Corticosteroid Therapy Is Associated With Improved Outcome in Critically Ill Patients With COVID-19 With Hyperinflammatory Phenotype

Hui Chen, MD; Jianfeng Xie, MD; Nan Su, MD; Jun Wang, MD; Qin Sun, PhD; Shusheng Li, MD; Jun Jin, MD; Jing Zhou, MD; Min Mo, MD; Yao Wei, MD; Yali Chao, MD; Weiwei Hu, MD; Bin Du, MD; and Haibo Qiu, MD

CHEST 2021; 159(5):1793-1802

Online supplements are not copyedited prior to posting and the author(s) take full responsibility for the accuracy of all data.

© 2021 AMERICAN COLLEGE OF CHEST PHYSICIANS. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details. **DOI**: 10.1016/j.chest.2020.11.050

e-Appendix 1.

e-Method

Marginal structural Cox models (MSCM)

Marginal structural cox models (MSCM) are a new class of causal models for the estimation, from observational data, of the causal effect of a time-dependent exposure in the presence of timedependent covariates that may be simultaneously confounders and intermediate variables. In our study, because corticosteroid therapy often was not started at the time of ICU admission, but rather during the course of the disease based on a change in the patient condition, so we used MSCM to provide the marginal causal relation between a time-varying exposure (Corticosteroid therapy) and a survival outcome (time to death), controlling for time-dependent variables (SPO₂/FiO₂ and model of ventilation) that are likely to influence the corticosteroid therapy initiation and at the same time are likely to be correlated with the risk of mortality. The parameters of MSCM could be estimated using inverse probability weighting (IPW) to correct both for confounding and for forms of selection bias such as informative censoring. By weighting each patient by IPW, two pseudo-populations are created, similar with regards to baseline and time-dependent confounding factors, and different in corticosteroid exposure. The MSCM allows a comparison of hazard functions for patients who had not received corticosteroids to those who had received corticosteroids. The partial likelihood function of Cox model was modified such that the contribution of patient i to the risk set was weighted by the stabilized inverse probability of treatment selection and censoring weights¹. The analytical pipeline of MSCM had three steps.

First, the treatment selection weights are calculated according to a ratio of two weights, the numerator is the product of probabilities that a patient receives his observed treatment at time k, given the baseline confounders (age, sex, days from the onset of symptom to hospital admission, SOFA score on Day 1, respiratory rate, hypertension, coronary heart disease, diabetes, chronic obstructive pulmonary disease, and the mode of ventilation on Day 1), the denominator is calculated similarly by incorporating also the time-dependent variables (SPO₂/FiO₂ and model of ventilation) as

well. The weights are updated until the first day of corticosteroid therapy and kept constant afterwards. Second, the censoring weights are calculated in the same approach. We have censored patients at day 28. Third, the overall stabilized weight for each observation is obtained by multiplying the treatment selection weights and the censoring weights, and a MSCM was fit using robust variance estimator, and time-dependent variables were included in the model². The ipw package (version 1.0–11) was employed for the MSCM analysis³.

References:

1. Karim ME, Gustafson P, Petkau J, et al.: Marginal structural Cox models for estimating the association between β -interferon exposure and disease progression in a multiple sclerosis cohort. Am J Epidemiol. 2014; 180:160–171.

2.Hernán MA, Brumback B, Robins JM: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000; 11:561–570

3.van der Wal WM, Geskus RB: ipw: An R Package for Inverse Probability Weighting. Journal of Statistical Software. 2011; 43:1–23

Statistical analyses

Subgroup analyses and sensitivity analyses

Several prespecified subgroup analyses were performed according to sex, age, comorbidity, SOFA score, SPO₂/FiO₂ and invasive mechanical ventilation use. Considering that the corticosteroid therapy effect may vary according to the dosage and the time of initiation, we conducted serial sensitivity analyses based on the following groups: patients who received a maximum daily doses of 40 mg (methylprednisolone-equivalent); patients who received a maximum daily doses of 80 mg (methylprednisolone-equivalent); patients who had corticosteroid therapy initiated within the first 4 days from hospital admission, each compared to patients who did not receive any corticosteroid therapy. We also compared corticosteroid therapy initiated after day 4 compared to patients who did not receive any corticosteroid therapy and were alive after day 4. To explore whether imputation of

missing data had an impact on the association observed in the MSCM, given that 91.4% of patients initialized corticosteroid therapy within 7 days when imputation was relatively limited, we compared patients who had corticosteroid therapy initiated within the first 7 days with patients in the no corticosteroid therapy group with imputation up to day 7 only.

Parsimonious model to predict phenotype

A biomarker-based parsimonious model was shown to have high accuracy in predicting phenotypes of ARDS. Based on the previous research, we attempt to construct a three variable model to predict phenotype of COVID-19, variables were chosen because they contributed most significantly to defining phenotypes using forward stepwise modeling. Receiver operator characteristics (ROC) and area under the curve (AUC) were calculated for the model. Subjects with missing data were excluded.

e-Table	1: Baseline	and time-o	lependent	variables ir	n marginal	structural	Cox model
			•				

Baseline variables	Time-dependent variables
Age	SPO ₂ /FiO ₂
Sex (Female)	Model of ventilation*
Days from onset of symptom to hospital admission	
SOFA score on Day 1	
Respiratory rate	
Hypertension	
Coronary heart disease	
Diabetes	
COPD	
Mode of ventilation on Day 1*	

*we coded the mode of ventilation as follows: 0=no ventilation, 1=non-invasive ventilation, 2=invasive ventilation, 3= advanced ventilation support (e.g. ECMO, oscillatory, prone) SOFA=Sequential Organ Failure Assessment; COPD=chronic obstructive pulmonary disease; SPO₂/FiO₂ ratio= ratio of pulse oxygen saturation to the fractional concentration of oxygen in inspired air.

e-Table 2. Percentage of missing data in the variables of interest

	Missing, n (%)
Age, years	1 (0.2%)
Sex (Female)	0 (0)
Days from onset of symptom to	0 (0)
Hospital admission, days	
Fever (temperature>37.3°C)	0 (0)
Dyspnea	0 (0)
SOFA score	0 (0)
Hypertension	0 (0)
Coronary heart disease	0 (0)
Chronic heart failure	0 (0)
Diabetes	0 (0)
COPD	0 (0)
Chronic renal diseases	0 (0)
Liver disease	0 (0)
Malignancy	0 (0)
Immunodeficiency	0 (0)
Temperature, °C	3 (0.7%)
Heart rate, beats per min	1 (0.2%)
Respiratory rate, breaths per min	2 (0.46%)
MAP, mmHg	1 (2.3%)
SPO ₂ /FiO ₂ ratio	25 (5.8%)
White blood cell count, $ imes 10^9$ per L	10 (2.3%)
Lymphocyte count, ×10 ⁹ per L	12 (2.8%)
Platelet count, ×10 ⁹ per L	28 (6.5%)
Haemoglobin, g/L	14 (3.3%)
Erythrocyte sedimentation rate, mm/h	117 (27.3%)
High-sensitive C-reactive protein, mg/L	23 (5.4%)
Procalcitonin, ng/mL	103 (24%)
Interleukin-1β, pg/ml	86 (20.1%)
Interleukin-2R, U/ml	83 (19.4%)
Interleukin-6, pg/ml	80 (18.7%)
Interleukin-8, pg/ml	83 (19.4%)
Interleukin-10, pg/ml	83 (19.4%)
TNF-a, pg/ml	83 (19.4%)
Antiviral treatment	0 (0)
Antibiotics	0 (0)
Intravenous immunoglobin	0 (0)
Neuromuscular blockade	0 (0)
High-flow nasal cannula oxygen therapy	0 (0)
Non-invasive mechanical ventilation	0 (0)
Invasive mechanical ventilation	0 (0)

Online supplements are not copyedited prior to posting and the author(s) take full responsibility for the accuracy of all data.

ECMO	0 (0)
Renal replacement therapy	0 (0)
Any vasopressor	0 (0)
ARDS	0 (0)
Septic shock	0 (0)
Coagulopathy	0 (0)
Acute kidney injury	0 (0)
Acute cardiac injury	0 (0)
28-day mortality	0 (0)
Hospital duration, days	0 (0)

SOFA=Sequential Organ Failure Assessment; COPD=chronic obstructive pulmonary disease; MAP= mean arterial pressure; SPO₂/FiO₂ ratio= ratio of pulse oxygen saturation to the fractional concentration of oxygen in inspired air; TNF-a= tumour necrosis factor-a; ECMO=extracorporeal membrane oxygenation; ARDS=acute respiratory distress syndrome.

e-Table 3. Additional baseline characteristics between corticosteroid group and no corticosteroid group

	No Corticosteroid	Corticosteroid	p value	SMD
PT, s	14.0 (13.3-15.0)	14.6 (13.7-16.0)	< 0.0001	0.029
APTT, s	40.3 (36.1-44.0)	40.7 (35.7-45.7)	0.80	0.067
D-dimer, µg/ml	0.9 (0.4-2.6)	1.8 (0.8-12.3)	< 0.0001	0.345
Fib, g/L	4.4 (3.6-5.7)	5.0 (4.0-6.0)	0.042	0.197
INR	1.1 (1.0-1.2)	1.1 (1.0-1.3)	< 0.0001	0.128
Hypersensitive troponin I,	3.3 (1.9-15.3)	13.6 (4.4-130.0)	<0.0001	0.249
pg/ml				
Myohemoglobin, ng/ml	46.1 (22.9-111.6)	128.2 (58.7-201.7)	< 0.0001	0.147
Creatine kinase-MB, U/L	1.0 (0.4-2.5)	2.2 (1.0-6.0)	0.00060	0.030
ALT, IU/L	21.0 (14.0-36.0)	29.0 (17.0-46.0)	0.00040	0.062
AST, IU/L	26.0 (20.0-39.0)	38.0 (24.0-57.0)	<0.0001	0.039
Albumin, g/L	35.6 (31.0-38.6)	32.5 (29.5-35.9)	<0.0001	0.251
Total bilirubin, µmol/L	8.6 (6.3-12.5)	11.0 (7.8-16.7)	0.00010	0.003
Creatinine, µmol/L	65.5 (53.0-89.0)	77.0 (61.5-96.5)	0.0025	0.067
Urea nitrogen, mmol/L	4.7 (3.4-7.1)	6.1 (4.3-9.5)	0.00020	0.011
Creatine kinase, U/L	76.0 (41.5-188.3)	129.0 (68.0-291.0)	0.027	0.008
Lactate dehydrogenase, U/	244.5 (194.3-319.	427.5 (302.0-568.0)	<0.0001	0.794
L	3)			
eGFR, ml/min	93.6 (75.8-109.20)	82.1 (66.9-96.8)	<0.0001	0.373
Sodium, mmol/L	140.4 (137.8-142.	138.5 (135.8-142.0)	0.0017	0.203
	8)			
Potassium, mmol/L	4.2 (3.9-4.5)	4.3 (3.8-4.7)	0.81	0.038
Chlorine, mmol/L	102.2 (100.2-104.	100.4 (97.2-103.4)	< 0.0001	0.295
	5)			
Glucose, mmol/L	6.0 (5.1-7.2)	7.7 (6.2-10.3)	< 0.0001	0.432

PT=Prothrombin time; APTT=Activated partial thromboplastin time; Fib= Fibrinogen; INR= International Normalized Ratio; ALT=Alanine transaminase; AST= Aspartate transaminase; eGFR= glomerular filtration rate.

e-Table 4. Multivariate Cox proportional-hazards regression model assessing the impact
of corticosteroid therapy on 28-day mortality in patients with COVID-19.

	HR	Lower.95	Upper.95	p value
Corticosteroid therapy	1.97	1.25	3.11	0.0034
Age	1.02	1.00	1.04	0.0018
Sex (Female)	0.66	0.48	0.91	0.011
Days from onset of symptom to hospital	1.01	0.99	1.03	0.25
admission				
SOFA score on Day 1	1.46	1.37	1.55	<0.0001
Respiratory rate	0.98	0.96	1.00	0.19
Hypertension	0.95	0.67	1.33	0.77
Coronary heart disease	1.02	0.64	1.63	0.93
Diabetes	1.37	0.93	2.02	0.11
COPD	2.18	1.21	3.91	0.0092
Mode of ventilation on Day 1 (0)*	Reference	—	—	Reference
Mode of ventilation on Day 1 (1)	1.42	0.98	2.04	0.062
Mode of ventilation on Day 1 (2)	1.93	1.03	3.62	0.041
Mode of ventilation on Day 1 (3)	0.61	0.14	2.67	0.51

*we coded the mode of ventilation as follows: 0=no ventilation, 1=non-invasive ventilation, 2=invasive ventilation, 3= advanced ventilation support (e.g. ECMO, oscillatory, prone) SOFA=Sequential Organ Failure Assessment; COPD=chronic obstructive pulmonary disease.

e-Table 5. Univariate and multivariate models assessing impact of variables on classification of phenotypes.

_	Univariate r	nodels	Multivariate models		
Variables	Odds Ratio	D volue	Odds Ratio	Divoluo	
	(95% CI)	P value	(95% CI)	P value	
TNF-a	1.18 (1.12-1.24)	< 0.001	1.16 (1.08-1.24)	< 0.001	
D-dimer	1.61 (1.40-1.86)	< 0.001	1.32 (1.16-1.49)	< 0.001	
NLR	1.42 (1.32-1.53)	<0.001	1.30 (1.21-1.40)	<0.001	

TNF-a= tumour necrosis factor-a; NLR= neutrophil to lymphocyte ratio.

e-Table 6. Association between corticosteroids therapy and 28-day mortality in patients with COVID-19 using various adjustment methodologies.

Variables	Cox proportional hazard			Marginal structural		
	model			modeling		
	Number	HR (95%	p value	Number	HR (95%	р
	of	CI)		of	CI)	value
	patients			patients		
Patients treated with 40 mg	275	2.85	< 0.001	275	1.00	0.98
(maximum daily dosage) vs		(1.68-			(0.56-	
not treated with corticosteroids		4.85)			1.80)	
(ref)						
Patients treated with 80 mg	262	1.33	0.31	262	0.87	0.62
(maximum daily dosage) vs		(0.76-			(0.49-	
not treated with corticosteroids		2.33)			1.54)	
(ref)						
Patients treated for $<= 4$ days	375	2.05	0.0018	375	0.78	0.071
vs not treated with		(1.30-			(0.44-	
corticosteroids (ref)		3.22)			1.03)	
Patients treated for >4 days vs	198	1.14	0.75	198	1.97	0.082
not treated with corticosteroids		(0.50-			(0.92-	
and who survived >4 days		2.60)			4.22)	
(ref)						
HR= hazard ratio						

e-Table 7. Clinical characteristics and outcomes between hypoinflammatory and hyperinflammatory phenotype

	Hypoinflammatory	hyperinflammatory	p value	SMD
		phenotype		
	phenotype			
Ν	223	205		
Age, years	58.0 (48.0-68.0)	68.0 (59.0-75.0)	< 0.0001	0.644
Sex (Female)	114 (51.4%)	87 (42.4%)	0.081	0.179
Days from onset of symptom to	11.0 (8.0-16.0)	12.0 (8.0-16.0)	0.41	0.043
Hospital admission, days				
Fever (temperature>37.3°C)	192 (86.1%)	184 (89.8%)	0.31	0.112
Dyspnea	129 (57.8%)	139 (67.8%)	0.043	0.207
SOFA score	2.0 (1.0-3.0)	7.0 (4.0-9.0)	< 0.0001	1.599
Comorbidity				
Hypertension	78 (35.0%)	98 (48.0%)	0.0083	0.267
Coronary heart disease	18 (8.1%)	30 (14.7%)	0.046	0.209
Chronic heart failure	4 (1.8%)	16 (7.8%)	0.0064	0.285
Diabetes	33 (14.8%)	48 (23.6%)	0.028	0.226
COPD	8 (3.6%)	12 (5.9%)	0.37	0.108
Chronic renal diseases	1 (0.4%)	3 (1.5%)	0.35	0.105
Liver disease	2 (0.9%)	8 (3.9%)	0.053	0.198
Malignancy	8 (3.6%)	5 (2.5%)	0.69	0.066
Immunodeficiency	3 (1.3%)	3 (1.5%)	1.0	0.011
Temperature, °C	36.8 (36.5-37.5)	36.9 (36.5-38.0)	0.25	0.110
Heart rate, beats per min	89.0 (80.0-102.0)	93.0 (81.0-108.0)	0.016	0.304
Respiratory rate, breaths per min	20.0 (20.0-22.0)	23.0 (20.0-30.0)	< 0.0001	0.515
MAP, mmHg	96.7 (90.7-105.0)	98.5 (87.9-105.7)	0.60	0.050
SPO ₂ /FiO ₂ ratio	297.0 (154.0-274.	167 (122.0-230.0)	< 0.0001	1.517
	5)			
White blood cell count, $ imes 10^9$ per L	5.1 (3.9-6.4)	9.8 (7.4-13.3)	< 0.0001	1.391
Lymphocyte count, ×10 ⁹ per L	1.0 (0.7-1.5)	0.6 (0.4-0.8)	< 0.0001	0.906
NLR	3.2 (1.9-5.1)	14.9 (8.6-25.5)	< 0.0001	1.131
Platelet count, $ imes 10^9$ per L	209.0 (154.0-274.	167.0 (122.0-230.0)	< 0.0001	0.455
	5)			
Haemoglobin, g/L	126.0 (114.5-137.	128.0 (113.5-143.0)	0.12	0.145
	0)			
High-sensitive C-reactive protein,	23.6 (5.3-57.5)	92.1 (55.9-142.7)	< 0.0001	0.193
mg/L				
Interleukin-1β, pg/ml	5.0 (5.0-5.0)	5.0 (5.0-5.0)	0.23	0.141
Interleukin-2R, U/ml	587.0 (404.5-829.	1128.0 (830.0-1530.	< 0.0001	1.028
	5)	0)		
Interleukin-6, pg/ml	5.8 (1.7-19.4)	64.9 (30.8-138.7)	< 0.0001	0.444
Interleukin-8, pg/ml	10.1 (5.9-17.7)	30.3 (18.1-68.3)	< 0.0001	0.361
Interleukin-10, pg/ml	5.0 (5.0-6.6)	8.9 (5.2-15.0)	< 0.0001	0.250
TNF-a, pg/ml	7.4 (5.5-9.6)	11.5 (8.4-17.5)	< 0.0001	0.547
D-dimer, µg/ml	0.7 (0.4-21.3)	6.1 (1.8-21.0)	< 0.0001	1.201
Corticosteroid therapy	111 (49.7%)	169 (82.4%)	< 0.0001	1.292

Online supplements are not copyedited prior to posting and the author(s) take full responsibility for the accuracy of all data.

Treatments				
Antiviral treatment	196 (87.9%)	154 (75.1%)	0.0011	0.333
Antibiotics	158 (70.9%)	191 (93.2%)	<0.0001	0.607
Intravenous immunoglobin	79 (35.4%)	141 (68.8%)	<0.0001	0.708
Neuromuscular blockade	12 (5.4%)	36 (17.6%)	0.00012	0.389
High-flow nasal cannula oxygen	16 (7.2%)	47 (22.9%)	<0.0001	0.452
therapy				
Non-invasive mechanical ventilation	24 (10.8%)	91 (44.4%)	<0.0001	0.812
Invasive mechanical ventilation	30 (13.5%)	130 (63.4%)	<0.0001	1.197
ECMO	4 (1.8%)	18 (8.8%)	0.0023	0.316
Renal replacement therapy	9 (4.0%)	35 (17.1%)	<0.0001	0.434
Any vasopressor	24 (10.8%)	131 (63.9%)	<0.0001	1.315
Outcomes				
ARDS	46 (20.6%)	168 (82.0%)	<0.0001	1.554
Septic shock	29 (10.8%)	131 (63.9%)	<0.0001	1.315
Coagulopathy	12 (5.4%)	84 (41.0%)	<0.0001	0.930
Acute kidney injury	23 (10.3%)	106 (51.7%)	<0.0001	1.001
Acute cardiac injury	32 (14.3%)	133 (64.9%)	<0.0001	1.207
28-day mortality	34 (15.2%)	146 (71.2%)	<0.0001	1.369

SOFA=Sequential Organ Failure Assessment; COPD=chronic obstructive pulmonary disease; MAP= mean arterial pressure; SPO₂/FiO₂ ratio= ratio of pulse oxygen saturation to the fractional concentration of oxygen in inspired air; NLR= neutrophil to lymphocyte ratio; TNF-a= tumour necrosis factor-a; PT=Prothrombin time; APTT=Activated partial thromboplastin time; Fib= Fibrinogen; INR= International Normalized Ratio; ALT=Alanine transaminase; AST= Aspartate transaminase; eGFR= glomerular filtration rate; ECMO=extracorporeal membrane oxygenation; ARDS=acute respiratory distress syndrome.

	Number of	HR	Lower.95	Upper.95	p value
	patients				
Overall population	428	0.80	0.54	1.18	0.26
Hypoinflammatory phenotype	223	1.15	0.45	2.94	0.76
hyperinflammatory phenotype	205	0.51	0.34	0.78	0.0018

HR= hazard ratio

e-Table 9. Subgroup analyses of the association between corticosteroid therapy and 28-day mortality in hyperinflammatory phenotype using MSCM

	Number of	HR	Lower.95	Upper.95	p value
	patients				
Invasive Mechanical ventilation					
Yes	130	0.51	0.30	0.84	0.006
No	75	0.45	0.21	0.97	0.042
SPO ₂ /FiO ₂ ratio					
≤150	114	0.30	0.13	0.68	0.004
>150	91	0.55	0.32	0.94	0.028

HR= hazard ratio; SOFA=Sequential Organ Failure Assessment; SPO₂/FiO₂ ratio= ratio of pulse oxygen saturation to the fractional concentration of oxygen in inspired air.

e-Table 10: The association between corticosteroid therapy and 28-day mortality in groups based on the cutoff value of TNF-a, D-dimer and NLR

	Number of	HR	Lower.95	Upper.95	p value
	patients				
TNF-a					
>10.1	170	0.64	0.35	1.21	0.17
≤10.1	258	1.00	0.58	1.72	0.99
D-dimer					
>2.0	180	0.58	0.34	0.98	0.042
≤2.0	248	1.07	0.55	2.06	0.84
NLR					
>6.9	212	0.55	0.34	0.89	0.015
≤6.9	216	1.22	0.59	2.52	0.59

HR= hazard ratio; NLR= neutrophil to lymphocyte ratio; TNF-a= tumour necrosis factor-a;

e- Figure 1: Causal diagram of corticosteroids therapy with 28-day mortality in marginal structural Cox model. Hypothetical relationship in the treatment of corticosteroids with 3 time points (days): j=1, 2, 3. Here Treatment_j means binary corticosteroids exposure variable that is measured immediately after the time-dependent confounders SPO₂/FiO₂ j and model of ventilation j. The time-dependent confounder SPO₂/FiO₂ j and model of ventilation j. The time-dependent confounder SPO₂/FiO₂ j and model of ventilation 1 imposes confounding on the Treatment₁- 28day-mortality relationship, and SPO₂/FiO₂ 2 and model of ventilation 2 is an intermediate variable for the same relationship, since the prior corticosteroids therapy may improve SPO₂/FiO₂ or change the model of ventilation, which may improve the final mortality outcome.

e-Figure 2. Weights distribution plot for the inverse probability weights that were used to adjust for confounding in overall group (A), patients with hypoinflammatory phenotype (B) and patients with hyperinflammatory phenotype (C).

e-Figure 3. Estimating the optimal number of clusters using calinsky criterion (A), gap statistics (B) and average silhouette method (C).

e-Figure 4. Difference in key variable between the hyperinflammatory and hypoinflammatory phenotypes. Figure shows the differences in High-sensitive C-reactive protein (A), White blood cell count (B), Interleukin-2R (C), Interleukin-6 (D), Interleukin-8 (E), Interleukin-10 (F), Tumour Necrosis Factor-a (G), D-dimer (H), and Neutrophil to Lymphocyte ratio (I). Differences between phenotypes were significant for all key variables.

e-Figure 5. Receiver operating characteristic curves of the three-variable model.

201933