Bayesian belief network modelling of household food security in rural South Africa - supplementary material.

4	R W Eyre
5	T House
6	F X Gómez-Olivé
7	F E Griffiths

⁸ Contents

9	1	Variable Selection Literature Search	1
10	2	Further results for simulations of established food security inter-	
11		ventions	10
12	3	Further results for interventional inferences	12

¹³ 1 Variable Selection Literature Search

This section details the relationships found within the literature that informed the
construction of the Agincourt food security Bayesian belief networks.

 $_{16}$ $\,$ Household food security in the Agincourt study area was found in the literature to be

¹⁷ influenced by whether households participate in subsistence or commercial farming,

forage for food from the local environment, receive aid from the community, or 18 receive government child welfare grants; as well as on their socio-economic status, 19 how well educated the household members are, what the gender of the household 20 head is, how many individuals in the household are too young or old to work, and how 21 many working age adults live in the household (defined as aged 15-59 as individuals 22 make their greatest economic contribution to the household from the age of 15 [1], 23 and the age at which individuals in South Africa can claim an older persons grant 24 is 60 [2] [1, 3-9]. Whether a household forages for food from the environment was 25 found to be influenced by the numbers of individuals in the household too young 26 or old to work, as well as the number at working age [10], and is obviously also 27 affected by the level of local vegetation in the local area. Whether a household is 28 likely to receive communal aid (e.g. food or money) was found to be influenced by 29 their socio-economic status, the gender of their household head, and whether the 30 household contains refugees (i.e. individuals not defined in the dataset as South 31 African nationals, usually due to being Mozambican refugees) [7,11]. Households 32 selling crops and livestock is obviously influenced by whether they grow or rear 33 them in the first place. Whether households claim child support grants was found 34 to be influenced by how well employed the household members are and their socio-35 economic status (which is unsurprising as the grant is means tested [12]), as well as 36 their refugee status and obviously by whether the household has any children [6,7,13]. 37 Whether the household grows crops and livestock was found to be influenced by 38 their socio-economic status, how good their access to water is, and whether they 39 have enough household members to perform the farming [3, 6]. Household socio-40 economic status was found to be influenced by the household levels of employment 41 and education, as well as their refugee status and the gender of their household 42 head [6]. 43

These relationships gave us a causal ordering of the different household variables, as shown by the breaking up into levels of the variables in Tables 1 to 9. The variables of each level can only be caused by a variable in a higher numbered level, and can only cause those in a lower numbered level, according to this ordering. For example, water access in level 5 (Table 5) is possibly a cause of variables such as use of ⁴⁹ crops and livestock, use of wild foods, and food security itself which are all in lower ⁵⁰ numbered levels, but is disallowed from causing variables such as socio-economic ⁵¹ status, refugee status, or education level which are in higher numbered levels. This ⁵² ordering was important when attempting to ensure a causal structure when eliciting ⁵³ the network structure from experts.

Variable	Definition	States	Data source
Food	Whether the	0 - had enough to	NotEatYear variable
insecure	household has	eat.	in the Agincourt
	or has not had	1 - did not have	Food Security
	enough to eat	enough to eat.	module.
	over the		
	previous year.		

Table 1: Agincourt food security belief network variables on level 1 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source.

Variable	Definition	States	Data source
Use of wild	Whether the	0 - do not use wild	Sum of the
foods	household uses	foods.	SupGather and
	wild foods.	1 - gather wild	SupGatherHerbs
		foods OR wild	variables from the
		herbs.	Agincourt Food
		2 - gather wild	Security module.
		foods AND wild	
		herbs.	
Receipt of	Whether the	0 - receive no aid.	SupDonate variable
communal	household gets	1 - receive aid.	from the Agincourt
aid	financial aids		Food Security
	from friends,		module.
	neighbours, or		
	family.		

Table 2: Agincourt food security belief network variables on level 2 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source.

Variable	Definition	States	Data source
Local	Amount of	1 - up to 0.161.	Sum of the average
vegetation	vegetation that	2 - 0.161 - 0.302.	NDVI values from
level	grows in the	3 - 0.302-0.443.	the MODIS Terra
	local area of the	4 - 0.443-0.584.	satellite data in a
	household.	5 - 0.584-0.725.	$2000 \mathrm{km}$ by $2000 \mathrm{km}$
		6 - greater than	area around the
		0.725.	household divided
			by the number of
			households in that
			area.
Selling of	Whether the	0 - sell no crops or	Sum of the
crops and	household sells	livestock.	SupSellGoods and
livestock	crops or	1 - sell crops or	SupSellStock
	livestock to	livestock.	variables from the
	supplement		Agincourt Food
	their income.		Security module.
Child grant	Number of child	State is equal to	Count of grants
status	grants the	number of grants	received using the
	household	received that year.	ReceivedYear
	receives.		variable from the
			Agincourt Child
			Grant module.

Table 3: Agincourt food security belief network variables on level 3 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source. Value intervals are inclusive of the upper values.

Variable	Definition	States	Data source
Number of	Number of	1 - up to 9.5.	Count of household
dependents	household	2 - 9.5-19.0.	members
	members aged	3 - 19.0-28.5.	(membership
	less than 15 or	4 - 28.5-38.0.	counted at midyear)
	greater than 59.	5 - 38.0-47.5.	with the appropriate
		6 - greater than	age (calculated at
		47.5.	midyear) in the
			Agincourt dataset.
Use of crops	Whether the	0-7+.	Sum of the
and	household grows		MaizePlot,
livestock	its own crops or		MaizeField,
	keeps its own		OtherCropsPlot,
	livestock.		and
			OtherCropsField
			variables from the
			Agincourt Food
			Security module
			with the Cattle,
			Goats, Poultry, and
			Pigs variables from
			the Agincourt Asset
			Status module.

Table 4: Agincourt food security belief network variables on level 4 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source. Value intervals are inclusive of the upper values.

Variable	Definition	States	Data source
Water	Availability,	1 - up to 10.5.	Product of the
access	stability, and	2 - 10.5-16.0.	WaterDistMetre,
	quality of the	3 - 16.0-21.5.	WaterAvail, and
	water supply to	4 - 21.5-27.0.	WaterSup variables
	the household.	5 - 27.0-32.5.	from the Agincourt
		6 - 32.5-38.0.	Asset Status
		7 - 38.0-43.5.	module.
		8 - greater than	
		43.5.	

Table 5: Agincourt food security belief network variables on level 5 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source. Value intervals are inclusive of the upper values.

Variable	Definition	States	Data source
Socio-	Socio-economic	1 - up to 1.262.	SESAbsolute
economic	status of the	2 - 1.262-1.648.	variable from the
status	household.	3 - 1.648-2.033.	Agincourt SES
		4 - 2.033-2.419.	index module.
		5 - 2.419-2.804.	
		6 - 2.804-3.190.	
		7 - 3.190-3.575.	
		8 - greater than	
		3.575.	

Table 6: Agincourt food security belief network variables on level 6 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source. Value intervals are inclusive of the upper values.

Variable	Definition	States	Data source
Employment	Number of	0-6+ employed	Count of household
level	household	household mem-	members
	members with	bers.	(membership)
	current		counted at midyear)
	employment.		who replied yes to
			the
			CurrentlyWorking
			variable in the
			Agincourt Labour
			Status module.
Household	Gender of the	0 - male.	Household head
head gender	head of the	1 - female.	gender as specified
	household.		in the Agincourt
			dataset.
Refugee	Whether any	0 - no refugee	Refugee variable
status	household	members.	from the Agincourt
	members are	1 - one or more	dataset.
	refugees or	refugee members.	
	non-South		
	African		
	nationals.		

Table 7: Level Agincourt food security belief network variables on level 7 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source.

Variable	Definition	States	Data source
Number of	Number of	1 - up to 13.29.	Count of household
working age	household	2 - 13.29-26.57.	members
adults	members aged	3 - 26.57-39.86.	(membership
	15 to 59.	4 - 39.86-53.14.	counted at midyear)
		5 - 53.14-66.43.	with appropriate age
		6 - 66.43-79.71.	(calculated at
		7 - greater than	midyear) from the
		79.71.	Agincourt dataset.

Table 8: Agincourt food security belief network variables on level 8 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source. Value intervals are inclusive of the upper values.

Variable	Definition	States	Data source
Education	Average years of	1 - up to 3.	Average of the
level	completed	2 - 3-6.	EducationInYears
	education by	3 - 6-9.	variable from the
	the household	4 - 9-12.	Agincourt
	members.	5 - greater than 12.	Education module
			for household
			members
			(membership
			counted at midyear)
			for that year.

Table 9: Agincourt food security belief network variables on level 9 of the causal ordering. The data source specifies how the variable is calculated from the data, and the states specify how the discrete variable states relate to the values resulted from the calculations described in the data source. Value intervals are inclusive of the upper values.

Further results for simulations of established food security interventions

Figures 1 to 4 show further results for the simulations performed to test the three
different network structures on their ability to capture established interventions from
the literature.

Figure 1: Simulations of setting the state of 'use of crops and livestock' (UCL) in order to alter the probability of a household being food secure (FS = 0) on the different possible Agincourt food security belief networks. a - expert elicited structure. b - data-learned structure. c - data-learned structure with the expert network as a prior.

Figure 2: Simulations of setting the state of 'child grant status' (CGS) in order to alter the probability of a household being food secure (FS = 0) on the different possible Agincourt food security belief networks. a - expert elicited structure. b - data-learned structure. c - data-learned structure with the expert network as a prior.

Figure 3: Simulations of setting the state of 'selling of crops and livestock' (SCL) in order to alter the probability of a household being food secure (FS = 0) on the different possible Agincourt food security belief networks. a - expert elicited structure. b - data-learned structure. c - data-learned structure with the expert network as a prior.

Figure 4: Simulations of setting the state of 'water access' (WA) in order to alter the probability of a household being food secure (FS = 0) on the different possible Agincourt food security belief networks. a - expert elicited structure. b - datalearned structure. c - data-learned structure with the expert network as a prior.

⁵⁹ 3 Further results for interventional inferences

Figures 5 and 6 show further results for the interventional inferences performed on
the three different network structures to demonstrate applications of the models.

Figure 5: Interventional inference on the impact of 'receipt of communal aid' (RCA) on the probability of being food secure (Pr(FS = 0)). a - expert elicited network. b - data-learned network. c - data-learned network with the expert network as a prior. Depending on the network, child grants have either a negative impact or none at all on food security.

Figure 6: Interventional inference on the impact of 'level of local vegetation' (LLV) on the probability of being food secure (Pr(FS = 0)). a - expert elicited network. b - data-learned network. c - data-learned network with the expert network as a prior. Depending on the network, local vegetation has either a negative impact or none at all on food security.

62 References

- [1] Twine W, Hunter LM. Adult mortality and household food security in rural
 South Africa: Does AIDS represent a unique mortality shock? Development
 Southern Africa. 2011;28(4):431-444.
- [2] South African Social Security Agency. Grants for Older Persons; 2017.
 Accessed: 27 October 2017. http://www.sassa.gov.za/index.php/
 social-grants/grants-for-older-persons.
- [3] Hunter LM, Twine W, Patterson L. "Locusts are now our beef": Adult mortality and household dietary use of local environmental resources in rural South
 Africa. Scandinavian Journal of Public Health. 2007;35(69_suppl):165–174.
- [4] Kirkland TM, Kemp RJ, Hunter LM, Twine WM. Toward improved understanding of food security: a methodological examination based in rural South
 Africa. Food, Culture & Society. 2013;16(1):65-84.
- [5] Nawrotzki RJ, Robson K, Gutilla MJ, Hunter LM, Twine W, Norlund P. Exploring the impact of the 2008 global food crisis on food security among vulnerable households in rural South Africa. Food security. 2014;6(2):283–297.
- [6] Pereira LM, Cuneo CN, Twine WC. Food and cash: understanding the role
 of the retail sector in rural food security in South Africa. Food security.
 2014;6(3):339–357.
- [7] Kaschula S. Using people to cope with the hunger: social networks and food
 transfers amongst HIV/AIDS afflicted households in KwaZulu-Natal, South
 Africa. AIDS and Behavior. 2011;15(7):1490.
- [8] Lemke S, Vorster HH, van Rensburg NJ, Ziche J. Empowered women, social
 networks and the contribution of qualitative research: broadening our understanding of underlying causes for food and nutrition insecurity. Public Health
 Nutrition. 2003;6(8):759-764.

- [9] Sedibe HM, Kahn K, Edin K, Gitau T, Ivarsson A, Norris SA. Qualitative study
 exploring healthy eating practices and physical activity among adolescent girls
 in rural South Africa. BMC Pediatrics. 2014;14(1):211.
- ⁹¹ [10] Dovie DB, Shackleton CM, Witkowski E. Conceptualizing the human use of
 ⁹² wild edible herbs for conservation in South African communal areas. Journal
 ⁹³ of Environmental Management. 2007;84(2):146–156.
- [11] Pronyk PM, Harpham T, Busza J, Phetla G, Morison LA, Hargreaves JR, et al.
 Can social capital be intentionally generated? A randomized trial from rural
 South Africa. Social Science & Medicine. 2008;67(10):1559–1570.
- ⁹⁷ [12] South African Social Security Agency. Child Support Grant; 2017. Accessed:
 ⁹⁸ 27 October 2017. http://www.sassa.gov.za/index.php/social-grants/
 ⁹⁹ child-support-grant.
- [13] Twine R, Collinson MA, Polzer TJ, Kahn K. Evaluating access to a child oriented poverty alleviation intervention in rural South Africa. Scand J Pub
 Health. 2007;35(69_suppl):118–127.