Supplementary Information for

- Plasmodium infection induces cross-reactive antibodies to carbohydrate epitopes on the
- 4 SARS-CoV-2 Spike protein
- s Sarah Lapidus, Feimei Liu, Arnau Casanovas-Massana, Yile Dai, John D. Huck, Carolina Lucas, Jon Klein, Renata B. Filler,
- 6 Madison S. Strine, Mouhamad Sy, Awa B. Deme, Aida S. Badiane, Baba Dieye, Ibrahima Mbaye Ndiaye, Younous Diedhiou,
- 7 Amadou Moctar Mbaye, Cheikh Tidiane Diagne, Inés Vigan-Womas, Alassane Mbengue, Bacary D. Sadio, Moussa M. Diagne,
- 8 Adam J. Moore, Khadidiatou Mangou, Fatoumata Diallo, Seynabou D. Sene, Mariama N. Pouye, Rokhaya Faye, Babacar Diouf,
- 9 Nivison Nery Jr, Federico Costa, Mitermayer Reis, M. Catherine Muenker, Daniel Z. Hodson, Yannick Mbarga, Ben Z. Katz,
- Jason R. Andrews, Melissa Campbell, Ariktha Srivathsan, Kathy Kamath, Elisabeth Baum-Jones, Ousmane Faye, Amadou
- Alpha Sall, Juan Carlos Quintero Vélez, Michael Cappello, Michael Wilson, Choukri Ben-Mamoun, Fabrice A. Somé, Roch K.
- Dabiré, Carole Else Eboumbou Moukoko, Jean Bosco Ouédraogo, Yap Boum II, John Shon, Daouda Ndiaye, Adam
- 13 Wisnewski, Sunil Parikh, Akiko Iwasaki, Craig B. Wilen, Albert I. Ko, Aaron M. Ring, Amy K. Bei
- 14 Amy Kristine Bei.
- 15 E-mail: amy.bei@yale.edu
- 16 This PDF file includes:
- Figs. S1 to S2
- 8 Table S1

Lapidus et al. 1 of 4

			Malaria exposure status]			
Cohort	Country	Region	Sympto matic (%)	Asymptomatic (%)	Endemic uninfected (%)	Non-endemic (%)	Male (%)	Mean age, years (min, max)	Dates of collection	# Subjects
CAM	Cameroon	Douala	8 (42.1%)	-	11 (57.9%)	-	11 (52.4%)	26.2 (2, 64)	July-Nov 2018	19
SEN1	Senegal	Kédougou	60 (50%)	-	60 (50%)	-	67 (55.8)	22 (1, 74)	July 2019	120
SEN2	Senegal	Thiès	67 (100%)	-	-	-	67 (100%)	10.9 (5, 16)	2015- 2017	67
BUR1	Burkina Faso	Bama	-	13 (14.8%)	75 (85.2%)	-	11 (52.4%)*	2.7 (0.5,4)	July-Aug 2017	88
GHA	Ghana	Kintampo	-	29 (64.4%)	16 (35.5%)	-	17 (38.6%)**	15.1 (3, 70)**	July 2007 and June 2010	45
BUR2	Burkina Faso	Bama	-	-	25 (100%)	-	14 (60.9%)***	32.6 (21, 43)***	Oct 2016- Feb 2017	25
COL1	Colombia	Urabá	-	-	61 (100%)	-	24 (39.3%)	31 (5, 80)	Nov 2015-Jan 2016	61
COL2	Colombia	Uramita	-	-	-	27 (100%)	6 (22.2%)	38 (5, 70)	Aug-Sept 2016	27
BRA	Brazil	Salvador	-	-	-	80 (100%)	30 (37.5%)	30.6 (5, 71)	Jan-Nov 2010	80
NEP	Nepal	Kavrepalanchok and Dolakha	-	-	-	71 (100%)	31 (44.3%)****	36.2 (4, 80)****	August 2013- June 2016	71
EBV	USA	Illinois	-	-	-	14 (100%)	5 (35.7%)	18.7 (18, 20)	Feb 2015-Oct 2018	14
Total			135 (21.9%)	42 (6.8%)	248 (40.2%)	192 (31.1%)	282 (51.6%)	22.2 (0.5, 80.6)	July 2007- July 2019	617

^{*}In BUR1, data on sex was available for 21 of 88 subjects
**GHA had 1 subject with unknown age and sex
*** BUR2 had unknown sex and age for 2 subjects
****NEP had unknown sex and age for 1 subject.

Table S1. Patient Demographics

2 of 4 Lapidus et al.

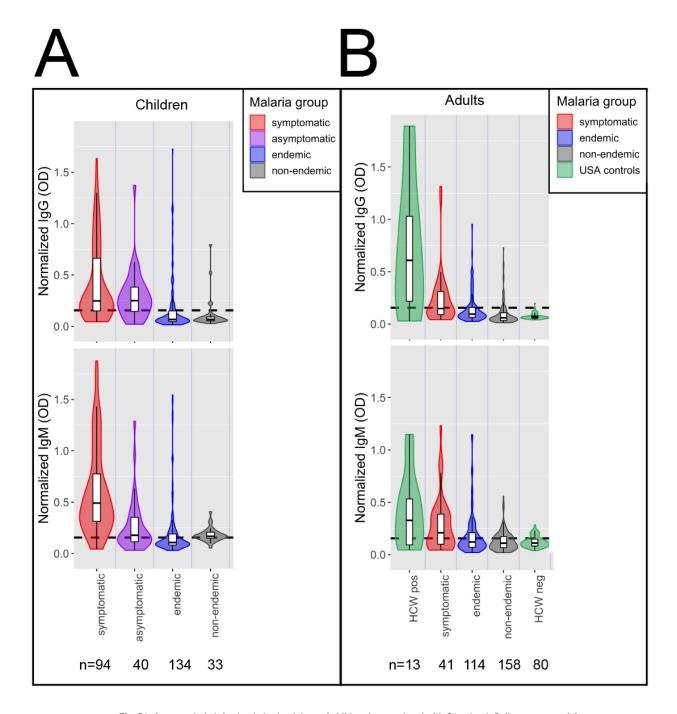
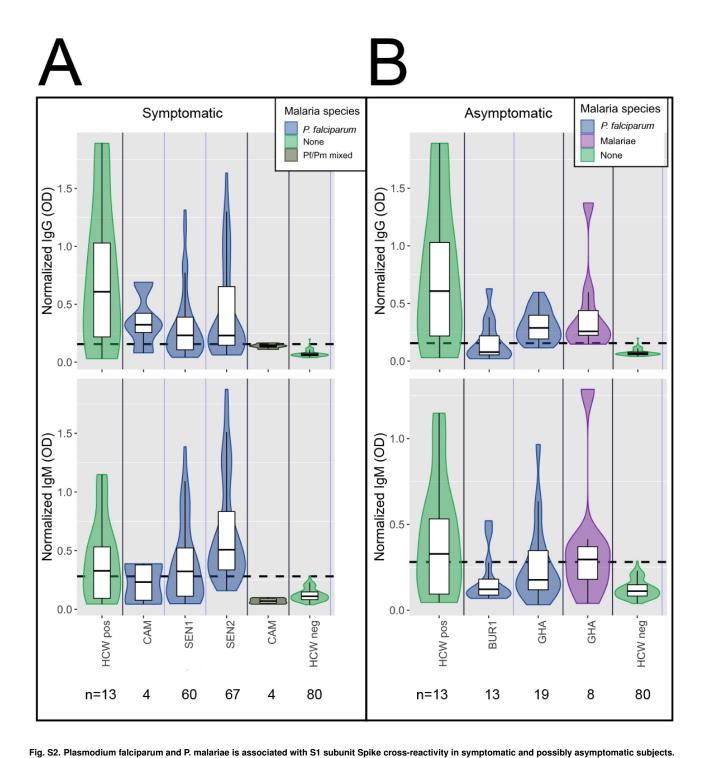



Fig. S1. Acute malaria infection in both adults and children is associated with S1 subunit Spike cross-reactivity.

Violin plots showing normalized IgG and IgM responses among a) children and b) adults with different malaria infection statuses. Children with acute malaria infection had significantly higher normalized IgG and IgM than uninfected children in malaria endemic areas (Welch Two Sample t-tests p-values<0.0001 and <0.0001, respectively), and adults with acute infection had significantly higher normalized IgG and IgM than uninfected adults in endemic areas (Welch Two Sample t-tests IgG p-values=0.037 and IgM p-value=0.025). Normalized IgG or IgM calculated by IgG or IgM OD divided by IgG or IgM of positive control (camelid monoclonal chimeric nanobody VHH72 antibody was IgG control, and pooled convalescent serum from SARS-CoV-2 patients was IgM control). Black dashed lines represent cutoffs for positivity, calculated from normalized IgG and IgM values from 80 healthy US healthcare workers controls without SARS-CoV-2 documented exposure (mean + 3 SDs).

Lapidus et al. 3 of 4

Violin plots showing normalized IgG and IgM responses among a) symptomatic and b) asymptomatic subjects by species of malaria infection. For symptomatic patients, both IgG and IgM was significantly higher among subjects with P. falciparum (Welch Two Sample t-tests p-values<0.0001 for both IgG and IgM) and P. falciparum/P. malariae mixed infection (Welch Two Sample t-tests p-values<0.0001 for both IgG and IgM) than healthy US HCWs controls. For asymptomatic patients, both IgG and IgM was significantly higher among subjects with P. falciparum than healthy US HCWs controls (Welch Two Sample t-tests IgG p-value<0.0001 and IgM p-value=0.0063). Asymptomatic patents with P. malariae had significantly higher IgG but not IgM than healthy US HCWs controls (Welch Two Sample t-tests IgG p-values=0.044 and IgM p-value=0.106). Normalized IgG or IgM calculated by IgG or IgM OD divided by IgG or IgM of positive control (camelid monoclonal chimeric nanobody VHH72 antibody was IgG control, and pooled convalescent serum from SARS-CoV-2 patients was IgM control). Black dashed lines represent cutoffs for positivity, calculated from normalized IgG and IgM values from 80 healthy US healthcare workers

4 of 4 Lapidus et al.

controls without SARS-CoV-2 documented exposure (mean + 3 SDs).