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Figure S1. (a) Compound 1 binds NSD2-PWWP1 with a Kd of 41 ± 8 µM in SPR experiments conducted 
in triplicate. SPR-sensorgram (upper pane) for the interaction of 1 with NSD2-PWWP1 domain. Multi-
cycle kinetics was used with concentrations from 2 µM to 250 µM (dilution factor of 0.5 was used to yield 
8 concentrations). 90 s contact time and 120 s dissociation time at 100 µL/min were used. The steady state 
values were determined and plotted as a function of the concentration (lower pane). A single binding site 
model was fitted to the data to calculate Kd. (b) ITC results showing raw data after integration baseline 
correction (upper pane) and integrated data and regression (lower pane). n is the number of molecules per 
binding site, Kd is the association constant, ΔH is the change in enthalpy, and ΔS is the change in entropy.

Table S2. Thermal shift in differential static light scattering (DSLS) induced by 1 against seven PWWP 
domains.

Protein Tagg at 400 
µM (ºC)

BRPF1-PWWP -0.5
DNMT3b-PWWP -1.2

MSH6-PWWP -1.4
NSD2-PWWP1 3.9
NSD3-PWWP1 -0.3

ZMYND11-PWWP -1.2
ZCWPW1-PWWP -1.4

Characterization of Compound 1
The original sample was obtained from Enamine (Catalog Number Z1483746373) and assumed to be a 
racemic mixture. Attempted separation of all 4 diastereoisomers by chiral SFC resulted in only two 



peaks in the SFC chromatogram. Peaks showed identical NMR spectra but exhibited equal and opposite 
optical rotations. These must be enantiomers and thus the original sample must have been made by a 
diasteroselective route (Figure S2).
 

Figure S2. Separation of enantiomers from original sample by chiral SFC.

A search of the literature found a paper describing this diastereoselective synthesis from a substituted 
boronic acid and cyclic amine (Nanda K. K. and Trotter B. W. Tet. Lett. (2005) 2025-28). In an effort 
to determine the activity of the other diasteroisomers, a non-diastereoselective route was developed 
involving azetidine displacement of an a-bromoester (Figure S3).

Figure S3. Synthesis from (R)-azetidine gave two diastereoisomers. Similar results were obtained 
starting from (S)-azetidine to give the (S,S) and (S,R) diastereoisomers.

In this case, all four isomers were detected by chiral SFC, however, the diastereoisomers not found in 
the original material were inactive. The assignment of stereochemistry was based on the 
diastereoselective product in the original paper which was confirmed by X-ray crystallography (Figure 
S4).



Figure S4. Chiral preparative SFC separation of diastereoisomers. A) Reaction products from (S)-
azetidine gave peaks at 3.1 and 4.9 mins. B) Products from (R)-azetidine gave peaks at 2.6 and 4.1 mins. 
The original enantiomers correspond to the peaks at 4.1 and 4.9 mins. Lower panels indicate the 
analytical chiral SFC analysis of collected peaks.
.

Experimental Procedures and Characterization data

Separation of commercial material
The commercially available material (30 mg; Enamine Z1483746373) was separated by chiral SFC using 
an IA column (2 x 25 cm) using 30% MeOH/CO2 as eluant at a flowrate of 60 mL.min-1 and 100 bar 
pressure. Detection by UV at 220 nm. Injection volume was 1.5 mL of 3 mg.mL-1 in MeOH. Analytical 
chiral SFC (Fig. 1) used IA column (0.46 x 25 cm) with 40% MeOH/CO2 as eluant at a flowrate of 3 mL.min-1 
and 100 bar pressure. Detection by UV at 220 nm.
2R-(2-(4-chlorophenyl)azetidin-1-yl)-2S-(4-cyanophenyl)acetamide (13 mg). []d

23 +35.5° (c=0.205; 
MeOH). 1H NMR (500 MHz, DMSO) δ 7.81 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.4 Hz, 
2H), 7.36 (d, J = 8.4 Hz, 2H), 7.21 (s, 1H), 6.90 (s, 1H), 4.27 (t, J = 8.1 Hz, 1H), 4.07 (s, 1H), 3.11 (t, J = 6.5 
Hz, 1H), 2.73 (dd, J = 16.1, 8.0 Hz, 1H), 2.27 (q, J = 8.0 Hz, 1H), 1.95 (p, J = 9.0 Hz, 1H).
2S-(2-(4-chlorophenyl)azetidin-1-yl)-2R-(4-cyanophenyl)acetamide (12 mg). []d

23 -29.7° (c=0.337; 
MeOH). 1H NMR (500 MHz, DMSO) δ 7.81 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.3 Hz, 
2H), 7.36 (d, J = 8.3 Hz, 2H), 7.21 (s, 1H), 6.90 (s, 1H), 4.27 (t, J = 8.1 Hz, 1H), 4.07 (s, 1H), 3.11 (t, J = 6.5 
Hz, 1H), 2.73 (dd, J = 16.1, 8.0 Hz, 1H), 2.27 (q, J = 8.0 Hz, 1H), 1.95 (p, J = 9.0 Hz, 1H).



Figure S5: compound 3f binds wild-type NSD2-PWWP1 but not Y233A or F266A mutants in SPR 
experiments
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Figure S6. Compound 3f binds NSD2-PWWP1 with a Kd of 3.42 ± 0.45 µM in a SPR experiments 
conducted in triplicate with 0.5% DMSO concentration. Biotinylated NSD2-PWWP1 domain (208- 
368) was immobilized on the flow cell of an SA sensor chip in 1x HBS-EP buffer, yielding 5000 RU. 
The biotinylated RBBP5 (2-538) was immobilized on another flow cell of SA chip, yielding 4300 
RU as a negative control.  Using the same buffer with 0.5% DMSO and single cycle kinetics with 60 
s contact time and a dissociation time of 120s at a flow rate of 75 µL/min. The compound was 
tested at 50 µM as the highest concentration and dilution factor of 0.25 was used to yield 5 
concentrations. 

Table S3. Crystallography data and refinement statistics

NSD2 + 3f
  PDB Code  6UE6

Data collection
Space group P212121



Cell dimensions
a, b, c (Å) 69.2, 70.3, 228.8

        () 90.0,90.0,90.0

Resolution (Å) 
(highest resolution 
shell)

49.33-2.40(2.49-2.40)

Measured reflections 287140

Unique reflections 44525

Rmerge 8.4(0.997)
I/I 14.0(1.9)
Completeness(%) 99.7(97.5)
Redundancy 6.4(5.2)
Refinement
Resolution (Å) 45.3-2.40
No. reflections (test 
set)

44447(2275)

Rwork/ Rfree (%) 23.6/25.2
No. atoms

Protein 7136
Compound 160

B-factors (Å2)
Protein 61.4
Compound 47.5

RMSD
Bond lengths (Å) 0.010
Bond angles (º) 0.99

Ramachandran plot % 
residues

Favored 99.5
Additional allowed 0.5
Generously allowed 0
Disallowed 0

Figure S7: One sigma electron density unambiguously defines the ligand binding pose



Figure S8. A computational model indicates steric clashes with the isopropyl of compound 3c. The 
cyclopropyl of 3f was replaced with an isopropyl in ICM (Molsoft, San Diego). The isopropyl methyl 
groups are more distant resulting in increased bulk (the isopropyl geometry is absolutely similar to the 
one found in ligand bk1, PDB code 3I7B). The energy of the modified flexible ligand was locally 
minimized in the internal coordinate space, while conserved atoms were tethered to their original position 
(with a tether weight tzWeight=200). The Van der Waals energy of the bound ligand was calculated in 
ICM (force-field: protein: ECEPP/3, ligand: mmff).

Figure S9. (a) Comparison between the apo (PBD ID: 5VC8, magenta) and bound (green) conformation 
of the NSD2-PWWP1. The loop residues G268, D269, A270, and P271 connecting the β3 and β4 strands 



display different conformations in the two structures. (b) In the apo structure the residues E272 and Y233 
are closing the pocket. (c) When the ligand binds these residues move away opening the pocket.



1H NMR Spectra

N-isopropyl-4-fluorobenzylamine
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Compound 3c
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Compound 3d
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Compound purity: analytical spectra
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