training data, but can suffer from poor generalization
performance, as the examples in [1, 18] indicate.

Naïvely computing the low-rank CCA projection requires storing and inverting a p× p matrix. However,
we devised an implementation for low-rank CCA that does not require ever materializing this matrix.
Modern eigensolvers computes eigenvalues by performing a sequence of matrix vector multiplication.
For example, to compute eigenvalues of SX , an eigensolver performs SXv multiple times until the
algorithm converges. Assume that the number of iteration is i, the computation complexity of the
eigensolver isO(n×p×i). Performing pseudo-inverse of SX computes truncated SVD on SX , resulting
in SXv =

∑
i(Xi − X̄)((Xi − X̄)>v). Here we never physically generate SX . Instead, we always

compute v′ = (Xi − X̄)>v and then v′′ = (Xi − X̄)v′ to compute SXv. Assume k classes, SXv has
the computation complexity of O(n × p × k) and the space complexity of O(n × p × k). SX can be
decomposed into UΣV , where U is a n× n matrix and V is a n× p matrix.

S†XSB = UΣ−1V (
n0

n
(X̄0 − X̄)(X̄0 − X̄)> +

n1

n
(X̄1 − X̄)(X̄1 − X̄)>). (24)

Computing eigenvalues of S†XSB requires

S†XSBv = UΣ−1V (
n0

n
(X̄0 − X̄)((X̄0 − X̄)>v) +

n1

n
(X̄1 − X̄)((X̄1 − X̄)>v)). (25)

Similar to SXv, we never physically generate S†X or SB . Instead, we always multiply the terms on the
right with v first, which results in the computation complexity of O(n × p) and the space complexity of
O(n× p). To our knowledge, this algorithm is novel, and the implementation is also of course novel.
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Supplementary Note 3 Simulations

Let fx|y denote the conditional distribution ofX given Y , and let fy denote the prior probability of Y . For
simplicity, assume that realizations of the random variable X are p-dimensional vectors, x ∈ Rp, and
realizations of the random variable Y are binary, y ∈ {0, 1}. For most simulation settings, each class is
Gaussian: fx|y = N (µy,Σy), where µy is the class-conditional mean and Σy is the class-conditional
covariance. Moreover, we assume fy is a Bernoulli distribution with probability π that y = 1, fy = B(π).
We typically assume that both classes are equally likely, π = 0.5, and the covariance matrices are the
same, Σ0 = Σ1 = Σ. Under such assumptions, we merely specify θ = {µ0,µ1,Σ}. We consider the
following simulation settings:

Stacked Cigars

• µ0 = 0,
• µ1 = (a, b, a, . . . , a),
• Σ is a diagonal matrix, with diagonal vector, d = (1, b, 1 . . . , 1),

where a = 0.15 and b = 4.

Trunk

• µ0 = b/
√

(1, 3, 5, . . . , 2p),
• µ1 = −µ0,
• Σ is a diagonal matrix, with diagonal vector, d = 100/

√
(p, p− 1, p− 2, . . . , 1),

where b = 4.

Rotated Trunk Same as Trunk, but the data are randomly rotated, that is, we sample Q uniformly
from the set of p-dimensional rotation matrices, and then set:

• µ0 ← Qµ0,
• µ1 ← Qµ1,
• Σ← QΣQT.

3 Classes Same as Trunk, but with a third mean equal to the zero vector, µ2 = 0.

• µ0 = b/
√

(1, 3, 5, . . . , 2p),
• µ1 = −µ0,
• µ2 = 0,
• Σ is a diagonal matrix, with diagonal vector, d = 100/

√
(p, p− 1, p− 2, . . . , 1),

where b = 4.

Robust An experiment in which outliers are present for estimation of the projection matrix, but re-
moved for training and testing of the classifier. This is due to the strong amount of noise present in the
robust experiment will lead to poor generalizability of the estimated LDA classifier. Parameters indexed
by i correspond to the generative model for the inliers, and those with o correspond to the outliers.

• µ(i)
0 = b/

√
(1, 3, 5, . . . , p) for the first p/2 dimensions and 0 otherwise,
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• µ(i)
1 = −µ0,

• Σ(i) = b3/
√

(1, 2, . . . , p),
• µ(o) = 0,
• Σ(o) = b6/

√
(1, 2, . . . , p),

• π(i) = 0.7,
• π(o) = 0.3,

and outliers are randomly assigned class 0 or class 1 with equal probability.

Cross An experiment in which the two classes have identical means but different covariance matri-
ces, meaning the optimal discriminant boundary is quadratic.

• µ0 = µ1 = 0,
• Σ0 is a diagonal matrix, with diagonal (a, . . . , a, b, . . . , b) where the first d

3 elements are a, and
the rest are b,

• Σ1 is a diagonal matrix, with diagonal (b, . . . , b, a, . . . , a, b, . . . , b) where the middle d
3 elements

are a, and the others are b,

and we let a = 1, and b = 1
4 .

Hump-K An experiment with K classes, in which the class means display an alternating series of
humps, and the class covariance is a scalar multiple of the identity.

• πk = 1
K

• xl,k = b−K
2 c the left endpoint of the hump

• xr,k = d− xl,K−k+1 the right endpoint of the hump

• xm,k =
[
xl,k+xr,k

2

]
the midpoint of the hump

• Let ak, bk, ck be the unique coefficients such that ck + bkx + akx
2 passes through xl,k at y = 0,

passes through xr,k at y = b, and passes through xm,k at y = 0.

• Let αk =

{
1 k is odd
−1 k is even

• for j = 1, . . . , d, let µk,j =

{
0 j 6∈ [xl,k, xr,k]

ck + bkj + akj
2 j ∈ [xl,k, xr,k]

• ΣΣΣ is a diagonal matrix, with diagonal vector (σ, . . . , σ).

where b = 4 and σ = 100
K .

Computational Efficiency Experiments These experiments used the Trunk setting, increasing
the observed dimensionality.

Hypothesis Testing Experiments We considered two related joint distributions here. The first
joint (Diagonal) is described by:

• µ0 = 0,
• µ̃1 ∼ N (0, I), µ1 = µ̃1/ ‖µ̃1‖,
• Σ is the same Toeplitz matrix (where the top row is ρ(0,1,2,...,p−1)), and the matrix is rescaled to

have a Frobenius norm of 50.
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The second (Dense) is the same except that the eigenvectors are uniformly random sampled orthonor-
mal matrices, rather than the identity matrix.

Regression Experiments In this experiment we used a distribution similar to the Toeplitz distribu-
tion as described above, but y was a linear function of x, that is, y = Ax, where x ∼ N (0,Σ), where
Σ is the above described Toeplitz matrix, and A is a diagonal matrix whose first two diagonal elements
are non-zero, and the rest are zero.

Supplementary Note 4 Theorems and Proofs of Main Result

4.1 Chernoff information

We now introduce the notion of the Chernoff information, which serves as our surrogate measure for
the Bayes error of any classification procedure given the projected data. Our discussion of the Chernoff
information is under the context of decision rules for hypothesis testing, nevertheless, as evidenced
by the fact that the maximum a posteriori decision rule—equivalently the Bayes classifier—achieves
the Chernoff information rate, this distinction between hypothesis testing and classification is mainly for
ease of exposition.

Let F0 and F1 be two absolutely continuous multivariate distributions in Ω ⊂ Rd with density functions f0

and f1, respectively. Suppose that X1, X2, . . . , Xm are independent and identically distributed random
variables, with Xi distributed either F0 or F1. We are interested in testing the simple null hypothesis
H0 : F = F0 against the simple alternative hypothesis H1 : F = F1. A test T is a sequence of mapping
Tm : Ωm 7→ {0, 1} such that given X1 = x1, X2 = x2, . . . , Xm = xm, the test rejects H0 in favor of H1

if Tm(x1, x2, . . . , xm) = 1; similarly, the test decides H1 instead of H0 if Tm(x1, x2, . . . , xm) = 0. The
Neyman-Pearson lemma states that, given X1 = x1, X2 = x2, . . . , Xm = xm and a threshold ηm ∈ R,
the likelihood ratio test rejects H0 in favor of H1 whenever( m∑

i=1

log f0(xi)−
m∑
i=1

log f1(xi)
)
≤ ηm. (26)

Moreover, the likelihood ratio test is the most powerful test at significance level αm = α(ηm), i.e., the
likelihood ratio test minimizes the type II error βm subject to the constraint that the type I error is at most
αm.

Assume that π ∈ (0, 1) is a prior probability of H0 being true. Then, for a given α∗m ∈ (0, 1), let
β∗m = β∗m(α∗m) be the type II error associated with the likelihood ratio test when the type I error is at
most α∗m. The quantity infα∗m∈(0,1) πα

∗
m + (1 − π)β∗m is then the Bayes risk in deciding between H0

and H1 given the m independent random variables X1, X2, . . . , Xm. A classical result of Chernoff [6]
states that the Bayes risk is intrinsically linked to a quantity known as the Chernoff information. More
specifically, let C(F0, F1) be the quantity

C(F0, F1) = − log
[

inf
t∈(0,1)

∫
Rd

f t0(x)f1−t
1 (x)dx

]
= sup

t∈(0,1)

[
− log

∫
Rd

f t0(x)f1−t
1 (x)dx

] (27)

Then we have

lim
m→∞

1

m
inf

α∗m∈(0,1)
log(πα∗m + (1− π)β∗m) = −C(F0, F1). (28)
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Thus C(F0, F1) is the exponential rate at which the Bayes error infα∗m∈(0,1) πα
∗
m+(1−π)β∗m decreases

as m→∞; we also note that the C(F0, F1) is independent of π. We also define, for a given t ∈ (0, 1)
the Chernoff divergence Ct(F0, F1) between F0 and F1 by

Ct(F0, F1) = − log

∫
Rd

f t0(x)f1−t
1 (x)dx. (29)

The Chernoff divergence is an example of a f -divergence as defined in [8]. When t = 1/2, Ct(F0, F1)
is the Bhattacharyya distance between F0 and F1.

The result of Supp. Eq. (28) can be extended to K + 1 ≥ 2 hypothesis, with the exponential rate
being the minimum of the Chernoff information between any pair of hypothesis. More specifically, let
F0, F1, . . . , FK be distributions on Rd and letX1, X2, . . . , Xm be independent and identically distributed
random variables with distribution F ∈ {F0, F1, . . . , FK}. Our inference task is in determining the distri-
bution of theXi among theK+1 hypothesis H0 : F = F0, . . . ,HK : F = FK . Suppose also that hypoth-
esis Hk has a priori probabibility πk. For any decision rule g, the risk of g is r(g) =

∑
k πk

∑
l 6=k αlk(g)

where αlk(g) is the probability of accepting hypothesis Hl when hypothesis Hk is true. Then we have
[13]

inf
g

lim
m→∞

r(g)

m
= −min

k 6=l
C(Fk, Fl), (30)

where the infimum is over all decision rules g, i.e., for any g, r(g) decreases to 0 as m → ∞ at a rate
no faster than exp(−mmink 6=l C(Fk, Fl)).

When the distributions F0 and F1 are multivariate normal, that is, F0 = N (µ0,Σ0) and F1 = N (µ1,Σ1);
then, denoting by Σt = tΣ0 + (1− t)Σ1, we have

C(F0, F1) = sup
t∈(0,1)

( t(1− t)
2

(µ1 − µ2)>Σ−1
t (µ1 − µ2) +

1

2
log

|Σt|
|Σ0|t|Σ1|1−t

)
. (31)

4.2 Projecting data and Chernoff information

We now discuss how the Chernoff information characterizes the effect a linear transformation A of the
data has on classification accuracy. We start with the following simple result whose proof follows directly
from Supp. Eq. (30).

Lemma 6. Let F0 = N (µ0,Σ) and F1 ∼ N (µ1,Σ) be two multivariate normals with equal covariance
matrices. For any linear transformation A, let F (A)

0 and F
(A)
1 denote the distribution of AX when

X ∼ F0 and X ∼ F1, respectively. We then have

C(F
(A)
0 , F

(A)
1 ) =

1

8
(µ1 − µ0)>A>(AΣA>)−1A(µ1 − µ0)

=
1

8
(µ1 − µ0)>Σ−1/2Σ1/2A>(AΣA>)−1AΣ1/2Σ−1/2(µ1 − µ0)

=
1

8
‖PΣ1/2A>Σ−1/2(µ1 − µ0)‖2F

(32)

where PZ = Z(Z>Z)−1Z> denotes the matrix corresponding to the orthogonal projection onto the
columns of Z.

Thus for a classification problem where X|Y = 0 and X|Y = 1 are distributed multivariate normals
with mean µ0 and µ1 and the same covariance matrix Σ, Lemma 6 then states that for any two linear
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transformations A and B, the transformed data AX is to be preferred over the transformed data BX if

(µ1 − µ0)>A>(AΣA>)−1A(µ1 − µ0) > (µ1 − µ0)>B>(BΣB>)−1B(µ1 − µ0). (33)

In particular, using Lemma 6, we obtain the following result showing the dominance of LOL over
reduced-rank LDA (or simply rrLDA for brevity) when the class conditional distributions are multivariate
normal with a common variance.

Theorem 1. Let F0 = N(µ0,Σ) and F1 ∼ N(µ1,Σ) be multivariate normal distributions in Rp. Let
λ1 ≥ λ2 ≥ . . . λp be the eigenvalues of Σ and u1, u2, . . . , up the corresponding eigenvectors. For
d ≤ p, let Ud = [u1 | u2 | · · · | ud] ∈ Rp×d be the matrix whose columns are the eigenvectors
u1, u2, . . . , ud. Let A = [δ | Ud−1] and B = Ud be the LOL and rrLDA linear transformations into Rd,
respectively. Then

C(F
(A)
0 , F

(A)
1 )− C(F

(B)
0 , F

(B)
1 ) =

(δ>(I − Ud−1U
>
d−1)δ)2

δ>(Σ− Σd−1)δ
− δ>(Σ†d − Σ†d−1)δ

≥ 1

λd
δ>(I − Ud−1U

>
d−1)δ − 1

λd
δ>(UdU

>
d − Ud−1U

>
d−1)δ ≥ 0

(34)

and the inequality is strict whenever δ>(I − UdU>d )δ > 0.

Proof. We first note that

AΣA> =
[
δ|Ud−1

]>
Σ
[
δ|Ud−1

]
=

[
δ>Σδ δ>ΣUd−1

U>d−1Σδ U>d−1ΣUd−1

]
=

[
δ>Σδ δ>ΣUd−1

U>d−1Σδ Λd−1

]
(35)

where Λd−1 = diag(λ1, λ2, . . . , λd−1) is the (d−1)× (d−1) diagonal matrix formed by the eigenvalues
λ1, λ2, . . . , λd−1. Therefore, letting γ = δ>Σδ − δ>ΣUd−1Λ−1

d−1U
>
d−1Σδ, we have

(AΣA>)−1 =

[
δ>Σδ δ>ΣUd−1

U>d−1Σδ U>d−1ΣUd−1

]−1

=

[
γ−1 −δ>ΣUd−1Λ−1

d−1γ
−1

−Λ−1
d−1U

>
d−1Σδγ−1

(
Λd−1 −

U>d−1Σδδ>ΣUd−1

δ>Σδ

)−1

]
.

(36)

The Sherman-Morrison-Woodbury formula then implies

(
Λd−1 −

U>d−1Σδδ>ΣUd−1

δ>Σδ

)−1
= Λ−1

d−1 +
Λ−1
d−1U

>
d−1Σδδ>ΣUd−1Λ−1

d−1/(δ
>Σδ)

1− δ>ΣUd−1Λ−1
d−1U

>
d−1Σδ/(δ>Σδ)

= Λ−1
d−1 +

Λ−1
d−1U

>
d−1Σδδ>ΣUd−1Λ−1

d−1

δ>Σδ − δ>ΣUd−1Λ−1
d−1U

>
d−1Σδ

= Λ−1
d−1 + γ−1Λ−1

d−1U
>
d−1Σδδ>ΣUd−1Λ−1

d−1

(37)

We note that ΣUd−1 = Ud−1Λd−1 and U>d−1Σ = Λd−1U
>
d−1 and hence

γ = δ>Σδ − δ>ΣUd−1Λ−1
d−1U

>
d−1Σδ = δ>Σδ − δ>Ud−1Λd−1Λ−1

d−1Λd−1U
>
d−1δ

= δ>Σδ − δ>Ud−1Λd−1U
>
d−1δ = δ>(Σ− Σd−1)δ

(38)
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where Σd−1 = Ud−1Λd−1U
>
d−1 is the best rank d − 1 approximation to Σ with respect to any unitarily

invariant norm. In addition,

Λ−1
d−1U

>
d−1Σδδ>ΣUd−1Λ−1

d−1 = Λ−1
d−1Λd−1U

>
d−1δδ

>Ud−1Λd−1Λ−1
d−1 = U>d−1δδ

>Ud−1.

We thus have

(AΣA>)−1 =

[
γ−1 −δ>ΣUd−1Λ−1

d−1γ
−1

−Λ−1
d−1U

>
d−1Σδγ−1

(
Λd−1 −

U>d−1Σδδ>ΣUd−1

δ>Σδ

)−1

]
(39)

=

[
γ−1 −γ−1δ>Ud−1

−γ−1U>d−1δ Λ−1
d−1 + γ−1U>d−1δδ

>Ud−1

]
. (40)

Therefore,

δ>A>(AΣA>)−1Aδ = δ>
[
δ | Ud−1

] [ γ−1 −γ−1δ>Ud−1

−γ−1U>d−1δ Λ−1
d−1 + γ−1U>d−1δδ

>Ud−1

] [
δ|Ud−1

]>
δ

=
[
δ>δ | δ>Ud−1

] [ γ−1 −γ−1δ>Ud−1

−γ−1U>d−1δ Λ−1
d−1 + γ−1U>d−1δδ

>Ud−1

] [
δ>δ
U>d−1δ

]
= γ−1(δ>δ)2 − 2γ−1δ>δδ>Ud−1U

>
d−1δ + δ>Ud−1(Λ−1

d−1 + γ−1U>d−1δδ
>Ud−1)U>d−1δ

= γ−1(δ>δ − δ>Ud−1U
>
d−1δ)

2 + δ>Ud−1Λ−1
d−1U

>
d−1δ

= γ−1(δ>(I − Ud−1U
>
d−1)δ)2 + δ>Σ†d−1δ

(41)

where Σ†d−1 is the Moore-Penrose pseudo-inverse of Σd−1. The LDA projection matrix into Rd is given
by B = U>d and hence

δ>B>(BΣB>)−1Bδ = δ>UdΛ
−1
d U>d δ = δ>Σ†dδ. (42)

We thus have

C(F
(A)
0 , F

(A)
1 )− C(F

(B)
0 , F

(B)
1 ) = γ−1(δ>(I − Ud−1U

>
d−1)δ)2 − δ>(Σ†d − Σ†d−1)δ

=
(δ>(I − Ud−1U

>
d−1)δ)2

δ>(Σ− Σd−1)δ
− δ>(Σ†d − Σ†d−1)δ

≥
(δ>(I − Ud−1U

>
d−1)δ)2

λdδ>(I − Ud−1U
>
d−1)δ

− 1

λd
δ>udu

>
d δ

=
1

λd
δ>(I − Ud−1Ud−1)δ − 1

λd
δ>(UdU

>
d − Ud−1U

>
d−1)δ ≥ 0

(43)

where we recall that ud is the d-th column of Ud. Thus C(F
(A)
0 , F

(A)
1 ) ≥ C(F

(B)
0 , F

(B)
1 ) always, and the

inequality is strict whenever δ>(I − UdU>d )δ > 0.

Remark 1. Theorem 1 can be extended to the case wherein the linear transformations are A = [δ |
Ud−1] and B = Ud, respectively, such that Ud is an arbitrary p × d matrix with U>d Ud = I, and Ud−1 is
the first d− 1 columns of Ud. A similar derivation to that in the proof of Theorem 1 then yields

C(F
(A)
0 , F

(A)
1 ) =

(δ>Σ−1/2(I − Vd−1V
>
d−1)Σ1/2δ)2

δ>Σ1/2(I − Vd−1V
>
d−1)Σ1/2δ

+ δ>Σ−1/2Vd−1V
>
d−1Σ−1/2δ

C(F
(B)
0 , F

(B)
1 ) = δ>Σ−1/2VdV

>
d Σ−1/2δ
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where VdV
>
d−1 = Σ1/2Ud(U

>
d ΣUd)

−1U>d Σ1/2 is the orthogonal projection onto the column space of

Σ1/2Ud. Hence C(F
(A)
0 , F

(A)
1 ) > C(F

(B)
0 , F

(B)
1 ) if and only if

(δ>Σ−1/2(I − Vd−1V
>
d−1)Σ1/2δ)2

δ>Σ1/2(I − Vd−1V
>
d−1)Σ1/2δ

> δ>Σ−1/2(VdV
>
d − Vd−1V

>
d−1)Σ−1/2δ. (44)

We recover Supp. Eq. 34 by letting Ud be the matrix whose columns are the eigenvectors corresponding
to the d largest eigenvalue of Σ.

We next present a result relating the Chernoff information for LOL and rrLDA.

Theorem 2. Assume the setting of Theorem 1. LetC = Ũ>d where Ũd is the p×dmatrix whose columns
are the d largest eigenvectors of the pooled covariance matrix Σ̃ = E[(X− µ0+µ1

2 )(X− µ0+µ1
2 )>]. Then

C is the linear transformation for PCA and

C(F
(A)
0 , F

(A)
1 )− C(F

(C)
0 , F

(C)
1 ) =

(δ>(I − Ud−1U
>
d−1)δ)2

δ>(Σ− Σd−1)δ
+ δ>Σ†d−1δ − δ

>Σ̃†dδ −
(δ>Σ̃†dδ)

2

4− δ>Σ̃†dδ

=
(δ>(I − Ud−1U

>
d−1)δ)2

δ>(Σ− Σd−1)δ
+ δ>Σ†d−1δ −

4δ>Σ̃†dδ

4− δ>Σ̃†dδ
.

(45)

where Σ̃d = ŨdS̃dŨ
>
d is the best rank d approximation to Σ̃ = Σ + 1

4δδ
>.

Proof. Assume, without loss of generality, that µ1 = −µ0 = µ. We then have

Σ̃ = E[XX>] = πΣ + πµ0µ
>
0 + (1− π)Σ + (1− π)µ1µ

>
1 = Σ + µµ> = Σ + 1

4δδ
>. (46)

Therefore

(CΣC>)−1 =
(
Ũ>d ΣŨd

)−1
=
(
Ũ>d (Σ̃− 1

4δδ
>)Ũd

)−1
=
(
S̃d − 1

4 Ũ
>
d δδ

>Ũd
)−1 (47)

= S̃−1
d +

S̃−1
d Ũ>d δδ

>ŨdS̃
−1
d

4− δ>ŨdS̃−1
d Ũ>d δ

(48)

where S̃d is the diagonal matrix containing the d largest eigenvalues of Σ̃. Hence

C(F
(C)
0 , F

(C)
1 ) = δ>C>(CΣC>)−1Cδ = δ>Ũd

(
S̃−1
d +

S̃−1
d Ũ>d δδ

>ŨdS̃
−1
d

4− δ>ŨdS̃−1
d Ũ>d δ

)
Ũ>d δ

= δ>ŨdS̃
−1
d Ũ>d δ +

(δ>ŨdS̃
−1
d Ũ>d δ)

2

4− δ>ŨdS̃−1
d Ũ>d δ

= δ>Σ̃†dδ +
(δ>Σ̃†dδ)

2

4− δ>Σ̃†dδ
=

4δ>Σ̃†dδ

4− δ>Σ̃†dδ
.

(49)

as desired.

Remark 2. We recall that the LOL projection A = [δ | Ud−1]> yields

C(F
(A)
0 , F

(A)
1 ) =

(δ>(I − Ud−1U
>
d−1)δ)2

δ>(Σ− Σd−1)δ
+ δ>Σ†d−1δ. (50)
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To illustrate the difference between the LOL projection and that based on the eigenvectors of the pooled
covariance matrix, consider the following simple example. Let Σ = diag(λ1, λ2, . . . , λp) be a diagonal
matrix with λ1 ≥ λ2 ≥ · · · ≥ λp. Also let δ = (0, 0, . . . , 0, s). Suppose furthermore that λp + s2/4 < λd.
Then we have Σ̃d = diag(λ1, λ2, . . . , λd, 0, 0, . . . , 0). Thus Σ̃†d = diag(1/λ1, 1/λ2, . . . , 1/λd, 0, 0, . . . , 0)

and δ†Σ̃†dδ = 0. Therefore, C(F
(B)
0 , F

(B)
1 ) = 0.

On the other hand, we have

C(F
(A)
0 , F

(A)
1 ) =

(δ>(I − Ud−1U
>
d−1)δ)2

δ>(Σ− Σd−1)δ
+ δ>Σ†d−1δ =

s4

s2λp
+ 0 = s2/λp. (51)

A more general form of the previous observation is the following result which shows that LOL is prefer-
able over PCA when the dimension p is sufficiently large.

Proposition 1. Let Σ be a p× p covariance matrix of the form

Σ =

[
Σd 0
0 Σ⊥d

]
(52)

where Σd is a d× d matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λp be the eigenvalues of Σ, with λ1, λ2, . . . , λd being
the eigenvalues of Σd. Suppose that the entries of δ are i.i.d. with the following properties.

1. δi ∼ Yi ∗N(τ, σ2) where Y1, Y2, . . . , Yp
i.i.d.∼ Bernoulli(1− ε).

2. p(1− ε)→ θ as p→∞ for some constant θ.

Then there exists a constant C > 0 such that if λd − λd+1 ≥ Cθτ2 log p, then, with probability at least
εd

C(F
(A)
0 , F

(A)
1 ) > C(F

(B)
0 , F

(B)
1 ) = 0 (53)

Proof. The above construction of Σ and δ implies, with probability at least εd, that the covariance matrix
for Σ̃ is of the form

Σ̃ =

[
Σd 0

0 Σ⊥d + 1
4(δ̃δ̃>)

]
(54)

where δ̃ ∈ Rp−d is formed by excluding the first d elements of δ. Now, if λd+1 + 1
4‖δ̃‖

2 < λd, then
the d largest eigenvalues of Σ̃ are still λ1, λ2, . . . , λd, and thus the eigenvectors corresponding to the d
largest eigenvalues of Σ̃ are the same as those for the d largest eigenvalues of Σ. That is to say,

λd+1 + 1
4‖δ̃‖

2 < λd =⇒ Σ̃†d = Σ†d =⇒ δ>Σ̃†dδ = 0 =⇒ C(F
(B)
0 , F

(B)
1 ) = 0. (55)

We now compute the probability that λd+1 + 1
4‖δ̃‖

2 < λd. Suppose for now that ε > 0 is fixed and does
not vary with p. We then have∑p

i=d+1 δ
2
i − (p− d)(1− ε)τ2√

(p− d)(2(1− ε)(2τ2σ2 + σ4) + ε(1− ε)(τ4 + 2τ2σ2 + σ4))

d−→ N(0, 1). (56)

Thus, as p→∞, the probability that λd+1 + 1
4‖δ̃‖

2 < λd converges to that of

Φ
( 4(λd − λd+1)− (p− d)(1− ε)τ2√

(p− d)(2(1− ε)(2τ2σ2 + σ4) + ε(1− ε)(τ4 + 2τ2σ2 + σ4))

)
. (57)
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This probability can be made arbitrarily close to 1 provided that λd − λd+1 ≥ Cp(1 − ε)τ2 for all
sufficiently large p and for some constant C > 1/4. Since the probability that δ1 = δ2 = · · · = δd is at
least εd, we thus conclude that for sufficiently large p, with probability at least εd,

C(F
(B)
0 , F

(B)
1 ) = 0 < C(F

(A)
0 , F

(A)
1 ). (58)

In the case where ε = ε(p) → 1 as p → ∞ such that p(1 − ε) → θ for some constant θ, then the
probability that λd+1 + 1

4‖δ̃‖
2 < λd converges to the probability that

1

4

K∑
i=1

σ2χ2
1(τ) ≥ λd − λd+1 (59)

where K is Poisson distributed with mean θ and χ2
i (τ) is the non-central chi-square distribution with

one degree of freedom and non-centrality parameter τ . Thus if λd − λd+1 ≥ Cθτ2 log p for sufficiently
large p and for some constant C, then this probability can also be made arbitrarily close to 1.

Remark 3. The previous comparisons are done for the case of C = 2 classes. Extending these
comparisons to the case of C > 2 classes is, however, non-trivial. More precisely, suppose we have
Y ∈ {1, 2, . . . , C} and that, conditional on Y = c, X ∼ N (µc,Σ) is multivariate normal with mean µc
and common covariance matrix Σ. Then, given X = x, the Bayes optimal classifier for Y is still

gLDA(x) = argmin
y∈{1,2,...,C}

[1

2
(x− µy)>Σ−1(x− µy)− log πy

]
(60)

= argmin
y∈{1,2,...,C}

[
−x>Σ−1µy +

1

2
µ>y Σ−1µy − log πy

]
(61)

Taking 1
2µ
>
y Σ−1µy−log πy as either a given constant or as an intercept term to be learned or estimated,

the reduced-rank LDA for C > 2 classes still corresponds to looking at the top d eigenvectors of Σ.
That is to say, we transform the predictor variables via x 7→ Udx followed by performing LDA on the
transformed data. Similarly, the PCA transformation corresponds to using the top d eigenvectors of
the pooled covariance matrix Σ̃ = E[(X −

∑
c πcµc)(X −

∑
c πcµc)

>] followed by performing LDA.
Suppose we now compare LOL, rrLDA, and PCA in this multi-class setting. Let A : X 7→ AX be a
linear transformation. Then by Supp. Eq. (30) and Supp. Eq. (32), the Chernoff information for the
transformed data in this multi-class setting is

min
c 6=c′

1

8
(µc − µc′)>A>(AΣA>)−1A(µc − µc′). (62)

We now see that, in the case of rrLDA and PCA the linear transformation A depends only on the
covariance matrix Σ and Σ̃, respectively. That is to say, the linear transformation A does not depend
on the choice of c and c′. In contrast, currently for LOL the linear transformation A depends on both
Σ as well as µc − µc′ . In other words, there is no single choice for A but rather that A changes as
c, c′ changes. Direct comparison, in the multi-classes setting, between LOL and either of rrLDA or
PCA is thus an open problem that we leave for future work. Finally we note that if we allow the linear
transformation for LOL to vary with the classes c and c′, i.e., taking a one-vs-one approach to multi-
classes classification, then the resulted presented in this paper are valid for all pairs c, c′.
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4.3 Finite Sample Performance

We now consider the finite sample performance of LOL and PCA-based classifiers in the high-dimensional
setting with small or moderate sample sizes, e.g., when p is comparable to n or when n � p. Once
again we assume that X|Y = i ∼ N (µi,Σ) for i = 0, 1. Furthermore, we also assume that Σ belongs
to the class Θ(p, r, k, τ, λ) as defined below.

Definition Let λ > 0, τ ≥ 1 and k ≤ p be given. Denote by Θ(p, r, k, τ, λ, σ2) the collection of matrices
Σ such that

Σ = V ΛV > + σ2I (63)

where V is a p × r matrix with orthonormal columns and Λ is a r × r diagonal matrix whose diagonal
entries λ1, λ2, . . . , λr satisfy λ ≥ λ1 ≥ λ2 ≥ · · · ≥ λr ≥ λ/τ . In addition, assume also that |supp(V )| ≤
k where supp(V ) denote the non-zero rows of V , i.e., supp(V ) is the subset of {1, 2, . . . , p} such that
Vj 6= 0 if and only if j ∈ supp(V ).

We note that in general r ≤ k � p and λ/τ � σ2. We then have the following result.

Theorem 3 ([4]). Suppose there exist constants M0 and M1 such that M1 log p ≥ log n ≥ M0 log λ.
Then there exists a constant c0 = c0(M0,M1) depending on M0 and M1 such that for all n and p for
which

τk

n
log

ep

k
≤ c0, (64)

there exists an estimate V̂ of V such that

sup
Σ∈Θ(p,r,k,τ,λ,σ2)

E‖V̂ V̂ > − V V >‖2 ≤ Ck(σλ+ σ2)

nλ2
log

ep

k
(65)

where C is a universal constant not depending on p, r, k, τ, λ and σ2.

Theorem 3 then implies the following result for comparing the Chernoff information of the sample version
of LOL against that for PCA.

Corollary 4. Let Σ ∈ Θ(p, r, k, τ, λ) as defined above. Suppose that C(F
(A)
0 , F

(A)
1 ) > C(F

(B)
0 , F

(B)
1 )

whereA andB denote the LOL and PCA projection matrices based on the eigenvectors of Σ associated
with the d ≤ r largest eigenvalues, i.e, A = [δ|V1:d−1] and B = V1:d. Then there exists constants M
and c such that if log n ≥ M log λ and τk

n log ep
k ≤ c, then there exists an estimate V̂ of V such that,

with Â = [δ̂|V̂1:d−1]] and B̂ = [V̂1:d], we have

E[C(F
(Â)
0 , F

(Â)
1 )] > E[C(F

(B̂)
0 , F

(B̂)
1 )] (66)

The above corollary states that for Σ ∈ Θ(p, r, k, τ, λ), then provided that the Chernoff information of
the population version of LOL is larger than the Chernoff information of the population version of PCA,
we can choose n sufficiently large (as compared to λ and τ and k) such that the expected Chernoff
information for the sample version of LOL is also larger than the expected Chernoff information of the
sample version of PCA. We emphasize that it is necessary that the LOL and the PCA version are both
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projected into the top d ≤ r dimension of the sample covariance matrices. The constantsM and c in the
statement of the above corollary are chosen so that M (which depends on M0 and M1 in the statement
of Theorem 3) is sufficiently large and c (which depends on c0) is sufficiently small to ensure that the
bound in Supp. Eq. (65) is sufficiently small. If C(F

(A)
0 , F

(A)
1 ) > C(F

(B)
0 , F

(B)
1 ) and ‖V̂ V̂ > − V V >‖ is

sufficiently small, then E[C(F
(Â)
0 , F

(Â)
1 )] > E[C(F

(B̂)
0 , F

(B̂)
1 )t] as desired.

Supplementary Note 5 Real-Data Performance Analysis

PCA, the industry-standard dimensionality reduction technique for high-dimensional problems, is com-
pared to LOL, RP, and rrLDA in terms of cross-validated classification error.

In the experiments, we used k fold cross-validation. Testing sets were rotated across all folds, with the
training sets comprising the remaining k−1 folds. A low-dimensional projection matrixAAA is first learned
through the training set, and the low-dimensional training points are then used to train an LDA classifier
C. The testing points are embedded via AAA, and classification error is determined using the trained
classifier C.

Performance is assessed using Cohen’s kappa [7], which normalizes the classification error typically
between 0 (the classifier performs no better than the classifier which guesses the most-likely class
from the training set, the chance classifier) and 1 (the trained classifier performs perfectly). Negative
scores can be achieved if the trained classifier performs worse than the chance classifier. The effect
size is measured as the difference between Cohen’s kappa for the trained classifier after embedding
with PCAκ(PCA) and the trained classifier after embedding with technique ε, κ(ε). Table 1 provides
details about each neuroimaging dataset.

Problem Sample Size (n) Training Size∗ # Features (p) Classes (K) Source
Templeton114 111 100 > 1.5× 108 2 MRN
BNU1 110 100 > 1.5× 108 2 CoRR [22]
BNU3 47 43 > 1.5× 108 2 CoRR [22]
SWU4 453 407 > 1.5× 108 2 CoRR [22]
KKI2009 42 38 > 1.5× 108 2 KKI [12]
Genomics 340 306 745,184 2 Douville et al. [9]

Supplementary Table 1. Table of datasets used in this study. The top 5 datasets (neuroimaging) are
pre-processing by only registering the brains to the MNI152 template[11, 17, 19, 20]. The neuroimaging
dataset comprises a total of 5 classification problems (5 datasets across a single sex classification task).
The bottom dataset (genomics) is pre-processed by aligning sequencing data to 745, 184 amplicons on
the human genome. The genomics dataset comprises two benchmark classification problems (sex or
age).

Supplementary Note 6 Extensions to Other Supervised Learning Problems

6.1 Large numbers of classes

Here, we explore an experiment in which the number of classes increases for a given simulation. We
look at the multiclass hump-K problem, described in Section Supplementary Note 3. In this simulation,
while the space spanned by the differences of means conveys more information than the directions of
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Supplementary Figure 1. The Multiclass Hump Simulation. We show the results of the multiclass trunk
problem, as the number of classes increases from 2 to 10, with the number of dimensions and the number of
samples fixed. Effect size is measured with Cohen’s Kappa. LOL and PLS provide better performance over
competing techniques including PCA, and this gap widens as the number of classes increases.

maximal variance, we expect that the shift in the means for a given class at a given dimension should
also increase the variance fractionally in that direction as well. Supplementary Figure 1A shows the
simulation setup, forK = 10. Supplementary Figure 1B indicates the misclassification rate as a function
of Cohen’s Kappa. We use Cohen’s Kappa instead of the misclassification rate for direct evaluation
since K varies widely across these simulations at a fixed number of total samples n = 128, making
the difficulty of the problem as K increases two-fold: not only are there more classes, but there are
also fewer examples of each class per simulation setting. In all cases, the best random classifier would
be the classifier that continually guesses a single class continuously, which has expected accuracy
of 1

K . On all simulations, we see that both PLS and LOL rapidly approach a higher Kappa statistic
(better performance relative the random classifier) as they learn the space spanned by the differences
of means. PLS rapidly declines in performance as successive dimensions are added, and LOL sees
a small performance decline, as successive dimensions should convey no information regarding the
class. PCA is able to ultimately identify the space spanned by the differences of the means, but takes
far more embedding dimensions to do so, and yields a lower Kappa statistic than either of the other two
strategies.

6.2 Hypothesis Testing

The utility of incorporating the mean difference vector into supervised machine learning extends beyond
classification. In particular, hypothesis testing can be considered as a special case of classification,
with a particular loss function. We therefore apply the same idea to a hypothesis testing scenario.
The multivariate generalization of the t-test, called Hotelling’s Test, suffers from the same problem
as does the classification problem; namely, it requires inverting an estimate of the covariance matrix,
which would result in a matrix that is low-rank and therefore singular in the high-dimensional setting.
To mitigate this issue in the hypothesis testing scenario, prior work applied similar tricks as they have
done in the classification setting. One particularly nice and related example is that of Lopes et al. [14],
who addresses this dilemma by using random projections to obtain a low-dimensional representation,
following by applying Hotelling’s Test in the lower-dimensional subspace. Supplementary Figure 2A and
B show the power of their test (labeled RP) alongside the power of PCA, LOL, and LFL for two different
conditions. In each case we use the different approaches to project to low dimensions, followed by using
Hotelling’s test on the projected data. In the first example the true covariance matrix is diagonal, and in
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Supplementary Figure 2. The intuition of including the mean difference vector is equally useful for other su-
pervised manifold learning problems, including testing and regression. (A) and (B) show two different high-
dimensional testing settings, as described in Methods. Power is plotted against the decay rate of the spectrum,
which approximates the effective number of dimensions. LOL composed with Hotelling’s test outperforms the
random projections variants described in [14], as well as several other variants. (C) A sparse high-dimensional
regression setting, as described in Methods, designed for sparse methods to perform well. Log10 mean squared
error is plotted against the number of projected dimensions. LOL composed with linear regression outperforms
Lasso (cyan), the classic sparse regression method, as well as partial least squares (PLS; black). These three
simulation settings therefore demonstrate the generality of this technique.

the second, the true covariance matrix is dense. The horizontal axis on both panels characterizes the
decay rate of the eigenvalues, so larger numbers imply the data is closer to low-rank (see Methods for
details). The results indicate that the LOL test has higher power for essentially all scenarios. Moreover,
it is not merely replacing random projections with PCA (solid magenta line), nor simply incorporating
the mean difference vector (dashed green line), but rather, it appears that LOL for testing uses both
modifications to improve performance.

6.3 Regression

High-dimensional regression is another supervised learning method that can use the LOL idea. Linear
regression, like classification and Hotelling’s Test, requires inverting a matrix as well. By projecting the
data onto a lower-dimensional subspace first, followed by linear regression on the low-dimensional data,
we can mitigate the curse of high-dimensions. To choose the projection matrix, we partition the data into
K partitions (we select K = 10 arbitrarily), based on the percentile of the target variable, we obtain a
K-class classification problem. Then, we can apply LOL to learn the projection. Supplementary Figure
2C shows an example of this approach, contrasted with Lasso and partial least squares, in a sparse
simulation setting (see Methods for details). LOL is able to find a better low-dimensional projection than
Lasso, and performs significantly better than partial least squares, for essentially all choices of number
of dimensions to project into.

Supplementary Note 7 The R implementation of LOL

Supplementary Figure 3 shows the R implementation of LOL for binary classification using FlashMatrix
[21]. The implementation takes a D × I matrix, where each column is a training instance and each
instance has D features, and outputs a D × k projection matrix.
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LOL <− function (m, labels , k ) {
counts <− fm . table ( labels )
num. labels <− length ( counts$ va l )
num. fea tu res <− dim (m) [ 1 ]
nv <− k − (num. labels − 1)
gr .sum <− fm . groupby (m, 1 , fm . as . factor ( labels , 2 ) , fm . bo . add )
gr .mean <− fm . mapply . row ( gr .sum, counts$Freq , fm . bo . div , FALSE)
d i f f <− fm . get . co ls ( gr .mean , 1) − fm . get . co ls ( gr .mean , 2)
svd <− fm . svd (m, nv=0 , nu=nv )
fm . cbind ( d i f f , svd$u )

}

Supplementary Figure 3. The R implementation of LOL.

Pseudocode 1 Simple pseudocode for two class LOL on sample data.

Input: X a p × n matrix (n � p), where columns are observations; rows are features. An n length
vector of observation labels, y. An integer k to specify desired output dimension.

Output: A ∈ Rp×k
1: function LOL.TRAIN(X, Y , k)
2: for all j ∈ J do
3: nj =

∑n
i=1 I(yi = j) . sample size per class

4: µ̂j = 1
nj

∑n
i=1 xiI(yi = j) . class means

5: end for
6: δ̂ = µ̂1 − µ̂2 . difference of means
7: δ̂ = δ̂/

∥∥∥δ̂∥∥∥ . unit normalize difference of means

8: for all i ∈ [n] do
9: x̃i = xi − µ̂yi . class centered data

10: end for
11: [û, d̂, v̂] =svds(x̃, k − 1) . compute top k singular vectors
12: A = [δ̂, û] . concatenate difference of the means and the top k right singular vectors
13: end function
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