Supplementary information Shintomi and Hirano

Supplementary information for

## Guiding functions of the C-terminal domain of topoisomerase IIa advance mitotic chromosome assembly

Keishi Shintomi and Tatsuya Hirano

**This PDF includes:** Supplementary Figures 1-3 Supplementary Table 1



Supplementary Fig 1. Titration of recombinant *Xenopus* topo II $\alpha$  in the mitotic chromatid reconstitution assay. **a**, **b**. Chromatid reconstitution assays were performed using increasing concentrations of *Xenopus* topo II $\alpha$  and fixed concentrations of the other five proteins (condensin I, a truncation version of histone H2A.XF-H2B dimer, Npm2, Nap1, and FACT). After a 150-min incubation, the resultant structures were fixed and immunolabeled with antibodies against topo II $\alpha$  and CAP-G. DNA was counterstained with DAPI (**a**). Quantitative analyses of the signal intensities were carried out as in Fig. 1. The mean  $\pm$  s.d. is shown (*n*=9 clusters of chromatin). *P* values were assessed by two-tailed Welch's *t*-test (ns, not significant) (**b**). Bar, 5 µm.



Supplementary Fig 2. Topo IIα-ΔCTD is proficient in chromatid individualization, but is deficient in chromatid thickening in Xenopus egg cell-free extracts. a. Mitotic egg extracts were immunodepleted with a control rabbit IgG ( $\Delta$ mock), anti-topo II $\alpha$  antibody ( $\Delta$ topo II $\alpha$ ), ant-Asf1 antibody ( $\Delta$ Asf1), or a combination of anti-topo II $\alpha$  and anti-Asf1 ( $\Delta$ topo II $\alpha$   $\Delta$ Asf1). To estimate the efficiency of depletion, an aliquot of each extract along with decreasing amounts of the  $\Delta$ mock extract was analyzed by immunoblotting with the antibodies indicated. Note that neither condensin subunits (CAP-E and CAP-H) nor histone H3 was depleted after each depletion while a sizable portion (50~80%) of the linker histone H1.8 was co-depleted with anti-Asf1 antibody (i.e., in the  $\Delta$ Asf1 and  $\Delta$ topo II $\alpha \Delta$ Asf1 extracts). This experiment was repeated independently at three times with similar results. **b.** *Xenopus* sperm nuclei were added to egg extracts depleted of topo II $\alpha$  ( $\Delta$ topo II $\alpha$ ) that had been supplemented with buffer, topo II $\alpha$ -FL, or topo II $\alpha$ - $\Delta$ CTD. After a 150-min incubation, the samples were fixed and processed for immunofluorescence and analyzed. Quantitative analyses of the signal intensities were carried out as in Fig. 1. The mean  $\pm$  s.d. is shown (*n*=12 clusters of chromatin). *P* values were assessed by two-tailed Welch's t-test. c. Mouse sperm nuclei were used in the same experiment as shown above. The mean  $\pm$  s.d. is shown (*n*=12 clusters of chromatin). *P* values were assessed by two-tailed Welch's t-test. Bars, 5 µm.



Supplementary Fig 3. Topo II $\alpha$ -FL, but not topo II $\alpha$ - $\Delta$ CTD, can fully rescue the defects observed in the extracts depleted of both topo II $\alpha$  and Asf1 (topo II $\alpha$  and CAP-E labeling). Mouse sperm nuclei were added to egg extracts depleted of topo II $\alpha$  and Asf1 ( $\Delta$ topo II $\alpha$   $\Delta$ Asf1) that had been supplemented with buffer, topo II $\alpha$ -FL, or topo II $\alpha$ - $\Delta$ CTD. After a 150-min incubation, the samples were fixed and processed for immunolabeling with the antibodies indicated. As a reference, nucleosome-depleted chromatids were assembled in an extract depleted of Asf1 ( $\Delta$ Asf1) that contained endogenous topo II $\alpha$ . This experiment was repeated independently at three times with similar results. Bar, 5 µm.

| Identifier | Sequence                   | Note                                                    |
|------------|----------------------------|---------------------------------------------------------|
| KB87       | GACGATGACAAGCCCGAGACCGAACC | PCR (topo II $\alpha$ -FL and - $\Delta$ CTD), forward, |
|            | TTTGCAGCCTC                | overlapping sequence A for Gibson assembly              |
| KB88       | CAGAACTTCCAGCCCAAAGTCATCGT | PCR (topo IIα-FL), reverse, overlapping                 |
|            | CAGAATCCTCCAGG             | sequence B for Gibson assembly                          |
| KB89       | CAGAACTTCCAGCCCAATTTCCTGCA | PCR (topo IIα-ΔCTD), reverse, <u>overlapping</u>        |
|            | ACTGCATTTTC                | sequence B for Gibson assembly                          |
| KA28       | AAATGATAACCATCTCGC         | Sequencing (pXR504, 505, and 506)                       |
| KA29       | GAAATTTGTGATGCTATTGC       | Sequencing (pXR504, 505, and 506)                       |
| KU27       | AAGATTAAGCCATTTGAGGG       | Sequencing (pXR505 and 506)                             |
| KU28       | GTCGTGGCTGAGCAATACGC       | Sequencing (pXR505)                                     |
| KU31       | CAACATCATCAAGATCGTGGG      | Sequencing (pXR505 and 506)                             |
| KU32       | TTCCAAAATGAATCTGGCTTGG     | Sequencing (pXR505 and 506)                             |
| KU33       | ATGTCTGCATACCATCATGGTG     | Sequencing (pXR505 and 506)                             |
| KU34       | TGTCGAGCACAGACACCTCACC     | Sequencing (pXR505 and 506)                             |
| KU35       | GTAAAGAAAATGCAGTTGCAGG     | Sequencing (pXR505 and 506)                             |
| KU36       | CTTTATGCAGGACATAGTTGGG     | Sequencing (pXR505 and 506)                             |
| KU37       | GATACTCCCATCATGATCAGTGC    | Sequencing (pXR505)                                     |
| KB90       | GAGTACCACACTGATACCAC       | Sequencing (pXR505 and 506)                             |
| KB91       | TCGCTTCTTGGCTGCTGCAG       | Sequencing (pXR505)                                     |
| KB92       | CCCTGCGGTCTTGCATGAAG       | Sequencing (pXR505 and 506)                             |
| KB93       | GTGGGAATACACCATAGCG        | Sequencing (pXR505 and 506)                             |
| KB94       | GATCATTCACCTGCTCGTGC       | Sequencing (pXR505 and 506)                             |

Supplementary Table 1. The list of primers used in this study.