Supplementary Materials for "Improved doubly robust estimation in learning optimal individualized treatment rules"

Yinghao Pan

Department of Mathematics and Statistics,

University of North Carolina at Charlotte

and

Ying-Qi Zhao *

Public Health Sciences Division, Fred Hutchinson Cancer Research Center

January 27, 2020

^{*}Contact: Ying-Qi Zhao, yqzhao@fredhutch.org, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.

The supplementary materials contain five appendices. Appendix A provides proofs of Lemmas 1-3 and gives the asymptotic variance of various estimators under correctly specified propensity score model. Appendix B presents a general formula for the asymptotic variance of semiparametric M-estimators. This is a direct extension of Theorem 2 in Chen et al. (2003). Appendix C presents details of the Theorem 1 as well as the proofs. Appendix D presents details of the Theorem 2 as well as the proofs. Additional simulation results are reported in Appendix E.

Appendix A: Proofs and derivations in Section 2 of the main paper

A.1 Proof of Lemma 1

Proof. We show that when the propensity score is correct, i.e., $\pi(A, \mathbf{X}) = \pi_0(A, \mathbf{X})$, the class of influence functions corresponding to estimators of the form (2) have the following expression

$$\frac{YI\{A=d(\boldsymbol{X})\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}} - \frac{I\{A=d(\boldsymbol{X})\}-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^*\}-V(d).$$

The technical details are as follows. Let $\tilde{\boldsymbol{\beta}}$ denote an intermediate value between $\hat{\boldsymbol{\beta}}$ and

 $\boldsymbol{\beta}^*$, and $Q_{\boldsymbol{\beta}}(\boldsymbol{X}, A; \boldsymbol{\beta}) \triangleq \partial Q(\boldsymbol{X}, A; \boldsymbol{\beta}) / \partial \boldsymbol{\beta}$,

$$\begin{split} &\sqrt{n}\left\{\widehat{V}(d;\hat{\boldsymbol{\beta}})-V(d)\right\} \\ = &\sqrt{n}\left\{\frac{1}{n}\sum_{i=1}^{n}\left[\frac{Y_{i}I\{A_{i}=d(\boldsymbol{X}_{i})\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}-\frac{I\{A_{i}=d(\boldsymbol{X}_{i})\}-\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\hat{\boldsymbol{\beta}}\}\right]-V(d)\right\} \\ = &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left[\frac{Y_{i}I\{A_{i}=d(\boldsymbol{X}_{i})\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}-\frac{I\{A_{i}=d(\boldsymbol{X}_{i})\}-\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}^{*}\}-V(d)\right.\\ &\left.-\frac{I\{A_{i}=d(\boldsymbol{X}_{i})\}-\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\tilde{\boldsymbol{\beta}}\}\cdot(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*})\right] \\ = &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left[\frac{Y_{i}I\{A_{i}=d(\boldsymbol{X}_{i})\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}-\frac{I\{A_{i}=d(\boldsymbol{X}_{i})\}-\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}^{*}\}-V(d)\right]+o_{p}(1) \end{split}$$

The third equality in the above comes from the fact that

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{I\{A_i = d(\mathbf{X}_i)\} - \pi_0\{d(\mathbf{X}_i), \mathbf{X}_i\}}{\pi_0\{d(\mathbf{X}_i), \mathbf{X}_i\}} Q_{\boldsymbol{\beta}}\{\mathbf{X}_i, d(\mathbf{X}_i); \tilde{\boldsymbol{\beta}}\} \cdot (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)$$

$$= \sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*) \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{I\{A_i = d(\mathbf{X}_i)\} - \pi_0\{d(\mathbf{X}_i), \mathbf{X}_i\}}{\pi_0\{d(\mathbf{X}_i), \mathbf{X}_i\}} Q_{\boldsymbol{\beta}}\{\mathbf{X}_i, d(\mathbf{X}_i); \tilde{\boldsymbol{\beta}}\}$$

Since $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*) = O_p(1)$, and note that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{I\{A_i = d(\boldsymbol{X}_i)\} - \pi_0\{d(\boldsymbol{X}_i), \boldsymbol{X}_i\}}{\pi_0\{d(\boldsymbol{X}_i), \boldsymbol{X}_i\}} Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_i, d(\boldsymbol{X}_i); \tilde{\boldsymbol{\beta}}\}$$

$$\xrightarrow{p} E\left[\frac{I\{A = d(\boldsymbol{X})\} - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^*\}\right]$$

$$= E\left\{E\left[\frac{I\{A = d(\boldsymbol{X})\} - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^*\} | \boldsymbol{X}\right]\right\} = 0,$$

we know that the whole term converges in probability to 0, and is thus negligible. \Box

A.2 Derivation of term (I) in (4)

$$\operatorname{Var}\left[\frac{YI\{A = d(\mathbf{X})\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}} - \frac{I\{A = d(\mathbf{X})\} - \pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}Q\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^{*}\} \middle| \mathbf{X} \right]$$

$$= E\left(\left[\frac{YI\{A = d(\mathbf{X})\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}} - \frac{I\{A = d(\mathbf{X})\} - \pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}Q\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^{*}\} - Q_{0}\{\mathbf{X}, d(\mathbf{X})\} \right]^{2} \middle| \mathbf{X} \right)$$

$$= E\left\{\left[\frac{I\{A = d(\mathbf{X})\} - \pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}\right]^{2}Q^{2}\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^{*}\} \middle| \mathbf{X} \right\}$$

$$-2E\left(\frac{I\{A = d(\mathbf{X})\} - \pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}}\left[\frac{YI\{A = d(\mathbf{X})\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}} - Q_{0}\{\mathbf{X}, d(\mathbf{X})\}\right]Q\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^{*}\} \middle| \mathbf{X} \right)$$

$$+E\left(\left[\frac{YI\{A = d(\mathbf{X})\}}{\pi_{0}\{d(\mathbf{X}), \mathbf{X}\}} - Q_{0}\{\mathbf{X}, d(\mathbf{X})\}\right]^{2} \middle| \mathbf{X} \right).$$

We know that

$$E\left\{\frac{I\{A = d(\mathbf{X})\} - 2\pi_0\{d(\mathbf{X}), \mathbf{X}\}I\{A = d(\mathbf{X})\} + \pi_0^2\{d(\mathbf{X}), \mathbf{X}\}}{\pi_0^2\{d(\mathbf{X}), \mathbf{X}\}} \cdot Q^2\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^*\} \middle| \mathbf{X} \right\}$$

=
$$\frac{1 - \pi_0\{d(\mathbf{X}), \mathbf{X}\}}{\pi_0\{d(\mathbf{X}), \mathbf{X}\}} Q^2\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^*\},$$

and

$$E\left(\frac{I\{A = d(\mathbf{X})\} - \pi_0\{d(\mathbf{X}), \mathbf{X}\}}{\pi_0\{d(\mathbf{X}), \mathbf{X}\}} \left[\frac{YI\{A = d(\mathbf{X})\}}{\pi_0\{d(\mathbf{X}), \mathbf{X}\}} - Q_0\{\mathbf{X}, d(\mathbf{X})\}\right] Q\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^*\} \middle| \mathbf{X}\right)$$

$$= E\left(\frac{YI\{A = d(\mathbf{X})\} [1 - \pi_0\{d(\mathbf{X}), \mathbf{X}\}]}{\pi_0^2\{d(\mathbf{X}), \mathbf{X}\}} Q\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^*\} \middle| \mathbf{X}\right)$$

$$-E\left(\frac{I\{A = d(\mathbf{X})\} - \pi_0\{d(\mathbf{X}), \mathbf{X}\}}{\pi_0\{d(\mathbf{X}), \mathbf{X}\}} Q_0\{\mathbf{X}, d(\mathbf{X})\} \cdot Q\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^*\} \middle| \mathbf{X}\right)$$

$$= \frac{1 - \pi_0\{d(\mathbf{X}), \mathbf{X}\}}{\pi_0\{d(\mathbf{X}), \mathbf{X}\}} Q_0\{\mathbf{X}, d(\mathbf{X}); \boldsymbol{\beta}^*\}.$$

Therefore,

$$E\left(\operatorname{Var}\left[\frac{YI\{A=d(\boldsymbol{X})\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}-\frac{I\{A=d(\boldsymbol{X})\}-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{*}\}\middle| \boldsymbol{X}\right]\right)$$

= $E\left[\frac{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q^{2}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{*}\}\right]+E\left[\frac{YI\{A=d(\boldsymbol{X})\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}-Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}\right]^{2}$
 $-2E\left[\frac{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}\cdot Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{*}\}\right].$

A.3 Proof of Lemma 2

Proof. When the propensity score is correct, i.e., $\pi(A, \mathbf{X}) = \pi_0(A, \mathbf{X})$, we have shown that $\hat{\boldsymbol{\beta}}^{\text{opt1}} \xrightarrow{p} \boldsymbol{\beta}^{\text{opt}}$. It is straightforward to show that

$$\mathbb{P}_{n}\left[\frac{I\{A=d(\boldsymbol{X})\}-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\hat{\boldsymbol{\beta}}^{\text{opt1}}\}\right]$$

= $\mathbb{P}_{n}\left[\frac{I\{A=d(\boldsymbol{X})\}-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{\text{opt}}\}\right]+o_{p}(1).$

Hence,

$$\begin{aligned} \widehat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt1}}) &= \mathbb{P}_n \left[\frac{YI\{A = d(\boldsymbol{X})\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} - \frac{I\{A = d(\boldsymbol{X})\} - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} Q\{\boldsymbol{X}, d(\boldsymbol{X}); \hat{\boldsymbol{\beta}}^{\text{opt1}}\} \right] \\ &= \mathbb{P}_n \left[\frac{YI\{A = d(\boldsymbol{X})\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} \right] - \mathbb{P}_n \left[\frac{I\{A = d(\boldsymbol{X})\} - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^{\text{opt}}\} \right] + o_p(1), \end{aligned}$$

which converges to

$$V(d) - E\left[\frac{I\{A = d(\boldsymbol{X})\} - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^{\text{opt}}\}\right] = V(d).$$

Here we have used the fact that $E[I\{A = d(\mathbf{X})\} \mid \mathbf{X}] = P\{A = d(\mathbf{X}) \mid \mathbf{X}\} = \pi_0\{d(\mathbf{X}), \mathbf{X}\}.$

When the outcome model is correct, i.e., $Q(\mathbf{X}, A; \boldsymbol{\beta}_0) = Q_0(\mathbf{X}, A)$ for some $\boldsymbol{\beta}_0$, but the

propensity score may not be, $\pi(A, \mathbf{X}) \neq \pi_0(A, \mathbf{X})$, we have shown that $\hat{\boldsymbol{\beta}}^{\text{opt1}} \xrightarrow{p} \boldsymbol{\beta}_0$.

$$\mathbb{P}_{n}\left[\frac{I\{A=d(\boldsymbol{X})\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\hat{\boldsymbol{\beta}}^{\text{opt1}}\}\right]$$

$$=\mathbb{P}_{n}\left[\frac{I\{A=d(\boldsymbol{X})\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{0}\}\right]$$

$$+\mathbb{P}_{n}\left[\frac{I\{A=d(\boldsymbol{X})\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\tilde{\boldsymbol{\beta}}\}\cdot(\hat{\boldsymbol{\beta}}^{\text{opt1}}-\boldsymbol{\beta}_{0})\right],$$

where $\hat{\boldsymbol{\beta}}$ is an intermediate value between $\hat{\boldsymbol{\beta}}^{\text{opt1}}$ and $\boldsymbol{\beta}_0$. The second term is $o_p(1)$ after assuming that $E\left[\frac{I\{A=d(\boldsymbol{X})\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_0\}\right]$ is finite. Thus, $\hat{V}(d;\hat{\boldsymbol{\beta}}^{\text{opt1}})$ equals

$$\mathbb{P}_n\left[\frac{YI\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} - \frac{I\{A=d(\boldsymbol{X})\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_0\}\right] + o_p(1),$$

which converges to

$$E\left(\frac{I\{A=d(\boldsymbol{X})\}\left[Y-Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}\right]}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right)+E\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}\right]$$

The first term in the above equation is zero because $E[I\{A = d(\mathbf{X})\} \cdot Y \mid \mathbf{X}, A] = I\{A = d(\mathbf{X})\}Q_0\{\mathbf{X}, d(\mathbf{X})\}$. The second term is equal to V(d). Thus, $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt1}}) \xrightarrow{p} V(d)$ when the outcome model is correctly specified.

Since $\hat{\boldsymbol{\beta}}^{\text{opt1}} \xrightarrow{p} \boldsymbol{\beta}^{\text{opt}}$ when the propensity score is correct, by definition of $\boldsymbol{\beta}^{\text{opt}}$, it is trivial that $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt1}})$ achieves the smallest variance among class of estimators (2).

A.4 Proof of Lemma 3

We first introduce the 'generalized product kernels' from Racine and Li (2004). For the *i*th subject, let $\mathbf{X}_i = (\mathbf{X}_i^d, \mathbf{X}_i^c)$, where \mathbf{X}_i^d denote a $k \times 1$ vector of discrete variables and $\mathbf{X}_i^c \in \mathbb{R}^p$ denote the remaining continuous variables. We use $X_{t,i}^d$ to denote the *t*th component of \mathbf{X}_i^d . For any particular \mathbf{x}^d whose *t*th component is x_t^d , Racine and Li (2004)

defined the following kernel

$$l(X_{t,i}^d, x_t^d, \lambda) = \begin{cases} 1 & \text{if } X_{t,i}^d = x_t^d \\ \lambda & \text{if } X_{t,i}^d \neq x_t^d \end{cases}$$

Then the product kernel for the discrete variables can be defined as $L(\mathbf{X}_{i}^{d}, \mathbf{x}^{d}, \lambda) = \prod_{t=1}^{k} l(X_{t,i}^{d}, x_{t}^{d}, \lambda)$. Let $W\{\cdot\}$ denote the kernel function associated with the continuous variables \mathbf{x}^{c} and h to denote the smoothing parameters for the continuous variables. The product kernel for both continuous and discrete variables is $K_{h,ix} = W_{h,ix}L_{\lambda,ix}$, where $W_{h,ix} = h^{-p}W\{(\mathbf{X}_{i}^{c} - \mathbf{x}^{c})/h\}$ and $L_{\lambda,ix} = L(\mathbf{X}_{i}^{d}, \mathbf{x}^{d}, \lambda)$.

The Q function $Q_0(\mathbf{X}, 1) = E(Y \mid \mathbf{X}, A = 1)$ and $Q_0(\mathbf{X}, -1) = E(Y \mid \mathbf{X}, A = -1)$ will be estimated by

$$\widehat{Q}_0(\boldsymbol{X},1) = \frac{\sum_{i=1}^n Y_i I(A_i=1) K_{h,ix}}{\sum_{i=1}^n I(A_i=1) K_{h,ix}}, \quad \widehat{Q}_0(\boldsymbol{X},-1) = \frac{\sum_{i=1}^n Y_i I(A_i=-1) K_{h,ix}}{\sum_{i=1}^n I(A_i=-1) K_{h,ix}}.$$

It is well known that for kernel regression with only continuous variables, the estimator is consistent as long as $h \to 0$ and $nh^p \to \infty$ as $n \to \infty$. When all the variables are discrete, we need $\lambda \to 0$. Thus, $\hat{Q}_0(\mathbf{X}, 1)$ and $\hat{Q}_0(\mathbf{X}, -1)$ are consistent estimators for $Q_0(\mathbf{X}, 1)$ and $Q_0(\mathbf{X}, -1)$ if two sets of conditions are satisfied.

Recall that $\hat{\boldsymbol{\beta}}^{\mathrm{opt2}}$ is the solution to

$$(*) - \mathbb{P}_{n}\left(\frac{I\{A = d(\boldsymbol{X})\} - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \left[\widehat{Q}_{0}\{\boldsymbol{X}, d(\boldsymbol{X})\} - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\}\right] Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\}\right) = 0.$$
(S.1)

where

$$(*) = \mathbb{P}_n\left(\frac{I\{A = d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \left[Y - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\}\right] Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\}\right)$$

When the propensity score is correct, the left-hand side of (S.1) converges in probability to

$$E\left(\frac{I\{A=d(\boldsymbol{X})\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\cdot\frac{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right)$$

= $E\left(\frac{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right).$

Hence, $\hat{\boldsymbol{\beta}}^{\text{opt2}} \xrightarrow{p} \boldsymbol{\beta}^{\text{opt}}$. On the other hand, based on the fact that $\widehat{Q}_0\{\boldsymbol{X}, d(\boldsymbol{X})\}$ is consistent for $Q_0\{\boldsymbol{X}, d(\boldsymbol{X})\}$, when the outcome regression model is correct but propensity score may not be, the left-hand side of (S.1) converges in probability to

$$E\left(\frac{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}\left[1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}\right]}{\pi^{2}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right] - \frac{\left[\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}\right]\left[1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}\right]}{\pi^{2}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]} = E\left(\frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]}$$

which equals 0 when $\boldsymbol{\beta} = \boldsymbol{\beta}_0$. Thus, $\hat{\boldsymbol{\beta}}^{\text{opt2}} \xrightarrow{p} \boldsymbol{\beta}_0$. These two facts ensure that $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt2}})$ is doubly robust and achieves the smallest asymptotic variance among the class of DR estimators. That is to say, $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt2}})$ is improved DR.

A.5 Influence functions of (1) under correctly specified propensity score model

The detailed derivations are the following. When the propensity score model is correctly specified,

$$\begin{split} &\sqrt{n} \left\{ \widehat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}) - V(d) \right\} \\ &= \sqrt{n} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left[\frac{Y_{i}I\{A_{i} = d(\boldsymbol{X}_{i})\}}{\pi\{d(\boldsymbol{X}_{i}), \boldsymbol{X}_{i}; \hat{\boldsymbol{\gamma}}\}} - \frac{I\{A_{i} = d(\boldsymbol{X}_{i})\} - \pi\{d(\boldsymbol{X}_{i}), \boldsymbol{X}_{i}; \hat{\boldsymbol{\gamma}}\}}{\pi\{d(\boldsymbol{X}_{i}), \boldsymbol{X}_{i}; \hat{\boldsymbol{\gamma}}\}} Q\{\boldsymbol{X}_{i}, d(\boldsymbol{X}_{i}); \hat{\boldsymbol{\beta}}\} \right] - V(d) \right) \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[\frac{Y_{i}I\{A_{i} = d(\boldsymbol{X}_{i})\}}{\pi\{d(\boldsymbol{X}_{i}), \boldsymbol{X}_{i}; \hat{\boldsymbol{\gamma}}\}} - \frac{I\{A_{i} = d(\boldsymbol{X}_{i})\} - \pi\{d(\boldsymbol{X}_{i}), \boldsymbol{X}_{i}; \hat{\boldsymbol{\gamma}}\}}{\pi\{d(\boldsymbol{X}_{i}), \boldsymbol{X}_{i}; \hat{\boldsymbol{\gamma}}\}} Q\{\boldsymbol{X}_{i}, d(\boldsymbol{X}_{i}); \boldsymbol{\beta}^{*}\} - V(d) \right] + o_{p}(1) \end{split}$$

Now we expand $\hat{\boldsymbol{\gamma}}$ about $\boldsymbol{\gamma}_0$ to obtain

$$\sqrt{n} \left\{ \widehat{V}(d; \widehat{\boldsymbol{\gamma}}, \widehat{\boldsymbol{\beta}}) - V(d) \right\} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widetilde{\varphi}(Y_i, A_i, \boldsymbol{X}_i, \boldsymbol{\gamma}_0, \boldsymbol{\beta}^*) \\
+ \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \widetilde{\varphi}(Y_i, A_i, \boldsymbol{X}_i, \boldsymbol{\gamma}_n^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\gamma}^\top} \right\} \sqrt{n} (\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}_0) + o_p(1),$$
(S.2)

where γ_n^* is some intermediate value between $\hat{\gamma}$ and γ_0 . Since under regularity conditions, γ_n^* converges in probability to γ_0 , we obtain

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial\tilde{\varphi}(Y_{i},A_{i},\boldsymbol{X}_{i},\boldsymbol{\gamma}_{n}^{*},\boldsymbol{\beta}^{*})}{\partial\boldsymbol{\gamma}^{\top}} \xrightarrow{p} E\left\{\frac{\partial\tilde{\varphi}(Y_{i},A_{i},\boldsymbol{X}_{i},\boldsymbol{\gamma}_{0},\boldsymbol{\beta}^{*})}{\partial\boldsymbol{\gamma}^{\top}}\right\}.$$
(S.3)

Using standard results from finite-dimensional parametric models, we know that

$$\sqrt{n}(\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left[E\left\{ S_{\boldsymbol{\gamma}}(A_i, \boldsymbol{X}_i, \boldsymbol{\gamma}_0) S_{\boldsymbol{\gamma}}^\top(A_i, \boldsymbol{X}_i, \boldsymbol{\gamma}_0) \right\} \right]^{-1} S_{\boldsymbol{\gamma}}(A_i, \boldsymbol{X}_i, \boldsymbol{\gamma}_0) + o_p(1).$$
(S.4)

Combing equations (S.4) and (S.3), we deduce that (S.2) is

$$\begin{split} &\sqrt{n} \left\{ \widehat{V}(d; \widehat{\boldsymbol{\gamma}}, \widehat{\boldsymbol{\beta}}) - V(d) \right\} \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\widetilde{\varphi}(Y_{i}, A_{i}, \boldsymbol{X}_{i}, \boldsymbol{\gamma}_{0}, \boldsymbol{\beta}^{*}) \right. \\ &+ \left. E \left\{ \frac{\partial \widetilde{\varphi}(Y_{i}, A_{i}, \boldsymbol{X}_{i}, \boldsymbol{\gamma}_{0}, \boldsymbol{\beta}^{*})}{\partial \boldsymbol{\gamma}^{\top}} \right\} \left[E \left\{ S_{\boldsymbol{\gamma}}(A_{i}, \boldsymbol{X}_{i}, \boldsymbol{\gamma}_{0}) S_{\boldsymbol{\gamma}}^{\top}(A_{i}, \boldsymbol{X}_{i}, \boldsymbol{\gamma}_{0}) \right\} \right]^{-1} S_{\boldsymbol{\gamma}}(A_{i}, \boldsymbol{X}_{i}, \boldsymbol{\gamma}_{0}) \right\} + o_{p}(1). \end{split}$$

Thus, the influence function is

$$\tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}_{0}, \boldsymbol{\beta}^{*}) + E\left\{\frac{\partial \tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}_{0}, \boldsymbol{\beta}^{*})}{\partial \boldsymbol{\gamma}^{\top}}\right\} \left[E\left\{S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}, \boldsymbol{\gamma}_{0})S_{\boldsymbol{\gamma}}^{\top}(A, \boldsymbol{X}, \boldsymbol{\gamma}_{0})\right\}\right]^{-1}S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}, \boldsymbol{\gamma}_{0})$$

A.6 Variance of (7) and its minimizer

We know that $\pi\{d(\mathbf{X}), \mathbf{X}; \mathbf{\gamma}\} = I\{d(\mathbf{X}) = 1\}\pi\{1, \mathbf{X}; \mathbf{\gamma}\} + I\{d(\mathbf{X}) = -1\}\pi\{-1, \mathbf{X}; \mathbf{\gamma}\}.$ Hence,

$$\pi_{\gamma}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\} = \frac{\partial \pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}}{\partial \boldsymbol{\gamma}} = I\{d(\boldsymbol{X}) = 1\} \cdot \frac{\pi\{1,\boldsymbol{X};\boldsymbol{\gamma}\}}{\partial \boldsymbol{\gamma}} - I\{d(\boldsymbol{X}) = -1\} \cdot \frac{\pi\{1,\boldsymbol{X};\boldsymbol{\gamma}\}}{\partial \boldsymbol{\gamma}}.$$

To suppress notations, we define $R \triangleq I\{A = d(\mathbf{X})\}$. Observe that

$$S_{\gamma}(A, \boldsymbol{X}, \boldsymbol{\gamma}) = I(A = 1) \frac{\pi_{\gamma}(1, \boldsymbol{X}; \boldsymbol{\gamma})}{\pi(1, \boldsymbol{X}; \boldsymbol{\gamma})} - I(A = -1) \frac{\pi_{\gamma}(1, \boldsymbol{X}; \boldsymbol{\gamma})}{1 - \pi(1, \boldsymbol{X}; \boldsymbol{\gamma})}$$

$$= I\{A = d(\boldsymbol{X})\} \frac{\pi_{\gamma}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} - I\{A \neq d(\boldsymbol{X})\} \frac{\pi_{\gamma}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}$$

$$= \frac{R - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} [1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}] \pi_{\gamma}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}.$$

The influence function (7) can be rewritten as

$$\frac{RY}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}} - \frac{R - \pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}} \left[Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^*\} + \Gamma_0(\boldsymbol{\beta}^*) \Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}_0\}}{1 - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} \right] - V(d)$$

We use the formula $\operatorname{Var}(\cdot) = E\{\operatorname{Var}(\cdot \mid X)\} + \operatorname{Var}\{E(\cdot \mid X)\}$. It is obvious that

$$E\left(\frac{RY}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}} - \frac{R - \pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}} \left[Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^*\} + \Gamma_0(\boldsymbol{\beta}^*)\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_0\}}{1 - \pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right] \middle| \boldsymbol{X}\right)$$
$$= E\left[\frac{RY}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}} \middle| \boldsymbol{X}\right] = Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}.$$

Hence, the second term is $\operatorname{Var}[Q_0\{X, d(X)\}]$, not relevant to β^* .

$$\operatorname{Var}\left(\frac{RY}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}} - \frac{R - \pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}} \left[Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{*}\} + \Gamma_{0}(\boldsymbol{\beta}^{*})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_{0}\}}{1 - \pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right] \middle| \boldsymbol{X} \right)$$

$$= E\left[\left(\frac{RY}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}} - Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}\right) - \frac{R - \pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}} \left[Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{*}\} + \Gamma_{0}(\boldsymbol{\beta}^{*})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_{0}\}}{1 - \pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]\right)^{2} \mid \boldsymbol{X}\right]$$

$$= B_{1} + B_{2} + B_{3},$$

where

$$B_1 = E\left(\left[\frac{R - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}\right]^2 \left[Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^*\} + \Gamma_0(\boldsymbol{\beta}^*) \Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma}, 0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}_0\}}{1 - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}\right]^2 \middle| \boldsymbol{X} \right),$$

$$B_{2} = -2E\left(\frac{R - \pi_{0}\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \left[\frac{RY}{\pi_{0}\{d(\boldsymbol{X}), \boldsymbol{X}\}} - Q_{0}\{\boldsymbol{X}, d(\boldsymbol{X})\}\right] \\ \cdot \left[Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^{*}\} + \Gamma_{0}(\boldsymbol{\beta}^{*})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma}, 0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}_{0}\}}{1 - \pi_{0}\{d(\boldsymbol{X}), \boldsymbol{X}\}}\right] \middle| \boldsymbol{X} \right), \\ B_{3} = E\left(\left[\frac{RY}{\pi_{0}\{d(\boldsymbol{X}), \boldsymbol{X}\}} - Q_{0}\{\boldsymbol{X}, d(\boldsymbol{X})\}\right]^{2} \middle| \boldsymbol{X} \right).$$

After some calculations, it can be shown that

$$B_1 = \frac{1 - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} \left[Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^*\} + \Gamma_0(\boldsymbol{\beta}^*) \Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma}, 0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}_0\}}{1 - \pi_0\{d(\boldsymbol{X}), \boldsymbol{X}\}} \right]^2,$$

$$B_{2} = -2 \cdot \frac{1 - \pi_{0} \{ d(\boldsymbol{X}), \boldsymbol{X} \}}{\pi_{0} \{ d(\boldsymbol{X}), \boldsymbol{X} \}} Q_{0} \{ \boldsymbol{X}, d(\boldsymbol{X}) \} \left[Q \{ \boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}^{*} \} + \Gamma_{0}(\boldsymbol{\beta}^{*}) \Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma}, 0}^{-1} \cdot \frac{\pi_{\boldsymbol{\gamma}} \{ d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}_{0} \}}{1 - \pi_{0} \{ d(\boldsymbol{X}), \boldsymbol{X} \}} \right]$$

Therefore, the first term $E{\operatorname{Var}(\cdot \mid X)}$ equals

$$E\left(\frac{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^*\}+\Gamma_0(\boldsymbol{\beta}^*)\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_0\}}{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]^2\right)$$
$$-2E\left(\frac{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}\left[Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^*\}+\Gamma_0(\boldsymbol{\beta}^*)\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_0\}}{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]\right)$$
$$+E\left(\left[\frac{RY}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}-Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}\right]^2\right).$$

By taking the derivative with respect to β^* and set it equal to 0, we know that the variance is minimized by the solution to the following equation.

$$E\left(\frac{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}+\Phi_{0}(\boldsymbol{\beta})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_{0}\}}{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]$$

$$\cdot\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}-\Gamma_{0}(\boldsymbol{\beta})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_{0}\}}{1-\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]\right)=0.$$
(S.5)

In a slight abuse of notation, we use β^{opt} to denote this minimizer.

A.7 Improved DR property of $\hat{V}(d; \hat{\gamma}, \hat{\beta}^{opt3})$

When the model for propensity score is correctly specified, by observing that $\hat{\gamma} \xrightarrow{p} \gamma_0$ and $\widehat{\Sigma}_{\gamma\gamma}, \widehat{\Gamma}(\beta), \widehat{\Phi}(\beta)$ converge to $\Sigma_{\gamma\gamma,0}, \Gamma_0(\beta), \Phi_0(\beta)$, respectively, it is straightforward to show that the left-hand side of (9) converges in probability to the left-hand side of (S.5), thus $\hat{\beta}^{\text{opt3}} \xrightarrow{p} \beta^{\text{opt}}$. On the other hand, when the outcome model is correct but the propensity score is not, $\hat{\gamma} \xrightarrow{p} \gamma^*$, the left-hand side of (9) converges to

$$E\left(\frac{\pi_{0}\{d(\boldsymbol{X}),\boldsymbol{X}\}\left[1-\pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}^{*}\}\right]}{\pi^{2}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}^{*}\}}\left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}+\Phi_{*}(\boldsymbol{\beta})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},*}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}^{*}\}}{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}^{*}\}}\right]$$

$$\cdot\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}-\Gamma_{*}(\boldsymbol{\beta})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},*}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}^{*}\}}{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}^{*}\}}\right]\right),$$
(S.6)

where $\Sigma_{\gamma\gamma,*} = E \{ S_{\gamma}(A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}) S_{\gamma}^{\top}(A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}) \}, \ \Gamma_{*}(\boldsymbol{\beta}) = -E \{ \partial \tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}, \boldsymbol{\beta}) / \partial \boldsymbol{\gamma}^{\top} \},$ $\Phi_{*}(\boldsymbol{\beta}) = -E \{ \partial^{2} \tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}, \boldsymbol{\beta}) / \partial \boldsymbol{\gamma}^{\top} \partial \boldsymbol{\beta} \}.$ By noting that $\Gamma_{*}(\boldsymbol{\beta}_{0}) = 0, \ (S.6) \text{ equals } 0$ when $\boldsymbol{\beta} = \boldsymbol{\beta}_{0}, \text{ thus, } \hat{\boldsymbol{\beta}}^{\text{opt3}} \xrightarrow{p} \boldsymbol{\beta}_{0}.$ Hence, $\hat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{\text{opt3}})$ is improved DR.

Appendix B: Asymptotic normality of semiparametric M-estimators

Chen et al. (2003) established the asymptotic theory of semiparametric M-estimators when there is one infinite dimensional parameter. In this Section, we extend their results to the case where there are two infinite dimensional parameters.

Suppose that there exists a vector-valued function \boldsymbol{m} such that $E \{\boldsymbol{m}(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0(\cdot, \boldsymbol{\theta}), h_0(\cdot, \boldsymbol{\theta}))\} =$ $\boldsymbol{0}$ at $\boldsymbol{\theta} = \boldsymbol{\theta}_0$. We denote $\boldsymbol{\theta}_0 \in \Theta$ and $g_0, h_0 \in \mathcal{H}$ as the true unknown finite and infinite dimensional parameters. Assume that $g_0(\cdot, \boldsymbol{\theta})$ and $h_0(\cdot, \boldsymbol{\theta})$ are functions of \boldsymbol{U} , possibly indexed by $\boldsymbol{\theta}$. We usually suppress the arguments of the functions g_0, h_0 for notational convenience, i.e., $(\boldsymbol{\theta}, g, h) \equiv (\boldsymbol{\theta}, g(\cdot, \boldsymbol{\theta}), h(\cdot, \boldsymbol{\theta})), \ (\boldsymbol{\theta}, g_0, h_0) \equiv (\boldsymbol{\theta}, g_0(\cdot, \boldsymbol{\theta}), h_0(\cdot, \boldsymbol{\theta}))$. We assume that \mathcal{H} is a vector space of functions endowed with a pseudo-metric $|| \cdot ||_{\mathcal{H}}$. For example, when \mathcal{H} is a class of continuous functions, we can take $||g||_{\mathcal{H}} = \sup_{\boldsymbol{\theta}} ||g(\cdot, \boldsymbol{\theta})||_{\infty} =$ $\sup_{\boldsymbol{\theta}} \sup_{\boldsymbol{U}} |g(\boldsymbol{U}, \boldsymbol{\theta})|$. Furthermore, let us define $\boldsymbol{M}(\boldsymbol{\theta}, g, h) = E\{\boldsymbol{m}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)\}$ and $\boldsymbol{M}_n(\boldsymbol{\theta}, g, h) =$ $n^{-1} \sum_{i=1}^n \boldsymbol{m}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)$.

Let us denote $\Theta_{\delta} \equiv \{\boldsymbol{\theta} \in \Theta : ||\boldsymbol{\theta} - \boldsymbol{\theta}_{0}|| \leq \delta\}, \ \mathcal{G}_{\delta} \equiv \{g \in \mathcal{H} : ||g - g_{0}||_{\mathcal{H}} \leq \delta\}$ and $\mathcal{H}_{\delta} \equiv \{h \in \mathcal{H} : ||h - h_{0}||_{\mathcal{H}} \leq \delta\}$ for some $\delta > 0$. For any $(\boldsymbol{\theta}, g, h) \in \Theta_{\delta} \times \mathcal{G}_{\delta} \times \mathcal{H}_{\delta}$, we denote the ordinary derivative of $\boldsymbol{M}(\boldsymbol{\theta}, g, h)$ with respect to $\boldsymbol{\theta}$ as $\Gamma_{1}(\boldsymbol{\theta}, g, h)$, which satisfies

$$\begin{split} \boldsymbol{\Gamma}_1(\boldsymbol{\theta}, g, h)(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}) &= \lim_{\tau \to 0} \Big\{ \boldsymbol{M}(\boldsymbol{\theta} + \tau(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}), g(\cdot, \boldsymbol{\theta} + \tau(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta})), h(\cdot, \boldsymbol{\theta} + \tau(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}))) \\ &- \boldsymbol{M}(\boldsymbol{\theta}, g(\cdot, \boldsymbol{\theta}), h(\cdot, \boldsymbol{\theta})) \Big\} / \tau \end{split}$$

for all $\boldsymbol{\theta} \in \Theta$. In the following discussion, we assume that the dimension of $\boldsymbol{M}(\boldsymbol{\theta}, g, h)$ is the same as the dimension of $\boldsymbol{\theta}$, hence $\Gamma_1(\boldsymbol{\theta}, g, h)$ is a square matrix.

As in Chen et al. (2003), we say that $M(\theta, g, h)$ is pathwise differentiable at $g \in \mathcal{G}_{\delta}$ in the direction $[\bar{g} - g]$ if $\{g + \tau(\bar{g} - g) : \tau \in [0, 1]\} \subset \mathcal{H}$ and

$$\lim_{\tau \to 0} \left\{ \boldsymbol{M}(\boldsymbol{\theta}, g(\cdot, \boldsymbol{\theta}) + \tau(\bar{g}(\cdot, \boldsymbol{\theta}) - g(\cdot, \boldsymbol{\theta})), h(\cdot, \boldsymbol{\theta})) - \boldsymbol{M}(\boldsymbol{\theta}, g(\cdot, \boldsymbol{\theta}), h(\cdot, \boldsymbol{\theta})) \right\} / \tau$$

exists; we denote the limit $\Gamma_2(\boldsymbol{\theta}, g, h)[\bar{g} - g]$. Similarly, if

$$\lim_{\tau \to 0} \left\{ \boldsymbol{M}(\boldsymbol{\theta}, g(\cdot, \boldsymbol{\theta}), h(\cdot, \boldsymbol{\theta}) + \tau(\bar{h}(\cdot, \boldsymbol{\theta}) - h(\cdot, \boldsymbol{\theta}))) - \boldsymbol{M}(\boldsymbol{\theta}, g(\cdot, \boldsymbol{\theta}), h(\cdot, \boldsymbol{\theta})) \right\} / \tau$$

exists; we denote the limit $\Gamma_3(\boldsymbol{\theta}, g, h)[\bar{h} - h]$. These functional derivatives capture the effect of the nonparametric estimation of g_0, h_0 on the variability of $\hat{\boldsymbol{\theta}}$.

Theorem S1. Suppose that $\boldsymbol{\theta}_0$ satisfies $\boldsymbol{M}(\boldsymbol{\theta}_0, g_0, h_0) = \boldsymbol{0}$, that $\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 = o_p(1)$, and that (1.1) $||\boldsymbol{M}_n(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| = \inf_{\boldsymbol{\theta} \in \Theta_{\delta}} ||\boldsymbol{M}_n(\boldsymbol{\theta}, \hat{g}, \hat{h})|| + o_p(1/\sqrt{n}).$

(1.2) (i) The ordinary derivative $\Gamma_1(\theta, g_0, h_0)$ exists for $\theta \in \Theta_{\delta}$, and is continuous at $\theta = \theta_0$; (ii) the matrix $\Gamma_1 \equiv \Gamma_1(\theta_0, g_0, h_0)$ is of full rank.

(1.3) For all $\boldsymbol{\theta} \in \Theta_{\delta}$, the pathwise derivatives $\Gamma_{2}(\boldsymbol{\theta}, g_{0}, h_{0})[g-g_{0}]$ and $\Gamma_{3}(\boldsymbol{\theta}, g_{0}, h_{0})[h-h_{0}]$ exist in all directions $[g-g_{0}], [h-h_{0}] \in \mathcal{H}$; and for all $(\boldsymbol{\theta}, g, h) \in \Theta_{\delta_{n}} \times \mathcal{G}_{\delta_{n}} \times \mathcal{H}_{\delta_{n}}$ with a positive sequence $\delta_{n} = o(1)$: (i) $||\boldsymbol{M}(\boldsymbol{\theta}, g, h) - \boldsymbol{M}(\boldsymbol{\theta}, g_{0}, h_{0}) - \Gamma_{2}(\boldsymbol{\theta}, g_{0}, h_{0})[g-g_{0}] - \Gamma_{3}(\boldsymbol{\theta}, g_{0}, h_{0})[h-h_{0}]|| \leq c \{||g-g_{0}||_{\mathcal{H}}^{2} + ||h-h_{0}||_{\mathcal{H}}^{2}\}$ for a constant $c \geq 0$; (ii) $||\Gamma_{2}(\boldsymbol{\theta}, g_{0}, h_{0})[g-g_{0}] - \Gamma_{2}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[g-g_{0}]|| \leq o(1)\delta_{n}$; (iii) $||\Gamma_{3}(\boldsymbol{\theta}, g_{0}, h_{0})[h-h_{0}] - \Gamma_{3}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[h-h_{0}]|| \leq o(1)\delta_{n}$.

(1.4) $\hat{g}, \hat{h} \in \mathcal{H}$ with probability tending to one; and $||\hat{g} - g_0||_{\mathcal{H}} = o_p(n^{-1/4}), ||\hat{h} - h_0||_{\mathcal{H}} = o_p(n^{-1/4}).$

(1.5) For all sequences of positive numbers $\{\delta_n\}$ with $\delta_n = o(1)$,

$$\sup_{(\boldsymbol{\theta},g,h)\in\Theta_{\delta_n}\times\mathcal{G}_{\delta_n}\times\mathcal{H}_{\delta_n}}\frac{\sqrt{n}||\boldsymbol{M}_n(\boldsymbol{\theta},g,h)-\boldsymbol{M}(\boldsymbol{\theta},g,h)-\boldsymbol{M}_n(\boldsymbol{\theta}_0,g_0,h_0)||}{1+\sqrt{n}\left\{||\boldsymbol{M}_n(\boldsymbol{\theta},g,h)||+||\boldsymbol{M}(\boldsymbol{\theta},g,h)||\right\}}=o_p(1).$$

(1.6) For some finite matrix V_1 ,

$$\sqrt{n} \left\{ \boldsymbol{M}_n(\boldsymbol{\theta}_0, g_0, h_0) + \boldsymbol{\Gamma}_2(\boldsymbol{\theta}_0, g_0, h_0) [\hat{g} - g_0] + \boldsymbol{\Gamma}_3(\boldsymbol{\theta}_0, g_0, h_0) [\hat{h} - h_0] \right\} \stackrel{D}{\longrightarrow} N(\boldsymbol{0}, \boldsymbol{V}_1).$$

Then, $\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{D} N(\boldsymbol{0}, \boldsymbol{\Omega})$, where $\boldsymbol{\Omega} \equiv \boldsymbol{\Gamma}_1^{-1} \boldsymbol{V}_1 \left\{ \boldsymbol{\Gamma}_1^{-1} \right\}^{\top}$.

Proof. The proof is very similar to that of Theorem 2 in Chen et al. (2003) and Theorem 3.3 in Pakes and Pollard (1989).

We first establish \sqrt{n} -consistency of $\hat{\boldsymbol{\theta}}$ to $\boldsymbol{\theta}_0$. We choose a positive sequence $\delta_n = o(1)$ such that $\Pr(||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0|| \ge \delta_n, ||\hat{g} - g_0||_{\mathcal{H}} \ge \delta_n, ||\hat{h} - h_0||_{\mathcal{H}} \ge \delta_n) \to 0$. By condition (1.2), there exists a constant C > 0 such that $||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0||C$ is bounded by $||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_0, h_0)||$ with probability tending to one; this in turn is bounded above by

$$||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| + ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) + \boldsymbol{M}_{n}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})|| + ||\boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| + O_{p}(n^{-1/2})$$
(S.7)

by the triangle inequality and condition (1.6). By condition (1.3), (1.4) and (1.6),

$$\begin{aligned} ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| \\ &\leq ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) - \boldsymbol{\Gamma}_{2}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})[\hat{g} - g_{0}] - \boldsymbol{\Gamma}_{3}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})[\hat{h} - h_{0}]|| \\ &+ ||\boldsymbol{\Gamma}_{2}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})[\hat{g} - g_{0}] - \boldsymbol{\Gamma}_{2}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[\hat{g} - g_{0}]|| + ||\boldsymbol{\Gamma}_{2}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[\hat{g} - g_{0}]|| \\ &+ ||\boldsymbol{\Gamma}_{3}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})[\hat{h} - h_{0}] - \boldsymbol{\Gamma}_{3}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[\hat{h} - h_{0}]|| + ||\boldsymbol{\Gamma}_{3}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[\hat{h} - h_{0}]|| \\ &\leq c \left\{ ||\hat{g} - g_{0}||_{\mathcal{H}}^{2} + ||\hat{h} - h_{0}||_{\mathcal{H}}^{2} \right\} + ||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}|| \times o_{p}(1) + O_{p}(n^{-1/2}) \\ &= o_{p}(n^{-1/2}) + ||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}|| \times o_{p}(1) + O_{p}(n^{-1/2}) \\ &\leq ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})|| \times o_{p}(1) + O_{p}(n^{-1/2}). \end{aligned}$$
(S.8)

Using the above fact and by condition (1.5),

$$\begin{aligned} ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) + \boldsymbol{M}_{n}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})|| \\ &\leq o_{p}(1) \times \left\{ n^{-1/2} + ||\boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| + ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| \right\} \\ &\leq o_{p}(1) \times \left\{ n^{-1/2} + ||\boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| + ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})|| + ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})|| \times o_{p}(1) + O_{p}(n^{-1/2}) \right\} \\ &= o_{p}(n^{-1/2}) + o_{p}(1) \times \left\{ ||\boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| + ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0})|| \times (1 + o_{p}(1)) \right\}. \end{aligned}$$
(S.9)

Combine (S.7), (S.8), (S.9) and condition (1.1), it implies that

$$\begin{aligned} ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_0, h_0)|| \times \{1 - o_p(1)\} &\leq o_p(n^{-1/2}) + ||\boldsymbol{M}_n(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h})|| \times \{1 + o_p(1)\} + O_p(n^{-1/2}) \\ &\leq \inf_{\boldsymbol{\theta} \in \Theta_{\delta}} ||\boldsymbol{M}_n(\boldsymbol{\theta}, \hat{g}, \hat{h})|| \times \{1 + o_p(1)\} + O_p(n^{-1/2}). \end{aligned}$$
(S.10)

By assuming that $M(\theta, g, h)$ is continuous in g and h at $g = g_0$, $h = h_0$, we have $||M(\theta, \hat{g}, \hat{h}) - M(\theta, g_0, h_0)|| = o_p(1)$. Again under conditions (1.3)-(1.6), we have that

$$\begin{split} ||\boldsymbol{M}_{n}(\boldsymbol{\theta}, \hat{g}, \hat{h})|| &\leq ||\boldsymbol{M}_{n}(\boldsymbol{\theta}, \hat{g}, \hat{h}) - \boldsymbol{M}(\boldsymbol{\theta}, \hat{g}, \hat{h}) - \boldsymbol{M}_{n}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})|| + ||\boldsymbol{M}(\boldsymbol{\theta}, \hat{g}, \hat{h}) - \boldsymbol{M}(\boldsymbol{\theta}, g_{0}, h_{0})|| \\ &+ ||\boldsymbol{M}(\boldsymbol{\theta}, g_{0}, h_{0})|| + ||\boldsymbol{M}_{n}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})|| \\ &\leq o_{p}(n^{-1/2}) + o_{p}(1) \times \Big\{ ||\boldsymbol{M}_{n}(\boldsymbol{\theta}, \hat{g}, \hat{h})|| + ||\boldsymbol{M}(\boldsymbol{\theta}, g_{0}, h_{0})|| \times (1 + o_{p}(1)) \Big\} \\ &+ ||\boldsymbol{M}(\boldsymbol{\theta}, g_{0}, h_{0})|| + O_{p}(n^{-1/2}). \end{split}$$

With $\boldsymbol{M}(\boldsymbol{\theta}_0, g_0, h_0) = \boldsymbol{0}$, we have $||\boldsymbol{M}_n(\boldsymbol{\theta}, \hat{g}, \hat{h})|| \times \{1 - o_p(1)\} \leq o_p(1) \times ||\boldsymbol{M}(\boldsymbol{\theta}, g_0, h_0) - \boldsymbol{M}(\boldsymbol{\theta}_0, g_0, h_0)|| + O_p(n^{-1/2})$ where all the $o_p(1), O_p(n^{-1/2})$ holds uniformly with respect to $\boldsymbol{\theta} \in \Theta_{\delta}$.

$$\inf_{\boldsymbol{\theta}\in\Theta_{\delta}} ||\boldsymbol{M}_{n}(\boldsymbol{\theta}, \hat{g}, \hat{h})|| \leq o_{p}(1) \times \inf_{\boldsymbol{\theta}\in\Theta_{\delta}} ||\boldsymbol{M}(\boldsymbol{\theta}, g_{0}, h_{0}) - \boldsymbol{M}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})|| + O_{p}(n^{-1/2}) \\
= O_{p}(n^{-1/2}).$$

This and (S.10) imply that $||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_0, h_0)|| \leq O_p(n^{-1/2})$. Hence, $||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0||C \leq ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_0, h_0)|| \leq O_p(n^{-1/2})$.

Next we establish the asymptotic normality property. We only sketch the main steps here. Define the linearization $\mathcal{L}_n(\boldsymbol{\theta}) = \boldsymbol{M}_n(\boldsymbol{\theta}_0, g_0, h_0) + \boldsymbol{\Gamma}_1(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + \boldsymbol{\Gamma}_2(\boldsymbol{\theta}_0, g_0, h_0)[\hat{g} - g_0] + \boldsymbol{\Gamma}_3(\boldsymbol{\theta}_0, g_0, h_0)[\hat{h} - h_0]$. By conditions (1.2)-(1.5) and the root-*n* rate results above,

$$\begin{split} &||\boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \mathcal{L}_{n}(\hat{\boldsymbol{\theta}})|| \\ &= ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) + \boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) + \boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) - \mathcal{L}_{n}(\hat{\boldsymbol{\theta}})|| \\ &\leq ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) - \boldsymbol{\Gamma}_{2}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[\hat{g} - g_{0}] - \boldsymbol{\Gamma}_{3}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})[\hat{h} - h_{0}]|| \\ &+ ||\boldsymbol{M}(\hat{\boldsymbol{\theta}}, g_{0}, h_{0}) - \boldsymbol{\Gamma}_{1}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0})|| + ||\boldsymbol{M}_{n}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}(\hat{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{M}_{n}(\boldsymbol{\theta}_{0}, g_{0}, h_{0})|| \\ &= o_{p}(n^{-1/2}). \end{split}$$

Let us define $\bar{\theta}$ as the minimizer of $||\mathcal{L}_n(\cdot)||$, it is straightforward to show that $\bar{\theta}$ satisfies

$$\sqrt{n}(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = -\boldsymbol{\Gamma}_1^{-1} \sqrt{n} \left\{ \boldsymbol{M}_n(\boldsymbol{\theta}_0, g_0, h_0) + \boldsymbol{\Gamma}_2(\boldsymbol{\theta}_0, g_0, h_0)[\hat{g} - g_0] + \boldsymbol{\Gamma}_3(\boldsymbol{\theta}_0, g_0, h_0)[\hat{h} - h_0] \right\}.$$
Similarly, $||\boldsymbol{M}_n(\bar{\boldsymbol{\theta}}, \hat{g}, \hat{h}) - \boldsymbol{\mathcal{L}}_n(\bar{\boldsymbol{\theta}})|| = o_p(n^{-1/2}).$ A little more work shows that $\sqrt{n}(\hat{\boldsymbol{\theta}} - \bar{\boldsymbol{\theta}}) = o_p(1).$ Hence, $\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\Omega}),$ where $\boldsymbol{\Omega} \equiv \boldsymbol{\Gamma}_1^{-1} \boldsymbol{V}_1 \left\{ \boldsymbol{\Gamma}_1^{-1} \right\}^{\top}.$

Appendix C: Details and proof of Theorem 1

Let us write $\boldsymbol{U} = (Y, A, \boldsymbol{X})$ and let $\boldsymbol{\theta}$ be the collection of unknown parameters involved in obtaining the estimators for V(d). For $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{LS}})$ and $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt1}})$, the estimator for $\boldsymbol{\theta}$, $\hat{\boldsymbol{\theta}}$, can be obtained by solving a set of M-estimating equations $\sum_{i=1}^{n} \boldsymbol{m}(\boldsymbol{U}_{i}, \boldsymbol{\theta}) = \boldsymbol{0}$ (Stefanski and Boos, 2002), where the last element of $\boldsymbol{m}(\boldsymbol{U}_{i}, \boldsymbol{\theta})$ corresponds to the estimating equation for V(d). We denote $\boldsymbol{\theta}_{0}$ as the value that satisfies $E\{\boldsymbol{m}(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{0})\} = \boldsymbol{0}$. Following standard M-estimation theory, $\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}) \xrightarrow{D} N(\boldsymbol{0}, \boldsymbol{B}(\boldsymbol{\theta}_{0})^{-1}\boldsymbol{C}(\boldsymbol{\theta}_{0})\{\boldsymbol{B}(\boldsymbol{\theta}_{0})^{-1}\}^{\top})$, where $\boldsymbol{B}(\boldsymbol{\theta}) = E\{\partial \boldsymbol{m}(\boldsymbol{U}_{i}, \boldsymbol{\theta})/\partial \boldsymbol{\theta}^{\top}\}$ and $\boldsymbol{C}(\boldsymbol{\theta}) = E\{\boldsymbol{m}(\boldsymbol{U}_{i}, \boldsymbol{\theta})\boldsymbol{m}^{\top}(\boldsymbol{U}_{i}, \boldsymbol{\theta})\}$. Therefore, the asymptotic variance of $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{LS}})$ and $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt1}})$ is in the last, rightmost diagonal entry

of the corresponding matrix $\boldsymbol{B}(\boldsymbol{\theta}_0)^{-1}\boldsymbol{C}(\boldsymbol{\theta}_0)\{\boldsymbol{B}(\boldsymbol{\theta}_0)^{-1}\}^{\top}$. For $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt2}})$, the estimator for $\boldsymbol{\theta}, \, \hat{\boldsymbol{\theta}}, \, \text{can}$ be obtained by solving $\sum_{i=1}^{n} \boldsymbol{m}(\boldsymbol{U}_i, \boldsymbol{\theta}, \hat{g}, \hat{h}) = \boldsymbol{0}$ where \hat{g}, \hat{h} are nonparametric estimators of some infinite dimensional parameters. In this case, the infinite dimensional parameters are the conditional expectations of Y given (\boldsymbol{X}, A) . We utilize semiparametric M-estimation theory to calculate the asymptotic variance of $\hat{\boldsymbol{\theta}}$.

In the following discussions, we assume that γ is a q-dimensional vector, i.e., $\gamma = (\gamma_1, \ldots, \gamma_q)$ and β is a s-dimensional vector, i.e., $\beta = (\beta_1, \ldots, \beta_s)$. We use $\mathbf{0}_{a \times b}$ to denote a zero matrix with a rows and b columns. Sometimes we omit the dimension when there is no confusion. In addition, let us define $Q_{\beta\beta}(\mathbf{X}, A; \beta) = \partial^2 Q(\mathbf{X}, A; \beta) / \partial \beta \partial \beta^{\top}$, and let $g_0(\mathbf{X}) \triangleq E(Y \mid \mathbf{X}, A = 1), h_0(\mathbf{X}) \triangleq E(Y \mid \mathbf{X}, A = -1)$ denote the true infinite dimensional parameters.

Theorem 1. (Asymptotic normality when propensity score model is fully specified). The unknown parameters are $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\top}, V(d))^{\top}$. When either the propensity score or the outcome model is correct,

$$\begin{split} \sqrt{n} \left\{ \widehat{V}(d; \widehat{\boldsymbol{\beta}}^{LS}) - V(d) \right\} & \stackrel{D}{\longrightarrow} N(0, U_1(\boldsymbol{\theta}_0^{LS})), \\ where \ U_1(\boldsymbol{\theta}) = \boldsymbol{B}_2(\boldsymbol{\theta}) \{ \boldsymbol{B}_1^{LS}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{C}_{11}^{LS}(\boldsymbol{\theta}) \{ \boldsymbol{B}_1^{LS}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{B}_2^{\top}(\boldsymbol{\theta}) - 2\boldsymbol{B}_2(\boldsymbol{\theta}) \{ \boldsymbol{B}_1^{LS}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{C}_{12}^{LS}(\boldsymbol{\theta}) + \\ \boldsymbol{C}_{22}(\boldsymbol{\theta}). \ Here, \end{split}$$

$$\begin{split} \mathbf{B}_{1}^{LS}(\boldsymbol{\theta}) &= E\left[Q_{\boldsymbol{\beta}\boldsymbol{\beta}}(\boldsymbol{X},A;\boldsymbol{\beta})\left\{Y-Q(\boldsymbol{X},A;\boldsymbol{\beta})\right\}-Q_{\boldsymbol{\beta}}(\boldsymbol{X},A;\boldsymbol{\beta})Q_{\boldsymbol{\beta}}^{\mathsf{T}}(\boldsymbol{X},A;\boldsymbol{\beta})\right],\\ \mathbf{B}_{2}(\boldsymbol{\theta}) &= E\left[\left\{1-\frac{I\left\{A=d(\boldsymbol{X})\right\}}{\pi\left\{d(\boldsymbol{X}),\boldsymbol{X}\right\}}\right)Q_{\boldsymbol{\beta}}^{\mathsf{T}}\left\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\right\}\right],\\ \mathbf{C}_{11}^{LS}(\boldsymbol{\theta}) &= E\left[\left\{Y-Q(\boldsymbol{X},A;\boldsymbol{\beta})\right\}^{2}Q_{\boldsymbol{\beta}}(\boldsymbol{X},A;\boldsymbol{\beta})Q_{\boldsymbol{\beta}}^{\mathsf{T}}(\boldsymbol{X},A;\boldsymbol{\beta})\right],\\ \mathbf{C}_{12}^{LS}(\boldsymbol{\theta}) &= E\left(\frac{I\left\{A=d(\boldsymbol{X})\right\}}{\pi\left\{d(\boldsymbol{X}),\boldsymbol{X}\right\}}\left\{Y-Q(\boldsymbol{X},A;\boldsymbol{\beta})\right\}^{2}Q_{\boldsymbol{\beta}}(\boldsymbol{X},A;\boldsymbol{\beta})\\ &+\left\{Y-Q(\boldsymbol{X},A;\boldsymbol{\beta})\right\}\left[Q\left\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\right\}-V(d)\right]Q_{\boldsymbol{\beta}}(\boldsymbol{X},A;\boldsymbol{\beta})\right),\\ \mathbf{C}_{22}(\boldsymbol{\theta}) &= E\left(\frac{I\left\{A=d(\boldsymbol{X})\right\}}{\pi\left\{d(\boldsymbol{X}),\boldsymbol{X}\right\}}\left[Y-Q\left\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\right\}\right]+Q\left\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\right\}-V(d)\right)^{2}. \end{split}$$

The true values are $\boldsymbol{\theta}_0^{LS} = (\boldsymbol{\beta}_{LS}^*^{\top}, V(d))^{\top}$ where $\boldsymbol{\beta}_{LS}^*$ satisfies $E[Q_{\boldsymbol{\beta}}(\boldsymbol{X}, A; \boldsymbol{\beta}_{LS}^*) \{Y - Q(\boldsymbol{X}, A; \boldsymbol{\beta}_{LS}^*)\}] = \mathbf{0}$. For the improved DR estimator with IPW estimating equation,

$$\sqrt{n}\left\{\widehat{V}(d;\hat{\boldsymbol{\beta}}^{opt1}) - V(d)\right\} \xrightarrow{D} N(0, U_2(\boldsymbol{\theta}_0^{opt1})),$$

where $U_2(\theta) = B_2(\theta) \{ B_1^{opt1}(\theta) \}^{-1} C_{11}^{opt1}(\theta) \{ B_1^{opt1}(\theta) \}^{-1} B_2^{\top}(\theta) - 2B_2(\theta) \{ B_1^{opt1}(\theta) \}^{-1} C_{12}^{opt1}(\theta) + C_{22}(\theta).$ Here,

$$\begin{aligned} \boldsymbol{B}_{1}^{opt1}(\boldsymbol{\theta}) &= E\left\{\frac{I\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \\ &\quad \cdot \left(\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} - Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}Q_{\boldsymbol{\beta}}^{\top}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right)\right\}, \\ \boldsymbol{C}_{11}^{opt1}(\boldsymbol{\theta}) &= E\left(\frac{I\{A=d(\boldsymbol{X})\}\left[1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}\right]^{2}}{\pi^{4}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]^{2} \\ &\quad \cdot Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}Q_{\boldsymbol{\beta}}^{\top}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right), \\ \boldsymbol{C}_{12}^{opt1}(\boldsymbol{\theta}) &= E\left(\frac{I\{A=d(\boldsymbol{X})\}\left[1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}\right]}{\pi^{2}\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \\ &\quad \cdot \left[\frac{Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} + Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} - V(d)\right]\right). \end{aligned}$$

The true values are $\boldsymbol{\theta}_{0}^{opt1} = (\boldsymbol{\beta}_{opt1}^{*}^{\top}, V(d))^{\top}$ where $\boldsymbol{\beta}_{opt1}^{*}$ satisfies

$$E\left(\frac{I\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\cdot\frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{opt1}^{*}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{opt1}^{*}\}\right)=\boldsymbol{0}.$$

For the improved DR estimator with augmented IPW estimating equation,

$$\sqrt{n}\left\{\widehat{V}(d;\hat{\boldsymbol{\beta}}^{opt2})-V(d)\right\} \stackrel{D}{\longrightarrow} N(0,U_3(\boldsymbol{\theta}_0^{opt2})),$$

where $U_3(\theta) = B_2(\theta) \{ B_1^{opt2}(\theta) \}^{-1} C_{11}^{opt2}(\theta) \{ B_1^{opt2}(\theta) \}^{-1} B_2^{\top}(\theta) - 2B_2(\theta) \{ B_1^{opt2}(\theta) \}^{-1} C_{12}^{opt2}(\theta) + C_{22}(\theta).$ Here,

$$\boldsymbol{B}_{1}^{opt2}(\boldsymbol{\theta}) = E\left\{\partial \boldsymbol{m}_{1}/\partial \boldsymbol{\beta}^{\top}\right\}, \quad \boldsymbol{C}_{11}^{opt2}(\boldsymbol{\theta}) = E\left\{(\boldsymbol{m}_{1} + \boldsymbol{q}_{1} + \boldsymbol{q}_{2})(\boldsymbol{m}_{1} + \boldsymbol{q}_{1} + \boldsymbol{q}_{2})^{\top}\right\},$$

$$C_{12}^{opt2}(\theta) = E\{(m_1 + q_1 + q_2)m_2\}.$$

Here we suppress the notations by writing $\mathbf{m}_1 \equiv \mathbf{m}_1(\mathbf{U}_i, \boldsymbol{\theta}, g_0, h_0), \ m_2 \equiv m_2(\mathbf{U}_i, \boldsymbol{\theta}), \ \mathbf{q}_1 \equiv \mathbf{q}_1(\mathbf{U}_i, \boldsymbol{\theta}, g_0, h_0), \ \mathbf{q}_2 \equiv \mathbf{q}_2(\mathbf{U}_i, \boldsymbol{\theta}, g_0, h_0) \ where$

$$\begin{split} \boldsymbol{m}_{1}(\boldsymbol{U},\boldsymbol{\theta},g_{0},h_{0}) &= \frac{I\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \Big[Y - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \Big] Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \\ &- \left(\frac{I\{A=d(\boldsymbol{X})\} - \pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \left[g_{0}(\boldsymbol{X})I\{d(\boldsymbol{X})=1\} + h_{0}(\boldsymbol{X})I\{d(\boldsymbol{X})=-1\} - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \Big] Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \right] \\ m_{2}(\boldsymbol{U},\boldsymbol{\theta}) &= \frac{I\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \left[Y - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \right] + Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} - V(d), \\ \boldsymbol{q}_{1}(\boldsymbol{U}_{i},\boldsymbol{\theta},g_{0},h_{0}) &= -\{Y_{i} - g_{0}(\boldsymbol{X}_{i})\} \frac{I(A_{i}=1)f_{\boldsymbol{X}}(\boldsymbol{X}_{i})}{f_{\boldsymbol{X},A}(\boldsymbol{X}_{i},1)} \cdot \frac{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\} - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} \cdot \\ &\frac{1-\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} I\{d(\boldsymbol{X}_{i})=1\}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}, \\ \boldsymbol{q}_{2}(\boldsymbol{U}_{i},\boldsymbol{\theta},g_{0},h_{0}) &= -\{Y_{i} - h_{0}(\boldsymbol{X}_{i})\} \frac{I(A_{i}=-1)f_{\boldsymbol{X}}(\boldsymbol{X}_{i})}{f_{\boldsymbol{X},A}(\boldsymbol{X}_{i},-1)} \cdot \frac{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\} - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} \cdot \\ &\frac{1-\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} I\{d(\boldsymbol{X}_{i})=-1\}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}, \end{split}$$

where $f_{\mathbf{X},A}(\cdot,\cdot)$ and $f_{\mathbf{X}}(\cdot)$ denote the density of (\mathbf{X}, A) and \mathbf{X} , respectively. The true values are $\boldsymbol{\theta}_{0}^{opt2} = (\boldsymbol{\beta}_{opt2}^{*}^{\top}, V(d))^{\top}$ where $\boldsymbol{\beta}_{opt2}^{*}$ satisfies

$$E\left(\frac{I\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\cdot\frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{opt2}^{*}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{opt2}^{*}\}\right)$$
$$-E\left(\frac{I\{A=d(\boldsymbol{X})\}-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\cdot\frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\cdot\left[Q_{0}\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{opt2}^{*}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{opt2}^{*}\}\right]=\mathbf{0}.$$

Consistent estimators of U_1, U_2, U_3 can be constructed by replacing the expectation E with the empirical measure \mathbb{P}_n in the above quantities.

Remark 1. When the propensity score is correctly specified, $\pi(A, \mathbf{X}) = \pi_0(A, \mathbf{X})$, note that $\mathbf{B}_2(\boldsymbol{\theta}) = \mathbf{0}$, hence $U_1(\boldsymbol{\theta}) = U_2(\boldsymbol{\theta}) = U_3(\boldsymbol{\theta}) = \mathbf{C}_{22}(\boldsymbol{\theta})$, which is equal to

$$E\left(\frac{I\{A=d(\boldsymbol{X})\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}]+Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}-V(d)\right)^2$$

=
$$E\left[\frac{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q^2\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]+E\left[\frac{YI\{A=d(\boldsymbol{X})\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}-Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}\right]^2$$
$$-2E\left[\frac{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}\cdot Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\}\right]+Var[Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}].$$

Furthermore, note that $\beta^*_{opt1} = \beta^*_{opt2} = \beta^{opt}$ which minimizes the above quantity. This confirms that when the propensity score is correct but outcome model incorrect, $\hat{V}(d; \hat{\beta}^{opt1})$ and $\hat{V}(d; \hat{\beta}^{opt2})$ have the same asymptotic variance, which is smaller than that of $\hat{V}(d; \hat{\beta}^{LS})$. Though, in small sample size, $\hat{V}(d; \hat{\beta}^{opt2})$ is preferred since it utilizes all the available data and is much more stable. When both models are correct, by noting that $\beta^{opt} = \beta_0 = \beta^*_{LS}$, all three estimators have the same asymptotic variance.

Proof. For the usual DR estimator $\hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{LS}})$, the estimating equation $\boldsymbol{m}(\boldsymbol{U}_i, \boldsymbol{\theta})$ is given by

$$\boldsymbol{m}(\boldsymbol{U}_{i},\boldsymbol{\theta}) = \begin{pmatrix} Q_{\boldsymbol{\beta}}(\boldsymbol{X}_{i},A_{i};\boldsymbol{\beta}) \{Y_{i} - Q(\boldsymbol{X}_{i},A_{i};\boldsymbol{\beta})\} \\ \frac{I\{A_{i} = d(\boldsymbol{X}_{i})\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} [Y_{i} - Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}] + Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\} - V(d) \end{pmatrix}.$$

When either the propensity score or the outcome model is correct, the true values are $\boldsymbol{\theta}_{0}^{\mathrm{LS}} = (\boldsymbol{\beta}_{\mathrm{LS}}^{*}^{\top}, V(d))^{\top}$ where $\boldsymbol{\beta}_{\mathrm{LS}}^{*}$ satisfies $E[Q_{\boldsymbol{\beta}}(\boldsymbol{X}, A; \boldsymbol{\beta}_{\mathrm{LS}}^{*}) \{Y - Q(\boldsymbol{X}, A; \boldsymbol{\beta}_{\mathrm{LS}}^{*})\}] = \mathbf{0}$. By M-estimation theory, $\hat{\boldsymbol{\theta}}^{\mathrm{LS}} \triangleq (\{\hat{\boldsymbol{\beta}}^{\mathrm{LS}}\}^{\top}, \hat{V}(d; \hat{\boldsymbol{\beta}}^{\mathrm{LS}}))^{\top}$ is asymptotically normal,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}^{\mathrm{LS}} - \boldsymbol{\theta}_{0}^{\mathrm{LS}}) \xrightarrow{D} N(0, \{\boldsymbol{B}^{\mathrm{LS}}(\boldsymbol{\theta}_{0}^{\mathrm{LS}})\}^{-1}\boldsymbol{C}^{\mathrm{LS}}(\boldsymbol{\theta}_{0}^{\mathrm{LS}})[\{\boldsymbol{B}^{\mathrm{LS}}(\boldsymbol{\theta}_{0}^{\mathrm{LS}})\}^{-1}]^{\top}),$$

where

$$\boldsymbol{B}^{\mathrm{LS}}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{B}_{1}^{\mathrm{LS}}(\boldsymbol{\theta}) & \boldsymbol{0}_{s \times 1} \\ \boldsymbol{B}_{2}(\boldsymbol{\theta}) & -1 \end{pmatrix} \qquad \boldsymbol{C}^{\mathrm{LS}}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{C}_{11}^{\mathrm{LS}}(\boldsymbol{\theta}) & \boldsymbol{C}_{12}^{\mathrm{LS}}(\boldsymbol{\theta}) \\ \{\boldsymbol{C}_{12}^{\mathrm{LS}}(\boldsymbol{\theta})\}^{\top} & \boldsymbol{C}_{22}(\boldsymbol{\theta}) \end{pmatrix},$$

with all the quantities defined in the theorem. After some algebra, we obtain

$$\begin{split} \sqrt{n} \left\{ \widehat{V}(d; \widehat{\boldsymbol{\beta}}^{\mathrm{LS}}) - V(d) \right\} & \stackrel{D}{\longrightarrow} N(0, U_1(\boldsymbol{\theta}_0^{\mathrm{LS}})), \end{split}$$
where $U_1(\boldsymbol{\theta}) = \boldsymbol{B}_2(\boldsymbol{\theta}) \{ \boldsymbol{B}_1^{\mathrm{LS}}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{C}_{11}^{\mathrm{LS}}(\boldsymbol{\theta}) \{ \boldsymbol{B}_1^{\mathrm{LS}}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{B}_2^{\top}(\boldsymbol{\theta}) - 2\boldsymbol{B}_2(\boldsymbol{\theta}) \{ \boldsymbol{B}_1^{\mathrm{LS}}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{C}_{12}^{\mathrm{LS}}(\boldsymbol{\theta}) + \boldsymbol{C}_{22}(\boldsymbol{\theta}). \end{split}$

For the improved DR estimator with IPW estimating equation $\hat{V}(d; \hat{\beta}^{\text{opt1}}), \boldsymbol{m}(\boldsymbol{U}_i, \boldsymbol{\theta})$ is given by

$$\boldsymbol{m}(\boldsymbol{U}_{i},\boldsymbol{\theta}) = \begin{pmatrix} \frac{I\{A_{i} = d(\boldsymbol{X}_{i})\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} \Big[Y_{i} - Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}\Big]Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}\\ \frac{I\{A_{i} = d(\boldsymbol{X}_{i})\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} \left[Y_{i} - Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}\right] + Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\} - V(d) \end{pmatrix}$$

The true values are $\boldsymbol{\theta}_0^{\text{opt1}} = (\boldsymbol{\beta}_{\text{opt1}}^*{}^{\top}, V(d))^{\top}$ where $\boldsymbol{\beta}_{\text{opt1}}^*$ satisfies

$$E\left(\frac{I\{A=d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\cdot\frac{1-\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Y-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{\text{opt1}}^{*}\}\right]Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}_{\text{opt1}}^{*}\}\right] = \mathbf{0}$$

Again by M-estimation theory, $\hat{\boldsymbol{\theta}}^{\text{opt1}} \triangleq (\{\hat{\boldsymbol{\beta}}^{\text{opt1}}\}^{\top}, \hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt1}}))^{\top}$ is asymptotically normal,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}^{\text{opt1}} - \boldsymbol{\theta}_0^{\text{opt1}}) \xrightarrow{D} N(0, \{\boldsymbol{B}^{\text{opt1}}(\boldsymbol{\theta}_0^{\text{opt1}})\}^{-1} \boldsymbol{C}^{\text{opt1}}(\boldsymbol{\theta}_0^{\text{opt1}}) [\{\boldsymbol{B}^{\text{opt1}}(\boldsymbol{\theta}_0^{\text{opt1}})\}^{-1}]^{\top})]$$

where

$$oldsymbol{B}^{ ext{opt1}}(oldsymbol{ heta}) = egin{pmatrix} oldsymbol{B}_1^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{0}_{s imes 1} \ oldsymbol{B}_2(oldsymbol{ heta}) & -1 \end{pmatrix} & oldsymbol{C}^{ ext{opt1}}(oldsymbol{ heta}) = egin{pmatrix} oldsymbol{C}_{11}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{C}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{E}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{C}_{12}^{ ext{opt1}}(oldsymbol{ heta}) = egin{pmatrix} oldsymbol{C}_{11}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{C}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{E}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{C}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{C}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{E}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta} \ oldsymbol{E}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) & oldsymbol{ heta}_{12}^{ ext{opt1}}(oldsymbol{ heta}) \ oldsymbol{ heta}_{12}^{ ext{opt1}}(ol$$

with all the quantities defined in the theorem. The rest is by some simple algebra.

For the improved DR estimator with *augmented* IPW estimating equation $\widehat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt2}})$, the estimating equation is $\boldsymbol{m}^{\text{opt2}}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h) = (\boldsymbol{m}_1(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)^\top, m_2(\boldsymbol{U}_i, \boldsymbol{\theta}))^\top$ where

$$\begin{split} \boldsymbol{m}_{1}(\boldsymbol{U},\boldsymbol{\theta},g,h) &= \frac{I\{A = d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \Big[Y - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \Big] Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \\ &- \left(\frac{I\{A = d(\boldsymbol{X})\} - \pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \cdot \right) \\ &= \left[g(\boldsymbol{X})I\{d(\boldsymbol{X}) = 1\} + h(\boldsymbol{X})I\{d(\boldsymbol{X}) = -1\} - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \right] Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \right], \\ m_{2}(\boldsymbol{U},\boldsymbol{\theta}) &= \frac{I\{A = d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}),\boldsymbol{X}\}} \left[Y - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} \right] + Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} - V(d). \end{split}$$

The true values are $\boldsymbol{\theta}_0^{\text{opt2}} = (\boldsymbol{\beta}_{\text{opt2}}^*{}^{\top}, V(d))^{\top}$ where $\boldsymbol{\beta}_{\text{opt2}}^*$ satisfies

$$E\left(\frac{I\{A = d(\boldsymbol{X})\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \left[Y - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}_{opt2}^{*}\}\right] Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}_{opt2}^{*}\}\right)$$
$$- E\left(\frac{I\{A = d(\boldsymbol{X})\} - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \left[Q_{0}\{\boldsymbol{X}, d(\boldsymbol{X})\} - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}_{opt2}^{*}\}\right] Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}_{opt2}^{*}\}\right) = \mathbf{0}.$$

Let us define $\boldsymbol{M}^{\text{opt2}}(\boldsymbol{\theta}, g, h) = E \{ \boldsymbol{m}^{\text{opt2}}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h) \}$ and $\boldsymbol{M}_n^{\text{opt2}}(\boldsymbol{\theta}, g, h) = n^{-1} \sum_{i=1}^n \boldsymbol{m}^{\text{opt2}}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)$. Now we calculate all the ordinary and functional derivatives in Theorem S1. The ordinary derivative of $\boldsymbol{M}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)$ with respect to $\boldsymbol{\theta}$ is

$$\boldsymbol{\Gamma}_{1}^{\text{opt2}}(\boldsymbol{\theta}, g_{0}, h_{0}) = \begin{pmatrix} \boldsymbol{B}_{1}^{\text{opt2}}(\boldsymbol{\theta}) & \boldsymbol{0}_{s \times 1} \\ \boldsymbol{B}_{2}(\boldsymbol{\theta}) & -1 \end{pmatrix}$$

where $\boldsymbol{B}_{1}^{\text{opt2}}(\boldsymbol{\theta}) = E\left\{\partial \boldsymbol{m}_{1}(\boldsymbol{U}_{i}, \boldsymbol{\theta}, g_{0}, h_{0})/\partial \boldsymbol{\beta}^{\top}\right\}$. The functional derivatives are

$$\Gamma_2^{\text{opt2}}(\boldsymbol{\theta}, g, h)[\bar{g}-g] = \begin{pmatrix} \Gamma_{21}^{\text{opt2}}(\boldsymbol{\theta}, g, h)[\bar{g}-g] \\ 0 \end{pmatrix} \quad \Gamma_3^{\text{opt2}}(\boldsymbol{\theta}, g, h)[\bar{h}-h] = \begin{pmatrix} \Gamma_{31}^{\text{opt2}}(\boldsymbol{\theta}, g, h)[\bar{h}-h] \\ 0 \end{pmatrix}$$

where

$$\begin{split} \mathbf{\Gamma}_{21}^{\text{opt2}}(\boldsymbol{\theta}, g, h)[\bar{g} - g] = & E\left(-\frac{I\{A = d(\boldsymbol{X})\} - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \right. \\ & \left\{\bar{g}(\boldsymbol{X}) - g(\boldsymbol{X})\}I\{d(\boldsymbol{X}) = 1\}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\}\right), \\ & \mathbf{\Gamma}_{31}^{\text{opt2}}(\boldsymbol{\theta}, g, h)[\bar{h} - h] = & E\left(-\frac{I\{A = d(\boldsymbol{X})\} - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}\}}{\pi\{d(\boldsymbol{X}), \boldsymbol{X}\}} \cdot \frac{\bar{h}(\boldsymbol{X}) - \bar{h}(\boldsymbol{X})\}I\{d(\boldsymbol{X}) = -1\}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\}\right). \end{split}$$

Verification of the conditions (1.1)-(1.3) in Theorem S1 is standard. Condition (1.4) can be easily verified using well-known results on kernel estimation. By Section 4 of Chen et al. (2003), condition (1.5) is met since $\boldsymbol{m}^{\text{opt2}}(\boldsymbol{U}, \boldsymbol{\theta}, g, h)$ is (pointwise) Lipschitz continuous with respect to $(\boldsymbol{\theta}, g, h)$. Now we investigate the asymptotic properties of $\sqrt{n}\Gamma_{21}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)[\hat{g} - g_0]$ and $\sqrt{n}\Gamma_{31}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)[\hat{h} - h_0]$ where \hat{g}, \hat{h} are kernel regression estimators. Notice that

$$\begin{split} \mathbf{\Gamma}_{21}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)[\hat{g} - g_0] = & \int \left(-\frac{\pi_0 \{ d(\boldsymbol{x}), \boldsymbol{x} \} - \pi \{ d(\boldsymbol{x}), \boldsymbol{x} \}}{\pi \{ d(\boldsymbol{x}), \boldsymbol{x} \}} \cdot \frac{1 - \pi \{ d(\boldsymbol{x}), \boldsymbol{x} \}}{\pi \{ d(\boldsymbol{x}), \boldsymbol{x} \}} \cdot \frac{1 - \pi \{ d(\boldsymbol{x}), \boldsymbol{x} \}}{\pi \{ d(\boldsymbol{x}), \boldsymbol{x} \}} \cdot \left\{ \hat{g}(\boldsymbol{x}) - g_0(\boldsymbol{x}) \} I\{ d(\boldsymbol{x}) = 1 \} Q_{\boldsymbol{\beta}}\{ \boldsymbol{x}, d(\boldsymbol{x}); \boldsymbol{\beta} \} \right) f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} \end{split}$$

where $f_{\boldsymbol{X}}(\cdot)$ is the density function of \boldsymbol{X} . Recall that

$$\hat{g}(\boldsymbol{x}) = \frac{\sum_{i=1}^{n} K_{\boldsymbol{H}}(\boldsymbol{x} - \boldsymbol{X}_{i}) I(A_{i} = 1) Y_{i}}{\sum_{i=1}^{n} K_{\boldsymbol{H}}(\boldsymbol{x} - \boldsymbol{X}_{i}) I(A_{i} = 1)}$$

By remark 3.3 in Ichimura and Lee (2010), we know that

$$\hat{g}(\boldsymbol{x}) - g_0(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n \frac{Y_i - E(Y \mid \boldsymbol{X} = \boldsymbol{X}_i, A = 1)}{f_{\boldsymbol{X},A}(\boldsymbol{x}, 1)} K_{\boldsymbol{H}}(\boldsymbol{x} - \boldsymbol{X}_i) I(A_i = 1) + o_p(n^{-1/2})$$

where $f_{\boldsymbol{X},A}(\cdot,\cdot)$ is the joint density of (\boldsymbol{X},A) . Therefore,

$$\Gamma_{21}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)[\hat{g} - g_0] = \frac{1}{n} \sum_{i=1}^n \left[\{Y_i - g_0(\boldsymbol{X}_i)\} I(A_i = 1) \cdot \int \left(-\frac{\pi_0\{d(\boldsymbol{x}), \boldsymbol{x}\} - \pi\{d(\boldsymbol{x}), \boldsymbol{x}\}}{\pi\{d(\boldsymbol{x}), \boldsymbol{x}\}} \cdot \frac{1 - \pi\{d(\boldsymbol{x}), \boldsymbol{x}\}}{\pi\{d(\boldsymbol{x}), \boldsymbol{x}\}} \cdot \frac{K_H(\boldsymbol{x} - \boldsymbol{X}_i)}{f_{\boldsymbol{X}, A}(\boldsymbol{x}, 1)} I\{d(\boldsymbol{x}) = 1\} Q_{\boldsymbol{\beta}}\{\boldsymbol{x}, d(\boldsymbol{x}); \boldsymbol{\beta}\} \right) f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} \right]$$

plus an $o_p(n^{-1/2})$ term. Similar to Example 1 in Chen et al. (2003), by using standard change of variables and Taylor expansion we have

$$\boldsymbol{\Gamma}_{21}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)[\hat{g} - g_0] = \frac{1}{n} \sum_{i=1}^n \boldsymbol{q}_1(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0) + o_p(n^{-1/2})$$

where

$$\begin{aligned} \boldsymbol{q}_{1}(\boldsymbol{U}_{i},\boldsymbol{\theta},g_{0},h_{0}) &= -\{Y_{i}-g_{0}(\boldsymbol{X}_{i})\} \, \frac{I(A_{i}=1)f_{\boldsymbol{X}}(\boldsymbol{X}_{i})}{f_{\boldsymbol{X},A}(\boldsymbol{X}_{i},1)} \cdot \frac{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\} - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} \cdot \\ & \frac{1-\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}} I\{d(\boldsymbol{X}_{i})=1\}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}. \end{aligned}$$

Similarly,

$$\Gamma_{31}^{\text{opt2}}(\boldsymbol{\theta}, g_0, h_0)[\hat{h} - h_0] = \frac{1}{n} \sum_{i=1}^n \boldsymbol{q}_2(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0) + o_p(n^{-1/2})$$

where

$$q_{2}(\boldsymbol{U}_{i},\boldsymbol{\theta},g_{0},h_{0}) = -\{Y_{i}-h_{0}(\boldsymbol{X}_{i})\}\frac{I(A_{i}=-1)f_{\boldsymbol{X}}(\boldsymbol{X}_{i})}{f_{\boldsymbol{X},A}(\boldsymbol{X}_{i},-1)}\cdot\frac{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}-\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}\cdot\frac{1-\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\}}I\{d(\boldsymbol{X}_{i})=-1\}Q_{\boldsymbol{\beta}}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}.$$

Combining the above results, we have

$$\sqrt{n}\left\{\boldsymbol{M}_{n}^{\text{opt2}}(\boldsymbol{\theta},g_{0},h_{0})+\boldsymbol{\Gamma}_{2}^{\text{opt2}}(\boldsymbol{\theta},g_{0},h_{0})[\hat{g}-g_{0}]+\boldsymbol{\Gamma}_{3}^{\text{opt2}}(\boldsymbol{\theta},g_{0},h_{0})[\hat{h}-h_{0}]\right\}\overset{D}{\longrightarrow}N(\boldsymbol{0},\boldsymbol{C}^{\text{opt2}}(\boldsymbol{\theta})),$$

where

$$\boldsymbol{C}^{\text{opt2}}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{C}_{11}^{\text{opt2}}(\boldsymbol{\theta}) & \boldsymbol{C}_{12}^{\text{opt2}}(\boldsymbol{\theta}) \\ \{\boldsymbol{C}_{12}^{\text{opt2}}(\boldsymbol{\theta})\}^{\top} & \boldsymbol{C}_{22}(\boldsymbol{\theta}) \end{pmatrix},$$
$$\boldsymbol{C}_{11}^{\text{opt2}}(\boldsymbol{\theta}) = E\left\{ (\boldsymbol{m}_1 + \boldsymbol{q}_1 + \boldsymbol{q}_2)(\boldsymbol{m}_1 + \boldsymbol{q}_1 + \boldsymbol{q}_2)^{\top} \right\}, \quad \boldsymbol{C}_{12}^{\text{opt2}}(\boldsymbol{\theta}) = E\left\{ (\boldsymbol{m}_1 + \boldsymbol{q}_1 + \boldsymbol{q}_2)m_2 \right\}.$$

Here $\boldsymbol{m}_1, \boldsymbol{m}_2, \boldsymbol{q}_1, \boldsymbol{q}_2$ are shorthand for $\boldsymbol{m}_1(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0), \boldsymbol{m}_2(\boldsymbol{U}_i, \boldsymbol{\theta}), \boldsymbol{q}_1(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0), \boldsymbol{q}_2(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0).$ Based on Theorem S1, $\hat{\boldsymbol{\theta}}^{\text{opt2}} \triangleq (\{\hat{\boldsymbol{\beta}}^{\text{opt2}}\}^\top, \hat{V}(d; \hat{\boldsymbol{\beta}}^{\text{opt2}}))^\top$ is asymptotically normal,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}^{\text{opt2}} - \boldsymbol{\theta}_0^{\text{opt2}}) \xrightarrow{D} N(0, \boldsymbol{\Omega}^{\text{opt2}}(\boldsymbol{\theta}_0^{\text{opt2}})),$$

where $\mathbf{\Omega}^{\text{opt2}}(\boldsymbol{\theta}) = \mathbf{\Gamma}_{1}^{\text{opt2}}(\boldsymbol{\theta}, g_{0}, h_{0})^{-1} \boldsymbol{C}^{\text{opt2}}(\boldsymbol{\theta}) \{\mathbf{\Gamma}_{1}^{\text{opt2}}(\boldsymbol{\theta}, g_{0}, h_{0})^{-1}\}^{\top}$. By some algebra, we obtain

$$\sqrt{n}\left\{\widehat{V}(d;\widehat{\boldsymbol{\beta}}^{\text{opt2}}) - V(d)\right\} \xrightarrow{D} N(0, U_3(\boldsymbol{\theta}_0^{\text{opt2}})),$$

where $U_3(\theta) = B_2(\theta) \{ B_1^{\text{opt2}}(\theta) \}^{-1} C_{11}^{\text{opt2}}(\theta) \{ B_1^{\text{opt2}}(\theta) \}^{-1} B_2^{\top}(\theta) - 2B_2(\theta) \{ B_1^{\text{opt2}}(\theta) \}^{-1} C_{12}^{\text{opt2}}(\theta) + C_{22}(\theta).$

Appendix D: Details and proof of Theorem 2

To investigate asymptotic properties of $\widehat{V}(d; \widehat{\gamma}, \widehat{\beta}^{\text{opt3}})$ and $\widehat{V}(d; \widehat{\gamma}, \widehat{\beta}^{\text{opt4}})$, we introduce additional parameters $\boldsymbol{\zeta} = (\boldsymbol{\alpha}^{\top}, \boldsymbol{\psi}^{\top}, \boldsymbol{\phi}^{\top})^{\top}$ to account for $\widehat{\Sigma}_{\boldsymbol{\gamma}\boldsymbol{\gamma}}, \widehat{\Gamma}(\boldsymbol{\beta}), \widehat{\Phi}(\boldsymbol{\beta})$. Here, $\boldsymbol{\alpha}$ corresponds to $-E \{\partial \widetilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}, \boldsymbol{\beta})/\partial \boldsymbol{\gamma}\}, \ \boldsymbol{\psi} = (\boldsymbol{\psi}_1^{\top}, \dots, \boldsymbol{\psi}_q^{\top})^{\top}$ where $\boldsymbol{\psi}_j$ corresponds to the *j*-th column of $E \{S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}, \boldsymbol{\gamma}, \boldsymbol{\beta})/\partial \boldsymbol{\gamma}_j \partial \boldsymbol{\beta}\}$. We use $[\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_q^{\top}]^{\top}$ where $\boldsymbol{\phi}_j$ corresponds to $-E \{\partial^2 \widetilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}, \boldsymbol{\beta})/\partial \boldsymbol{\gamma}_j \partial \boldsymbol{\beta}\}$. We use $[\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_q]$ to represent a matrix with *j*-th column being $\boldsymbol{\phi}_j$, similarly for $[\boldsymbol{\psi}_1, \dots, \boldsymbol{\psi}_q]$. In addition, define $S_{\boldsymbol{\gamma}\boldsymbol{\gamma}}(A, \boldsymbol{X}; \boldsymbol{\gamma}) \triangleq \partial S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}; \boldsymbol{\gamma})/\partial \boldsymbol{\gamma}^{\top}$, let *r* be the dimension of $\boldsymbol{\zeta}$, and let $\operatorname{col}_j \{\cdot\}$ denote the *j*-th column of a matrix.

Theorem 2. (Asymptotic normality when there is nuisance parameter in the propensity score model). To obtain $\widehat{V}(d; \hat{\gamma}, \hat{\beta}^{LS})$, the unknown parameters are $\boldsymbol{\theta} = (\boldsymbol{\gamma}^{\top}, \boldsymbol{\beta}^{\top}, V(d))^{\top}$. When either the propensity score or the outcome model is correct,

$$\sqrt{n}\left\{\widehat{V}(d;\hat{\boldsymbol{\gamma}},\hat{\boldsymbol{\beta}}^{LS})-V(d)\right\} \xrightarrow{D} N(0,U_4(\boldsymbol{\theta}_0^{LS2})),$$

where

$$U_4(\boldsymbol{\theta}) = \boldsymbol{D}_2^{LS2}(\boldsymbol{\theta}) \{ \boldsymbol{D}_1^{LS2}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{F}_{11}^{LS2}(\boldsymbol{\theta}) \{ \boldsymbol{D}_1^{LS2}(\boldsymbol{\theta}) \}^{-1} \{ \boldsymbol{D}_2^{LS2}(\boldsymbol{\theta}) \}^{\top} - 2 \boldsymbol{D}_2^{LS2}(\boldsymbol{\theta}) \{ \boldsymbol{D}_1^{LS2}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{F}_{12}^{LS2}(\boldsymbol{\theta}) + \boldsymbol{F}_{22}(\boldsymbol{\theta}).$$

Here,

$$\begin{split} \mathbf{D}_{1}^{LS2}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{1}(\boldsymbol{\theta}) & \boldsymbol{0}_{q \times s} \\ \boldsymbol{0}_{s \times q} & \boldsymbol{J}_{2}(\boldsymbol{\theta}) \end{pmatrix}, \quad \mathbf{D}_{2}^{LS2}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{3}(\boldsymbol{\theta}) & \boldsymbol{J}_{4}(\boldsymbol{\theta}) \end{pmatrix}, \\ \mathbf{F}_{11}^{LS2}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{5}(\boldsymbol{\theta}) & \boldsymbol{J}_{6}(\boldsymbol{\theta}) \\ \{\boldsymbol{J}_{6}(\boldsymbol{\theta})\}^{\top} & \boldsymbol{J}_{7}(\boldsymbol{\theta}) \end{pmatrix}, \quad \mathbf{F}_{12}^{LS2}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{8}(\boldsymbol{\theta}) \\ \boldsymbol{J}_{9}(\boldsymbol{\theta}) \end{pmatrix}, \quad \mathbf{F}_{22}(\boldsymbol{\theta}) = E\left\{\tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}, \boldsymbol{\beta})\right\}^{2}, \end{split}$$
where

where

$$J_{1}(\theta) = E \{S_{\gamma\gamma}(A, \mathbf{X}; \boldsymbol{\gamma})\},$$

$$J_{2}(\theta) = E [Q_{\beta\beta}(\mathbf{X}, A; \beta) \{Y - Q(\mathbf{X}, A; \beta)\} - Q_{\beta}(\mathbf{X}, A; \beta)Q_{\beta}^{\top}(\mathbf{X}, A; \beta)],$$

$$J_{3}(\theta) = E \{\partial \tilde{\varphi}(Y, A, \mathbf{X}, \boldsymbol{\gamma}, \boldsymbol{\beta})/\partial \boldsymbol{\gamma}^{\top}\},$$

$$J_{4}(\theta) = E \left[\left(1 - \frac{I\{A = d(\mathbf{X})\}}{\pi\{d(\mathbf{X}), \mathbf{X}; \boldsymbol{\gamma}\}}\right)Q_{\beta}^{\top}\{\mathbf{X}, d(\mathbf{X}); \beta\}\right],$$

$$J_{5}(\theta) = E \{S_{\gamma}(A, \mathbf{X}; \boldsymbol{\gamma})S_{\gamma}^{\top}(A, \mathbf{X}; \boldsymbol{\gamma})\},$$

$$J_{6}(\theta) = E \left[S_{\gamma}(A, \mathbf{X}; \boldsymbol{\gamma})Q_{\beta}^{\top}(\mathbf{X}, A; \beta) \{Y - Q(\mathbf{X}, A; \beta)\}\right],$$

$$J_{7}(\theta) = E \left[\{Y - Q(\mathbf{X}, A; \beta)\}^{2} Q_{\beta}(\mathbf{X}, A; \beta)Q_{\beta}^{\top}(\mathbf{X}, A; \beta)],$$

$$J_{8}(\theta) = E \left[Q_{\beta}(\mathbf{X}, A; \beta) \{Y - Q(\mathbf{X}, A; \beta)\},$$

$$J_{9}(\theta) = E \left[Q_{\beta}(\mathbf{X}, A; \beta) \{Y - Q(\mathbf{X}, A; \beta)\}\right] \tilde{\varphi}(Y, A, \mathbf{X}, \boldsymbol{\gamma}, \beta)].$$

The true values are $\boldsymbol{\theta}_0^{LS2} = (\boldsymbol{\gamma}^{*\top}, \boldsymbol{\beta}_{LS}^{*\top}, V(d))^{\top}$ where $\boldsymbol{\gamma}^*$ satisfies $E\{S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}; \boldsymbol{\gamma}^*)\} = \mathbf{0}$ and $\boldsymbol{\beta}_{LS}^*$ satisfies $E[Q_{\boldsymbol{\beta}}(\boldsymbol{X}, A; \boldsymbol{\beta}_{LS}^*) \{Y - Q(\boldsymbol{X}, A; \boldsymbol{\beta}_{LS}^*)\}] = \mathbf{0}$.

To obtain $\widehat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{opt3})$, the unknown parameters are $\boldsymbol{\theta} = (\boldsymbol{\gamma}^{\top}, \boldsymbol{\zeta}^{\top}, \boldsymbol{\beta}^{\top}, V(d))^{\top}$. When either the propensity score or the outcome model is correct,

$$\sqrt{n}\left\{\widehat{V}(d;\hat{\boldsymbol{\gamma}},\hat{\boldsymbol{\beta}}^{opt3})-V(d)\right\} \stackrel{D}{\longrightarrow} N(0,U_5(\boldsymbol{\theta}_0^{opt3}))$$

where

$$U_{5}(\boldsymbol{\theta}) = \boldsymbol{D}_{2}^{opt3}(\boldsymbol{\theta}) \{ \boldsymbol{D}_{1}^{opt3}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{F}_{11}^{opt3}(\boldsymbol{\theta}) \{ \boldsymbol{D}_{1}^{opt3}(\boldsymbol{\theta}) \}^{-1} \{ \boldsymbol{D}_{2}^{opt3}(\boldsymbol{\theta}) \}^{\top} - 2 \boldsymbol{D}_{2}^{opt3}(\boldsymbol{\theta}) \{ \boldsymbol{D}_{1}^{opt3}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{F}_{12}^{opt3}(\boldsymbol{\theta}) + \boldsymbol{F}_{22}(\boldsymbol{\theta}).$$

Here,

$$\begin{split} \boldsymbol{D}_{1}^{opt3}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{1}(\boldsymbol{\theta}) & \boldsymbol{0}_{q \times r} & \boldsymbol{0}_{q \times s} \\ E\left\{\partial \boldsymbol{m}_{3}/\partial\boldsymbol{\gamma}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{3}/\partial\boldsymbol{\zeta}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{3}/\partial\boldsymbol{\beta}^{\top}\right\} \\ E\left\{\partial \boldsymbol{m}_{4}/\partial\boldsymbol{\gamma}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{4}/\partial\boldsymbol{\zeta}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{4}/\partial\boldsymbol{\beta}^{\top}\right\} \end{pmatrix}, \quad \boldsymbol{D}_{2}^{opt3}(\boldsymbol{\theta}) &= \left(\boldsymbol{J}_{3}(\boldsymbol{\theta}) & \boldsymbol{0}_{1 \times r} & \boldsymbol{J}_{4}(\boldsymbol{\theta})\right), \\ \boldsymbol{F}_{11}^{opt3}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{5}(\boldsymbol{\theta}) & E\left\{\boldsymbol{S}_{\boldsymbol{\gamma}}\boldsymbol{m}_{3}^{\top}\right\} & E\left\{\boldsymbol{S}_{\boldsymbol{\gamma}}\boldsymbol{m}_{4}^{\top}\right\} \\ E\left\{\boldsymbol{m}_{3}\boldsymbol{S}_{\boldsymbol{\gamma}}^{\top}\right\} & E\left\{\boldsymbol{m}_{3}\boldsymbol{m}_{3}^{\top}\right\} & E\left\{\boldsymbol{m}_{3}\boldsymbol{m}_{4}^{\top}\right\} \\ E\left\{\boldsymbol{m}_{4}\boldsymbol{S}_{\boldsymbol{\gamma}}^{\top}\right\} & E\left\{\boldsymbol{m}_{4}\boldsymbol{m}_{3}^{\top}\right\} & E\left\{\boldsymbol{m}_{4}\boldsymbol{m}_{4}^{\top}\right\} \end{pmatrix}, \quad \boldsymbol{F}_{12}^{opt3}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{8}(\boldsymbol{\theta}) \\ E\left\{\boldsymbol{m}_{3}\tilde{\boldsymbol{\varphi}}\right\} \\ E\left\{\boldsymbol{m}_{4}\tilde{\boldsymbol{\varphi}}\right\} \end{pmatrix}. \end{split}$$

Here S_{γ} , m_3 , m_4 , $\tilde{\varphi}$ are shorthand for $S_{\gamma}(A, X; \gamma)$, $m_3(U, \theta)$, $m_4(U, \theta)$, $\tilde{\varphi}(Y, A, X, \gamma, \beta)$ where

$$oldsymbol{m} oldsymbol{m} oldsymbol{m}_{3}(oldsymbol{U},oldsymbol{ heta}) = egin{pmatrix} oldsymbol{lpha} + \partial ilde{arphi}(Y,A,oldsymbol{X},oldsymbol{\gamma},B)/\partialoldsymbol{\gamma} \ \psi_{1} - col_{1}\left\{S_{oldsymbol{\gamma}}(A,oldsymbol{X},oldsymbol{\gamma})S_{oldsymbol{\gamma}}^{ op}(A,oldsymbol{X},oldsymbol{\gamma})
ight\} \ & ... \ \psi_{q} - col_{q}\left\{S_{oldsymbol{\gamma}}(A,oldsymbol{X},oldsymbol{\gamma},A,oldsymbol{X},oldsymbol{\gamma})S_{oldsymbol{\gamma}}^{ op}(A,oldsymbol{X},oldsymbol{\gamma})
ight\} \ & \phi_{1} + \partial^{2} ilde{arphi}(Y,A,oldsymbol{X},oldsymbol{\gamma},B)/\partialoldsymbol{\gamma}_{1}\partialoldsymbol{\beta} \ & ... \ & \phi_{q} + \partial^{2} ilde{arphi}(Y,A,oldsymbol{X},oldsymbol{\gamma},B)/\partialoldsymbol{\gamma}_{q}\partialoldsymbol{\beta} \ \end{pmatrix},$$

$$\boldsymbol{m}_{4}(\boldsymbol{U},\boldsymbol{\theta}) = \frac{R\left[1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}\right]}{\pi^{2}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} \left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} + [\boldsymbol{\phi}_{1}, \dots, \boldsymbol{\phi}_{q}][\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}]^{-1} \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} \right] \cdot \left[Y - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} - \boldsymbol{\alpha}^{\top}[\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}]^{-1} \frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} \right].$$

The true parameters are $\boldsymbol{\theta}_{0}^{opt3} = (\boldsymbol{\gamma}^{*\top}, \boldsymbol{\zeta}_{opt3}^{*\top}, \boldsymbol{\beta}_{opt3}^{*\top}, V(d))^{\top}$ where $(\boldsymbol{\zeta}_{opt3}^{*}, \boldsymbol{\beta}_{opt3}^{*})$ is the solution to the following set of equations:

$$\boldsymbol{\alpha} + E\left\{\partial\tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}, \boldsymbol{\beta})/\partial\boldsymbol{\gamma}\right\} = \boldsymbol{0},$$

$$[\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}] - E\left\{S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}, \boldsymbol{\gamma}^{*})S_{\boldsymbol{\gamma}}^{\top}(A, \boldsymbol{X}, \boldsymbol{\gamma}^{*})\right\} = \boldsymbol{0},$$

$$[\boldsymbol{\phi}_{1}, \dots, \boldsymbol{\phi}_{q}] + E\left\{\partial^{2}\tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}, \boldsymbol{\beta})/\partial\boldsymbol{\gamma}^{\top}\partial\boldsymbol{\beta}\right\} = \boldsymbol{0},$$

$$E\left(\frac{R\left[1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}\right]}{\pi^{2}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}\left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} + [\boldsymbol{\phi}_{1}, \dots, \boldsymbol{\phi}_{q}][\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}\right]$$

$$\cdot \left[Y - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} - \boldsymbol{\alpha}^{\top}[\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}\right]\right) = \boldsymbol{0}.$$
(S.11)

To obtain $\widehat{V}(d; \hat{\gamma}, \hat{\beta}^{opt4})$, the unknown parameters are $\boldsymbol{\theta} = (\boldsymbol{\gamma}^{\top}, \boldsymbol{\zeta}^{\top}, \boldsymbol{\beta}^{\top}, V(d))^{\top}$. When either the propensity score or the outcome model is correct,

$$\sqrt{n}\left\{\widehat{V}(d;\hat{\boldsymbol{\gamma}},\hat{\boldsymbol{\beta}}^{opt4})-V(d)\right\} \stackrel{D}{\longrightarrow} N(0,U_6(\boldsymbol{\theta}_0^{opt4}))$$

where

$$U_{6}(\boldsymbol{\theta}) = \boldsymbol{D}_{2}^{opt4}(\boldsymbol{\theta}) \{ \boldsymbol{D}_{1}^{opt4}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{F}_{11}^{opt4}(\boldsymbol{\theta}) \{ \boldsymbol{D}_{1}^{opt4}(\boldsymbol{\theta}) \}^{-1} \{ \boldsymbol{D}_{2}^{opt4}(\boldsymbol{\theta}) \}^{\top} - 2 \boldsymbol{D}_{2}^{opt4}(\boldsymbol{\theta}) \{ \boldsymbol{D}_{1}^{opt4}(\boldsymbol{\theta}) \}^{-1} \boldsymbol{F}_{12}^{opt4}(\boldsymbol{\theta}) + \boldsymbol{F}_{22}(\boldsymbol{\theta}).$$

Here,

$$\boldsymbol{D}_{1}^{opt4}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{J}_{1}(\boldsymbol{\theta}) & \boldsymbol{0}_{q \times r} & \boldsymbol{0}_{q \times s} \\ E\left\{\partial \boldsymbol{m}_{3}/\partial \boldsymbol{\gamma}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{3}/\partial \boldsymbol{\zeta}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{3}/\partial \boldsymbol{\beta}^{\top}\right\} \\ E\left\{\partial \boldsymbol{m}_{5}/\partial \boldsymbol{\gamma}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{5}/\partial \boldsymbol{\zeta}^{\top}\right\} & E\left\{\partial \boldsymbol{m}_{5}/\partial \boldsymbol{\beta}^{\top}\right\} \end{pmatrix},$$

$$\begin{split} \boldsymbol{D}_{2}^{opt4}(\boldsymbol{\theta}) &= \boldsymbol{D}_{2}^{opt3}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{J}_{3}(\boldsymbol{\theta}) & \boldsymbol{0}_{1\times r} & \boldsymbol{J}_{4}(\boldsymbol{\theta}) \end{pmatrix}, \\ \boldsymbol{F}_{11}^{opt4}(\boldsymbol{\theta}) &= \begin{pmatrix} \boldsymbol{J}_{5}(\boldsymbol{\theta}) & \boldsymbol{E}\left\{\boldsymbol{S}_{\gamma}\boldsymbol{m}_{3}^{\top}\right\} & \boldsymbol{E}\left\{\boldsymbol{S}_{\gamma}(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})^{\top}\right\} \\ \boldsymbol{E}\left\{\boldsymbol{m}_{3}\boldsymbol{S}_{\gamma}^{\top}\right\} & \boldsymbol{E}\left\{\boldsymbol{m}_{3}\boldsymbol{m}_{3}^{\top}\right\} & \boldsymbol{E}\left\{\boldsymbol{m}_{3}(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})^{\top}\right\} \\ \boldsymbol{E}\left\{(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})\boldsymbol{S}_{\gamma}^{\top}\right\} & \boldsymbol{E}\left\{(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})\boldsymbol{m}_{3}^{\top}\right\} & \boldsymbol{E}\left\{(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})^{\top}\right\} \end{pmatrix} \\ \boldsymbol{F}_{12}^{opt4}(\boldsymbol{\theta}) &= \left(\boldsymbol{J}_{8}(\boldsymbol{\theta})^{\top} & \boldsymbol{E}(\tilde{\varphi}\boldsymbol{m}_{3}^{\top}) & \boldsymbol{E}\left\{\tilde{\varphi}(\boldsymbol{m}_{5} + \boldsymbol{q}_{3} + \boldsymbol{q}_{4})^{\top}\right\}\right)^{\top}. \end{split}$$

Here we suppress the notations by writing $\mathbf{m}_5 \equiv \mathbf{m}_5(\mathbf{U}_i, \mathbf{\theta}, g_0, h_0), \ \mathbf{q}_3 \equiv \mathbf{q}_3(\mathbf{U}_i, \mathbf{\theta}, g_0, h_0), \ \mathbf{q}_4 \equiv \mathbf{q}_4(\mathbf{U}_i, \mathbf{\theta}, g_0, h_0)$ where

$$\begin{split} \boldsymbol{m}_{5}(\boldsymbol{U},\boldsymbol{\theta},g_{0},h_{0}) &= \boldsymbol{m}_{4}(\boldsymbol{U},\boldsymbol{\theta}) - \left(\frac{\left[R - \pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}\right]\left[1 - \pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}\right]}{\pi^{2}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}} \\ & \cdot \left[Q_{\beta}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} + [\boldsymbol{\phi}_{1},\ldots,\boldsymbol{\phi}_{q}][\boldsymbol{\psi}_{1},\ldots,\boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\gamma}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}}\right] \\ & \cdot \left[g_{0}(\boldsymbol{X})I\{d(\boldsymbol{X}) = 1\} + h_{0}(\boldsymbol{X})I\{d(\boldsymbol{X}) = -1\} \\ & - Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}\} - \boldsymbol{\alpha}^{\top}[\boldsymbol{\psi}_{1},\ldots,\boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\gamma}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}\}}\right]\right). \end{split}$$

$$\boldsymbol{q}_{3}(\boldsymbol{U}_{i},\boldsymbol{\theta},g_{0},h_{0}) = -\{Y_{i} - g_{0}(\boldsymbol{X}_{i})\}\frac{I(A_{i} = 1)f_{\boldsymbol{X}}(\boldsymbol{X}_{i})}{f_{\boldsymbol{X},A}(\boldsymbol{X}_{i},1)} \cdot \frac{\pi_{0}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\} - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}} \\ & \cdot \frac{1 - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}} \cdot I\{d(\boldsymbol{X}_{i}) = 1\} \\ & \cdot \left[Q_{\beta}\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\} + [\boldsymbol{\phi}_{1},\ldots,\boldsymbol{\phi}_{q}][\boldsymbol{\psi}_{1},\ldots,\boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\gamma}\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}}\right], \end{split}$$

$$\boldsymbol{q}_{4}(\boldsymbol{U}_{i},\boldsymbol{\theta},g_{0},h_{0}) = -\left\{Y_{i}-h_{0}(\boldsymbol{X}_{i})\right\}\frac{I(A_{i}=-1)f_{\boldsymbol{X}}(\boldsymbol{X}_{i})}{f_{\boldsymbol{X},A}(\boldsymbol{X}_{i},-1)}\cdot\frac{\pi_{0}\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i}\right\}-\pi\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\right\}}{\pi\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\right\}}\cdot\frac{1-\pi\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\right\}}{\pi\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\right\}}\cdot I\left\{d(\boldsymbol{X}_{i})=-1\right\}\cdot\left[Q_{\boldsymbol{\beta}}\left\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\right\}+\left[\boldsymbol{\phi}_{1},\ldots,\boldsymbol{\phi}_{q}\right]\left[\boldsymbol{\psi}_{1},\ldots,\boldsymbol{\psi}_{q}\right]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\right\}}{1-\pi\left\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\right\}}\right].$$

The true parameters are $\boldsymbol{\theta}_{0}^{opt4} = (\boldsymbol{\gamma}^{*\top}, \boldsymbol{\zeta}_{opt4}^{*\top}, \boldsymbol{\beta}_{opt4}^{*\top}, V(d))^{\top}$ where $(\boldsymbol{\zeta}_{opt4}^{*}, \boldsymbol{\beta}_{opt4}^{*})$ is the solution to the following set of equations:

$$\boldsymbol{\alpha} + E\left\{\partial\tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}, \boldsymbol{\beta})/\partial\boldsymbol{\gamma}\right\} = \boldsymbol{0},$$

$$[\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}] - E\left\{S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}, \boldsymbol{\gamma}^{*})S_{\boldsymbol{\gamma}}^{\top}(A, \boldsymbol{X}, \boldsymbol{\gamma}^{*})\right\} = \boldsymbol{0},$$

$$[\boldsymbol{\phi}_{1}, \dots, \boldsymbol{\phi}_{q}] + E\left\{\partial^{2}\tilde{\varphi}(Y, A, \boldsymbol{X}, \boldsymbol{\gamma}^{*}, \boldsymbol{\beta})/\partial\boldsymbol{\gamma}^{\top}\partial\boldsymbol{\beta}\right\} = \boldsymbol{0},$$

$$(* * *) - E\left(\frac{[R - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}][1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}]}{\pi^{2}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}\right]$$

$$\cdot \left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} + [\boldsymbol{\phi}_{1}, \dots, \boldsymbol{\phi}_{q}][\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}\right]$$

$$\cdot \left[Q_{0}\{\boldsymbol{X}, d(\boldsymbol{X})\} - Q\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} - \boldsymbol{\alpha}^{\top}[\boldsymbol{\psi}_{1}, \dots, \boldsymbol{\psi}_{q}]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}^{*}\}}\right]\right) = \boldsymbol{0},$$

where (* * *) is the left hand side of (S.11).

Remark 2. When $\pi(A, \mathbf{X}; \boldsymbol{\gamma})$ is correctly specified, i.e. $\pi(A, \mathbf{X}; \boldsymbol{\gamma}_0) = \pi_0(A, \mathbf{X})$ for some $\boldsymbol{\gamma}_0$, it is obvious that $\boldsymbol{\gamma}^* = \boldsymbol{\gamma}_0$. Observe that $\boldsymbol{J}_4(\boldsymbol{\theta}) = \boldsymbol{0}_{1 \times s}$ for any $\boldsymbol{\theta}$. Hence,

$$oldsymbol{D}_2^{opt3}(oldsymbol{ heta}) = oldsymbol{D}_2^{opt4}(oldsymbol{ heta}) = egin{pmatrix} oldsymbol{J}_3(oldsymbol{ heta}) & oldsymbol{0}_{1 imes r} & oldsymbol{0}_{1 imes r} \end{pmatrix}$$

By some algebra, it can be shown that in this case,

$$U_4(\boldsymbol{\theta}) = U_5(\boldsymbol{\theta}) = U_6(\boldsymbol{\theta}) = \boldsymbol{J}_3(\boldsymbol{\theta})\boldsymbol{J}_1^{-1}(\boldsymbol{\theta})\boldsymbol{J}_5(\boldsymbol{\theta})\boldsymbol{J}_1^{-1}(\boldsymbol{\theta})\boldsymbol{J}_3^{\top}(\boldsymbol{\theta}) - 2\boldsymbol{J}_3(\boldsymbol{\theta})\boldsymbol{J}_1^{-1}(\boldsymbol{\theta})\boldsymbol{J}_8(\boldsymbol{\theta}) + \boldsymbol{F}_{22}(\boldsymbol{\theta}).$$

In a slight abuse of notation, it is easy to show that $\beta^*_{opt3} = \beta^*_{opt4} = \beta^{opt}$ where β^{opt} satisfies

$$E\left(\frac{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}{\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{opt}\}+\Phi_0(\boldsymbol{\beta}^{opt})\boldsymbol{\Sigma}_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_0\}}{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]$$
$$\cdot\left[Q_0\{\boldsymbol{X},d(\boldsymbol{X})\}-Q\{\boldsymbol{X},d(\boldsymbol{X});\boldsymbol{\beta}^{opt}\}-\Gamma_0(\boldsymbol{\beta}^{opt})\boldsymbol{\Sigma}_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\cdot\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}),\boldsymbol{X};\boldsymbol{\gamma}_0\}}{1-\pi_0\{d(\boldsymbol{X}),\boldsymbol{X}\}}\right]\right)=\mathbf{0}.$$

In addition, note that

$$\boldsymbol{J}_{1}(\boldsymbol{\theta}_{0}^{LS2}) = \boldsymbol{J}_{1}(\boldsymbol{\theta}_{0}^{opt3}) = \boldsymbol{J}_{1}(\boldsymbol{\theta}_{0}^{opt4}) = E\left\{S_{\boldsymbol{\gamma}\boldsymbol{\gamma}}(A,\boldsymbol{X};\boldsymbol{\gamma}_{0})\right\} = -E\left\{S_{\boldsymbol{\gamma}}(A,\boldsymbol{X};\boldsymbol{\gamma}_{0})S_{\boldsymbol{\gamma}}^{\top}(A,\boldsymbol{X};\boldsymbol{\gamma}_{0})\right\} = -\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0} \\
\boldsymbol{J}_{3}(\boldsymbol{\theta}_{0}^{LS2}) = E\left\{\partial\tilde{\varphi}(Y,A,\boldsymbol{X},\boldsymbol{\gamma}_{0},\boldsymbol{\beta}_{LS}^{*})/\partial\boldsymbol{\gamma}^{\top}\right\} = -\Gamma_{0}(\boldsymbol{\beta}_{LS}^{*}), \quad \boldsymbol{J}_{3}(\boldsymbol{\theta}_{0}^{opt3}) = \boldsymbol{J}_{3}(\boldsymbol{\theta}_{0}^{opt4}) = -\Gamma_{0}(\boldsymbol{\beta}^{opt4}), \\
\boldsymbol{J}_{5}(\boldsymbol{\theta}_{0}^{LS2}) = \boldsymbol{J}_{5}(\boldsymbol{\theta}_{0}^{opt3}) = \boldsymbol{J}_{5}(\boldsymbol{\theta}_{0}^{opt4}) = \Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}.$$

Hence, the asymptotic variance of $\widehat{V}(d; \hat{\gamma}, \hat{\beta}^{LS})$ is

$$\Gamma_{0}(\boldsymbol{\beta}_{LS}^{*})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}\Gamma_{0}^{\top}(\boldsymbol{\beta}_{LS}^{*}) - 2\Gamma_{0}(\boldsymbol{\beta}_{LS}^{*})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}E\{S_{\boldsymbol{\gamma}}(A,\boldsymbol{X};\boldsymbol{\gamma}_{0})\tilde{\varphi}(Y,A,\boldsymbol{X},\boldsymbol{\gamma}_{0},\boldsymbol{\beta}_{LS}^{*})\} + E\tilde{\varphi}^{2}(Y,A,\boldsymbol{X},\boldsymbol{\gamma}_{0},\boldsymbol{\beta}_{LS}^{*})$$
$$= E\{\tilde{\varphi}(Y,A,\boldsymbol{X},\boldsymbol{\gamma}_{0},\boldsymbol{\beta}_{LS}^{*}) - \Gamma_{0}(\boldsymbol{\beta}_{LS}^{*})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}S_{\boldsymbol{\gamma}}(A,\boldsymbol{X};\boldsymbol{\gamma}_{0})\}^{2}$$

The asymptotic variance is the same for $\hat{V}(d; \hat{\gamma}, \hat{\beta}^{opt3})$ and $\hat{V}(d; \hat{\gamma}, \hat{\beta}^{opt4})$, which equals to

$$E\left\{\tilde{\varphi}(Y,A,\boldsymbol{X},\boldsymbol{\gamma}_{0},\boldsymbol{\beta}^{opt})-\Gamma_{0}(\boldsymbol{\beta}^{opt})\Sigma_{\boldsymbol{\gamma}\boldsymbol{\gamma},0}^{-1}S_{\boldsymbol{\gamma}}(A,\boldsymbol{X};\boldsymbol{\gamma}_{0})\right\}^{2}.$$

The above two quantities are the variance of the influence function (7) evaluated at different $\boldsymbol{\beta}$ values. By definition of $\boldsymbol{\beta}^{opt}$, when the propensity score is correct but outcome model incorrect, $\hat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{opt3})$ and $\hat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{opt4})$ have the same asymptotic variance, which is smaller than that of $\hat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{LS})$. Though, in small sample size, $\hat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{opt4})$ is preferred since it produces much more stable estimates. When both models are correct, note that $\boldsymbol{\beta}^{opt} = \boldsymbol{\beta}_0 = \boldsymbol{\beta}_{LS}^*$, all estimators are asymptotically equivalent.

Proof. For the usual DR estimator $\hat{V}(d; \hat{\gamma}, \hat{\beta}^{\text{LS}})$, the parameters are $\boldsymbol{\theta} = (\boldsymbol{\gamma}^{\top}, \boldsymbol{\beta}^{\top}, V(d))^{\top}$ and the estimating equation is given by

$$\boldsymbol{m}(\boldsymbol{U}_{i},\boldsymbol{\theta}) = \begin{pmatrix} S_{\boldsymbol{\gamma}}(A_{i},\boldsymbol{X}_{i};\boldsymbol{\gamma}) \\ Q_{\boldsymbol{\beta}}(\boldsymbol{X}_{i},A_{i};\boldsymbol{\beta}) \{Y_{i} - Q(\boldsymbol{X}_{i},A_{i};\boldsymbol{\beta})\} \\ \frac{I\{A_{i} = d(\boldsymbol{X}_{i})\}}{\pi\{d(\boldsymbol{X}_{i}),\boldsymbol{X}_{i};\boldsymbol{\gamma}\}} [Y_{i} - Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\}] + Q\{\boldsymbol{X}_{i},d(\boldsymbol{X}_{i});\boldsymbol{\beta}\} - V(d) \end{pmatrix}.$$

When at least one model is correct, $\boldsymbol{\theta}_0^{\mathrm{LS2}} = (\boldsymbol{\gamma}^{*\top}, \boldsymbol{\beta}_{\mathrm{LS}}^{*\top}, V(d))^{\top}$ where $\boldsymbol{\gamma}^*$ satisfies $E\{S_{\boldsymbol{\gamma}}(A, \boldsymbol{X}; \boldsymbol{\gamma}^*)\} = \mathbf{0}$ and $\boldsymbol{\beta}_{\mathrm{LS}}^*$ satisfies $E[Q_{\boldsymbol{\beta}}(\boldsymbol{X}, A; \boldsymbol{\beta}_{\mathrm{LS}}^*) \{Y - Q(\boldsymbol{X}, A; \boldsymbol{\beta}_{\mathrm{LS}}^*)\}] = \mathbf{0}$. By M-estimation theory, $\hat{\boldsymbol{\theta}}^{\mathrm{LS2}} \triangleq (\hat{\boldsymbol{\gamma}}^{\top}, \{\hat{\boldsymbol{\beta}}^{\mathrm{LS}}\}^{\top}, \hat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{\mathrm{LS}}))^{\top}$ is asymptotically normal,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}^{\mathrm{LS2}} - \boldsymbol{\theta}_0^{\mathrm{LS2}}) \xrightarrow{D} N(0, \{\boldsymbol{D}^{\mathrm{LS2}}(\boldsymbol{\theta}_0^{\mathrm{LS2}})\}^{-1} \boldsymbol{F}^{\mathrm{LS2}}(\boldsymbol{\theta}_0^{\mathrm{LS2}}) [\{\boldsymbol{D}^{\mathrm{LS2}}(\boldsymbol{\theta}_0^{\mathrm{LS2}})\}^{-1}]^{\top}),$$

where

$$\boldsymbol{D}^{\mathrm{LS2}}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{D}_{1}^{\mathrm{LS2}}(\boldsymbol{\theta}) & \boldsymbol{0}_{(s+q)\times 1} \\ \boldsymbol{D}_{2}^{\mathrm{LS2}}(\boldsymbol{\theta}) & -1 \end{pmatrix}, \qquad \boldsymbol{F}^{\mathrm{LS2}}(\boldsymbol{\theta}) = \begin{pmatrix} \boldsymbol{F}_{11}^{\mathrm{LS2}}(\boldsymbol{\theta}) & \boldsymbol{F}_{12}^{\mathrm{LS2}}(\boldsymbol{\theta}) \\ \{\boldsymbol{F}_{12}^{\mathrm{LS2}}(\boldsymbol{\theta})\}^{\top} & \boldsymbol{F}_{22}(\boldsymbol{\theta}) \end{pmatrix},$$

with all the quantities defined in the Theorem. The rest is by some algebra.

For $\widehat{V}(d; \hat{\gamma}, \hat{\beta}^{\text{opt3}})$, the unknown parameters are $\boldsymbol{\theta} = (\boldsymbol{\gamma}^{\top}, \boldsymbol{\zeta}^{\top}, \boldsymbol{\beta}^{\top}, V(d))^{\top}$. The estimating equation is

$$oldsymbol{m}^{\mathrm{opt3}}(oldsymbol{U}_i,oldsymbol{ heta}) = egin{pmatrix} S_{oldsymbol{\gamma}}(A_i,oldsymbol{X}_i;oldsymbol{\gamma})\ oldsymbol{m}_3(oldsymbol{U}_i,oldsymbol{ heta})\ oldsymbol{m}_4(oldsymbol{U}_i,oldsymbol{ heta})\ oldsymbol{ heta}_4(oldsymbol{U}_i,oldsymbol{ heta})\ oldsymbol{ heta}_4(oldsymbol{V}_i,oldsymbol{A}_i,oldsymbol{X}_i,oldsymbol{ heta})\ oldsymbol{ heta}_4(oldsymbol{V}_i,oldsymbol{ heta}_i,oldsymbol{X}_i,oldsymbol{ heta})\ oldsymbol{ heta}_4(oldsymbol{V}_i,oldsymbol{ heta}_i,oldsymbol{X}_i,oldsymbol{ heta})\ oldsymbol{ heta}_4(oldsymbol{V}_i,oldsymbol{ heta}_i,oldsymbol{ heta}_i,oldsy$$

where $\boldsymbol{m}_3(\boldsymbol{U}_i, \boldsymbol{\theta}), \, \boldsymbol{m}_4(\boldsymbol{U}_i, \boldsymbol{\theta})$ are defined in the Theorem. By M-estimation theory,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}^{\text{opt3}} - \boldsymbol{\theta}_0^{\text{opt3}}) \xrightarrow{D} N(0, \{\boldsymbol{D}^{\text{opt3}}(\boldsymbol{\theta}_0^{\text{opt3}})\}^{-1} \boldsymbol{F}^{\text{opt3}}(\boldsymbol{\theta}_0^{\text{opt3}})[\{\boldsymbol{D}^{\text{opt3}}(\boldsymbol{\theta}_0^{\text{opt3}})\}^{-1}]^{\top}),$$

where

$$\boldsymbol{D}^{\text{opt3}}(\boldsymbol{\theta}) = E \left\{ \partial \boldsymbol{m}^{\text{opt3}}(\boldsymbol{U}_i, \boldsymbol{\theta}) / \partial \boldsymbol{\theta}^\top \right\} = \begin{pmatrix} \boldsymbol{D}_1^{\text{opt3}}(\boldsymbol{\theta}) & \boldsymbol{0}_{(q+r+s)\times 1} \\ \boldsymbol{D}_2^{\text{opt3}}(\boldsymbol{\theta}) & -1 \end{pmatrix},$$
$$\boldsymbol{F}^{\text{opt3}}(\boldsymbol{\theta}) = E \left\{ \boldsymbol{m}^{\text{opt3}}(\boldsymbol{U}_i, \boldsymbol{\theta}) \boldsymbol{m}^{\text{opt3}}(\boldsymbol{U}_i, \boldsymbol{\theta})^\top \right\} = \begin{pmatrix} \boldsymbol{F}_{11}^{\text{opt3}}(\boldsymbol{\theta}) & \boldsymbol{F}_{12}^{\text{opt3}}(\boldsymbol{\theta}) \\ \{\boldsymbol{F}_{12}^{\text{opt3}}(\boldsymbol{\theta})\}^\top & \boldsymbol{F}_{22}(\boldsymbol{\theta}) \end{pmatrix},$$

with all the quantities defined in the Theorem. The rest is by some algebra.

For $\widehat{V}(d; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\beta}}^{\text{opt4}})$, the unknown parameters are $\boldsymbol{\theta} = (\boldsymbol{\gamma}^{\top}, \boldsymbol{\zeta}^{\top}, \boldsymbol{\beta}^{\top}, V(d))^{\top}$. The estimating equation is

$$\boldsymbol{m}^{\text{opt4}}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h) = \begin{pmatrix} S_{\boldsymbol{\gamma}}(A_i, \boldsymbol{X}_i; \boldsymbol{\gamma}) \\ \boldsymbol{m}_3(\boldsymbol{U}_i, \boldsymbol{\theta}) \\ \boldsymbol{m}_5(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h) \\ \tilde{\varphi}(Y_i, A_i, \boldsymbol{X}_i, \boldsymbol{\gamma}, \boldsymbol{\beta}) \end{pmatrix}$$

where $\boldsymbol{m}_5(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)$ is defined in the Theorem. Let us define $\boldsymbol{M}^{\text{opt4}}(\boldsymbol{\theta}, g, h) = E\{\boldsymbol{m}^{\text{opt4}}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)\}$ and $\boldsymbol{M}_n^{\text{opt4}}(\boldsymbol{\theta}, g, h) = n^{-1} \sum_{i=1}^n \boldsymbol{m}^{\text{opt4}}(\boldsymbol{U}_i, \boldsymbol{\theta}, g, h)$. Now we calculate the ordinary and functional derivatives in Theorem S1. The ordinary derivative of $\boldsymbol{M}^{\text{opt4}}(\boldsymbol{\theta}, g_0, h_0)$ with respect to $\boldsymbol{\theta}$ is

,

$$egin{aligned} \Gamma_1^{ ext{opt4}}(oldsymbol{ heta},g_0,h_0) &= egin{pmatrix} oldsymbol{D}_1^{ ext{opt4}}(oldsymbol{ heta}) & oldsymbol{0}_{(q+r+s) imes 1} \ oldsymbol{D}_2^{ ext{opt4}}(oldsymbol{ heta}) & -1 \end{pmatrix} \end{aligned}$$

In addition,

$$\Gamma_2^{\text{opt4}}(\boldsymbol{\theta}, g, h)[\bar{g}-g] = \begin{pmatrix} \mathbf{0}_{1 \times q} \\ \mathbf{0}_{1 \times r} \\ \Gamma_{21}^{\text{opt4}}(\boldsymbol{\theta}, g, h)[\bar{g}-g] \\ 0 \end{pmatrix} \quad \Gamma_3^{\text{opt4}}(\boldsymbol{\theta}, g, h)[\bar{h}-h] = \begin{pmatrix} \mathbf{0}_{1 \times q} \\ \mathbf{0}_{1 \times r} \\ \Gamma_{31}^{\text{opt4}}(\boldsymbol{\theta}, g, h)[\bar{h}-h] \\ 0 \end{pmatrix}$$

where

$$\begin{split} \mathbf{\Gamma}_{21}^{\text{opt4}}(\boldsymbol{\theta}, g, h)[\bar{g} - g] &= E\left(-\{\bar{g}(\boldsymbol{X}) - g(\boldsymbol{X})\}I\{d(\boldsymbol{X}) = 1\}\frac{[R - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}][1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}]}{\pi^2\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} \\ & \cdot \left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} + [\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_q][\boldsymbol{\psi}_1, \dots, \boldsymbol{\psi}_q]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}\right]\right), \\ \mathbf{\Gamma}_{31}^{\text{opt4}}(\boldsymbol{\theta}, g, h)[\bar{h} - h] &= E\left(-\{\bar{h}(\boldsymbol{X}) - h(\boldsymbol{X})\}I\{d(\boldsymbol{X}) = -1\}\frac{[R - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}][1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}]}{\pi^2\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}} \\ & \cdot \left[Q_{\boldsymbol{\beta}}\{\boldsymbol{X}, d(\boldsymbol{X}); \boldsymbol{\beta}\} + [\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_q][\boldsymbol{\psi}_1, \dots, \boldsymbol{\psi}_q]^{-1}\frac{\pi_{\boldsymbol{\gamma}}\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}{1 - \pi\{d(\boldsymbol{X}), \boldsymbol{X}; \boldsymbol{\gamma}\}}\right]\right). \end{split}$$

Using similar arguments, we have

$$\Gamma_{21}^{\text{opt4}}(\boldsymbol{\theta}, g_0, h_0)[\hat{g} - g_0] = \frac{1}{n} \sum_{i=1}^n \boldsymbol{q}_3(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0) + o_p(n^{-1/2})$$

$$\Gamma_{31}^{\text{opt4}}(\boldsymbol{\theta}, g_0, h_0)[\hat{h} - h_0] = \frac{1}{n} \sum_{i=1}^n \boldsymbol{q}_4(\boldsymbol{U}_i, \boldsymbol{\theta}, g_0, h_0) + o_p(n^{-1/2})$$

where \boldsymbol{q}_3 and \boldsymbol{q}_4 are defined previously. Combining the above results, we have

$$\sqrt{n}\left\{\boldsymbol{M}_{n}^{\text{opt4}}(\boldsymbol{\theta},g_{0},h_{0})+\boldsymbol{\Gamma}_{2}^{\text{opt4}}(\boldsymbol{\theta},g_{0},h_{0})[\hat{g}-g_{0}]+\boldsymbol{\Gamma}_{3}^{\text{opt4}}(\boldsymbol{\theta},g_{0},h_{0})[\hat{h}-h_{0}]\right\}\overset{D}{\longrightarrow}N(\boldsymbol{0},\boldsymbol{F}^{\text{opt4}}(\boldsymbol{\theta})),$$

where

$$m{F}^{\mathrm{opt4}}(m{ heta}) = egin{pmatrix} m{F}_{11}^{\mathrm{opt4}}(m{ heta}) & m{F}_{12}^{\mathrm{opt4}}(m{ heta}) \ m{m{F}}_{12}^{\mathrm{opt4}}(m{ heta}) m{m{T}}^{ op} & m{F}_{22}(m{ heta}) \end{pmatrix},$$

Based on Theorem S1,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}^{\text{opt4}} - \boldsymbol{\theta}_0^{\text{opt4}}) \xrightarrow{D} N(0, \boldsymbol{\Omega}^{\text{opt4}}(\boldsymbol{\theta}_0^{\text{opt4}})),$$

where $\mathbf{\Omega}^{\text{opt4}}(\boldsymbol{\theta}) = \mathbf{\Gamma}_{1}^{\text{opt4}}(\boldsymbol{\theta}, g_{0}, h_{0})^{-1} \boldsymbol{F}^{\text{opt4}}(\boldsymbol{\theta}) \{\mathbf{\Gamma}_{1}^{\text{opt4}}(\boldsymbol{\theta}, g_{0}, h_{0})^{-1}\}^{\top}$. The rest of the proof follows by some simple algebra.

Appendix E: Additional simulation results

Simulation results for Scenario 1 when n = 100 or 500 are shown in Figure S1. Simulation results for Scenario 2 when n = 100 or 500 are shown in Figure S2. We draw the same conclusions as in the main paper, our proposed method Aug-Improved-DR outperformed other competing methods evidenced by larger value functions and smaller variance in value functions. Table S1 and S2 displays the MSE of different methods in terms of estimating η . Again, Aug-Improved-DR has superior performance evidenced by smaller MSE.

Figure S1: Simulation results for Scenario 1. Value functions over 500 replications. The optimal value is $E\{Y(d^{\text{opt}})\} = 21.32$.

Figure S2: Simulation results for Scenario 2. Value functions over 500 replications. The optimal value is $E\{Y(d^{\text{opt}})\} = 21.32$.

References

- Chen, X., Linton, O., and Van Keilegom, I. (2003). Estimation of semiparametric models when the criterion function is not smooth. *Econometrica*, 71(5):1591–1608.
- Ichimura, H. and Lee, S. (2010). Characterization of the asymptotic distribution of semiparametric M-estimators. *Journal of Econometrics*, 159(2):252–266.
- Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. *Econometrica*, 57(5):1027–1057.
- Racine, J. and Li, Q. (2004). Nonparametric estimation of regression functions with both categorical and continuous data. *Journal of Econometrics*, 119(1):99–130.
- Stefanski, L. A. and Boos, D. D. (2002). The calculus of M-estimation. The American Statistician, 56(1):29–38.

η_0	η_1	η_2	η_3	η_4	η_0	η_1	η_2	η_3	η_4
n = 250									
CC: both models correct				CI:	CI: only propensity correct				
0.22	0.31	0.17	0.29	0.30					
0.03	0.02	0.02	0.03	0.03	0.15	0.17	0.11	0.22	0.18
0.15	0.22	0.18	0.06	0.07	0.14	0.18	0.15	0.14	0.16
0.03	0.02	0.02	0.03	0.03	0.10	0.07	0.07	0.11	0.11
IC: only outcome correct					II: both models incorrect				
0.30	0.52	0.14	0.27	0.28					
0.03	0.03	0.03	0.03	0.03	0.23	0.17	0.10	0.18	0.15
0.16	0.21	0.16	0.07	0.06	0.16	0.21	0.16	0.16	0.19
0.03	0.03	0.03	0.03	0.03	0.11	0.08	0.08	0.12	0.13
n = 1000									
CC: both models correct				CI: only propensity correct					
0.14	0.18	0.11	0.20	0.20					
0.02	0.01	0.01	0.02	0.02	0.08	0.08	0.07	0.12	0.09
0.04	0.06	0.03	0.02	0.02	0.06	0.05	0.05	0.07	0.07
0.02	0.01	0.01	0.02	0.02	0.06	0.04	0.04	0.07	0.06
IC: only outcome correct					II: both models incorrect				
0.23	0.53	0.17	0.21	0.22					
0.02	0.03	0.02	0.02	0.02	0.19	0.11	0.07	0.12	0.09
0.02	0.01	0.01	0.02	0.02	0.08	0.07	0.06	0.09	0.09
0.03	0.03	0.02	0.03	0.03	0.08	0.08	0.06	0.09	0.09
	η ₀ CC 0.22 0.03 0.15 0.03 IC 0.30 0.03 0.16 0.03 CC 0.14 0.02 0.04 0.02 IC 0.02 0.02 0.02 0.02 0.02 0.03	$ $	η₀ η₁ η₂ CC: both mode 0.22 0.31 0.17 0.03 0.02 0.02 0.15 0.22 0.18 0.03 0.02 0.02 0.15 0.22 0.18 0.03 0.02 0.02 IC: only olla 0.30 0.52 0.14 0.30 0.52 0.14 0.03 0.03 0.03 0.16 0.21 0.16 0.03 0.03 0.03 0.16 0.21 0.16 0.03 0.03 0.03 0.16 0.21 0.16 0.16 0.21 0.16 0.03 0.03 0.03 0.14 0.18 0.11 0.02 0.01 0.01 0.02 0.01 0.01 0.23 0.53 0.17 0.02 0.03 0.02	η₀ η₁ η₂ η₃ CC: both both both both 0.22 0.31 0.17 0.29 0.03 0.02 0.02 0.03 0.15 0.22 0.18 0.06 0.03 0.02 0.02 0.03 0.15 0.22 0.18 0.06 0.03 0.02 0.02 0.03 0.03 0.02 0.14 0.27 0.30 0.52 0.14 0.27 0.30 0.52 0.14 0.27 0.03 0.03 0.03 0.03 0.16 0.21 0.16 0.07 0.03 0.03 0.03 0.03 0.14 0.18 0.11 0.20 0.04 0.06 0.03 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.03 0.20 0.21 <td>η₀ η₁ η₂ η₃ η₄ CC: bottom bottom</td> <td>$η_0$ $η_1$ $η_2$ $η_3$ $η_4$ $η_0$ $n = 250$ CC: both models correct CI: 0.22 0.31 0.17 0.29 0.30 0.15 0.03 0.02 0.02 0.03 0.03 0.15 0.15 0.22 0.18 0.06 0.07 0.14 0.03 0.02 0.03 0.03 0.10 0.15 0.22 0.18 0.06 0.07 0.14 0.03 0.02 0.02 0.03 0.03 0.10 0.15 0.22 0.14 0.27 0.28 0.10 0.30 0.52 0.14 0.27 0.28 0.16 0.03 0.03 0.03 0.03 0.23 0.16 0.16 0.21 0.16 0.07 0.06 0.16 0.03 0.03 0.03 0.03 0.23 0.11 0.16 0.11 0.20 0.02 0.08</td> <td>η_0 η_1 η_2 η_3 η_4 η_0 η_1 n = 250 CC: both models correct CI: only p 0.22 0.31 0.17 0.29 0.30 0.15 0.17 0.03 0.02 0.02 0.03 0.03 0.15 0.17 0.15 0.22 0.18 0.06 0.07 0.14 0.18 0.03 0.02 0.02 0.03 0.03 0.10 0.07 0.15 0.22 0.18 0.06 0.07 0.14 0.18 0.03 0.02 0.02 0.03 0.03 0.10 0.07 0.30 0.52 0.14 0.27 0.28 0.17 0.30 0.30 0.33 0.03 0.03 0.11 0.08 0.11 0.16 0.21 0.16 0.07 0.06 0.16 0.21 0.14 0.18 0.11 0.20 0.20 0.08 0.08 0.14 0.18 0.11 0.20 0.20</td> <td>η_0 η_1 η_2 η_3 η_4 η_0 η_1 η_2 $n = 250$ CI: only property 0.22 0.31 0.17 0.29 0.30 CI: only property 0.03 0.02 0.02 0.03 0.03 0.15 0.17 0.11 0.15 0.22 0.18 0.06 0.07 0.14 0.18 0.17 0.11 0.15 0.22 0.18 0.06 0.07 0.14 0.17 0.11 0.15 0.22 0.18 0.06 0.01 0.17 0.17 0.15 0.22 0.18 0.03 0.03 0.10 0.17 0.17 0.13 0.22 0.14 0.27 0.28 0.07 0.16 0.21 0.16 0.17 <t< td=""><td>η_0 η_1 η_2 η_3 η_4 η_0 η_1 η_2 η_3 $n = 250$ CC: both models correct CI: only propensity corrected to all to al</td></t<></td>	η₀ η₁ η₂ η₃ η₄ CC: bottom bottom	$η_0$ $η_1$ $η_2$ $η_3$ $η_4$ $η_0$ $n = 250$ CC: both models correct CI: 0.22 0.31 0.17 0.29 0.30 0.15 0.03 0.02 0.02 0.03 0.03 0.15 0.15 0.22 0.18 0.06 0.07 0.14 0.03 0.02 0.03 0.03 0.10 0.15 0.22 0.18 0.06 0.07 0.14 0.03 0.02 0.02 0.03 0.03 0.10 0.15 0.22 0.14 0.27 0.28 0.10 0.30 0.52 0.14 0.27 0.28 0.16 0.03 0.03 0.03 0.03 0.23 0.16 0.16 0.21 0.16 0.07 0.06 0.16 0.03 0.03 0.03 0.03 0.23 0.11 0.16 0.11 0.20 0.02 0.08	η_0 η_1 η_2 η_3 η_4 η_0 η_1 n = 250 CC: both models correct CI: only p 0.22 0.31 0.17 0.29 0.30 0.15 0.17 0.03 0.02 0.02 0.03 0.03 0.15 0.17 0.15 0.22 0.18 0.06 0.07 0.14 0.18 0.03 0.02 0.02 0.03 0.03 0.10 0.07 0.15 0.22 0.18 0.06 0.07 0.14 0.18 0.03 0.02 0.02 0.03 0.03 0.10 0.07 0.30 0.52 0.14 0.27 0.28 0.17 0.30 0.30 0.33 0.03 0.03 0.11 0.08 0.11 0.16 0.21 0.16 0.07 0.06 0.16 0.21 0.14 0.18 0.11 0.20 0.20 0.08 0.08 0.14 0.18 0.11 0.20 0.20	η_0 η_1 η_2 η_3 η_4 η_0 η_1 η_2 $n = 250$ CI: only property 0.22 0.31 0.17 0.29 0.30 CI: only property 0.03 0.02 0.02 0.03 0.03 0.15 0.17 0.11 0.15 0.22 0.18 0.06 0.07 0.14 0.18 0.17 0.11 0.15 0.22 0.18 0.06 0.07 0.14 0.17 0.11 0.15 0.22 0.18 0.06 0.01 0.17 0.17 0.15 0.22 0.18 0.03 0.03 0.10 0.17 0.17 0.13 0.22 0.14 0.27 0.28 0.07 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.21 0.16 0.17 <t< td=""><td>η_0 η_1 η_2 η_3 η_4 η_0 η_1 η_2 η_3 $n = 250$ CC: both models correct CI: only propensity corrected to all to al</td></t<>	η_0 η_1 η_2 η_3 η_4 η_0 η_1 η_2 η_3 $n = 250$ CC: both models correct CI: only propensity corrected to all to al

Table S1: Simulation results for Scenario 1. Root MSE for estimating $\boldsymbol{\eta}$. By imposing $||\boldsymbol{\eta}|| = 1$, d^{opt} corresponds to $(\eta_0, \eta_1, \eta_2, \eta_3, \eta_4) = (-0.07, -0.71, 0.71, 0, 0)$.

	η_0	η_1	η_2	η_3	η_4	η_0	η_1	η_2	η_3	η_4	
	n = 250										
	CC: both models correct				CI:	CI: only propensity correct					
IPWE	0.21	0.22	0.18	0.26	0.28						
Usual-DR	0.03	0.02	0.02	0.03	0.03	0.16	0.14	0.11	0.19	0.17	
Improved-DR	0.16	0.09	0.15	0.06	0.06	0.24	0.12	0.21	0.15	0.13	
Aug-Improved-DR	0.03	0.02	0.02	0.03	0.03	0.09	0.07	0.06	0.11	0.10	
	IC: only outcome correct					II: both models incorrect					
IPWE	0.43	0.30	0.16	0.27	0.28						
Usual-DR	0.03	0.02	0.02	0.03	0.03	0.16	0.08	0.11	0.18	0.14	
Improved-DR	0.15	0.09	0.15	0.07	0.05	0.29	0.18	0.24	0.20	0.19	
Aug-Improved-DR	0.03	0.02	0.02	0.03	0.03	0.16	0.15	0.10	0.18	0.17	
	n = 1000										
	CC: both models correct				CI: only propensity correct						
IPWE	0.14	0.14	0.12	0.17	0.16						
Usual-DR	0.02	0.01	0.01	0.02	0.02	0.09	0.08	0.06	0.12	0.10	
Improved-DR	0.02	0.01	0.01	0.02	0.02	0.04	0.03	0.03	0.05	0.04	
Aug-Improved-DR	0.02	0.01	0.01	0.02	0.02	0.04	0.03	0.03	0.05	0.04	
	IC: only outcome correct						II: both models incorrect				
IPWE	0.45	0.26	0.09	0.18	0.18						
Usual-DR	0.02	0.01	0.01	0.02	0.02	0.10	0.05	0.07	0.11	0.09	
Improved-DR	0.04	0.02	0.03	0.02	0.02	0.09	0.10	0.07	0.12	0.09	
Aug-Improved-DR	0.02	0.01	0.01	0.02	0.02	0.09	0.12	0.08	0.11	0.10	
				40							

Table S2: Simulation results for Scenario 2. Root MSE for estimating $\boldsymbol{\eta}$. By imposing $||\boldsymbol{\eta}|| = 1$, d^{opt} corresponds to $(\eta_0, \eta_1, \eta_2, \eta_3, \eta_4) = (-0.07, -0.71, 0.71, 0, 0)$.