Controllable Double CF<sub>2</sub>-Insertion into sp<sup>2</sup> C–Cu Bond Using TMSCF<sub>3</sub>:

A Facile Access to Tetrafluoroethylene-Bridged Structures

Qiqiang Xie, Ziyue Zhu, Lingchun Li, Chuanfa Ni, and Jinbo Hu\*

Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Ling-Ling Road, Shanghai, 200032 (China) Fax: (+86) 21-64166128 E-mail: jinbohu@sioc.ac.cn

## **Table of Contents**

| 1. General Information                                                                | 2  |
|---------------------------------------------------------------------------------------|----|
| 2. Procedures for Perfluorophenylethylation of Aryl Iodides                           | 3  |
| 3. Procedures for Gram-Scale Synthesis                                                | 21 |
| 4. X-ray Crystal Structure of 2n                                                      | 24 |
| 5. <sup>1</sup> H, <sup>19</sup> F, <sup>13</sup> C Spectroscopy of the New Compounds |    |

#### **1. General Information**

Unless otherwise mentioned, all solvents and reagents were purchased from commercial sources and used as received. *N*,*N*-dimethylformamide (DMF) was dried by passing through a solvent purification system. All the melting points were uncorrected. <sup>1</sup>H NMR spectra were recorded at 400 MHz. <sup>19</sup>F NMR spectra were recorded at 376 MHz. <sup>13</sup>C NMR spectra were recorded at 100 MHz. <sup>1</sup>H NMR chemical shifts were determined relative to internal (CH<sub>3</sub>)<sub>4</sub>Si (TMS) at  $\delta$  0.00 ppm or to the signal of the residual protonated solvent: CDCl<sub>3</sub> at  $\delta$  7.26 ppm. <sup>19</sup>F NMR chemical shifts were determined relative to internal or external CFCl<sub>3</sub> at  $\delta$  0.00 ppm. <sup>13</sup>C NMR chemical shifts were determined relative to the signal of the solvent: CDCl<sub>3</sub> at  $\delta$  77.16 ppm. Data for <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F NMR were recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, qt = quartet of triplets, tq = triplet of quartets, br = broad). Mass spectra were obtained on a mass spectrometer.

### 2. Procedures for Perfluorophenylethylation of Aryl Iodides



#### **General procedure A:**

To an oven-dried sealed tube were added CuCl (3.0 mmol, 297 mg, 6.0 equiv) and KF (2.25 mmol, 130.5 mg, 4.5 equiv) in glove box. Then in fume hood, DMF (8 mL) and  $C_6F_5TMS$  (0.75 mmol, 142 µL, 1.5 equiv) were successively added under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes, then TMSCF<sub>3</sub> (1.425 mmol, 202 µL, 2.85 equiv) was added in two equal portions and the second portion was added 6 hours later. The mixture was stirred at room temperature for 2 hours. After that, aryl iodide **1** (0.5 mmol, 1.0 equiv) was added under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 70 °C for time as indicated. After the reaction was completed, the reaction mixture was cooled to room temperature and quenched with 20 mL ammonium hydroxide, extracted with CH<sub>2</sub>Cl<sub>2</sub> (30 mL×3). The combined organic layer was washed with H<sub>2</sub>O (30 mL×2) and brine (40 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford **2**.

#### **General procedure B:**

To an oven-dried sealed tube were added CuCl (3.2 mmol, 316.8 mg, 6.4 equiv) and KF (2.4 mmol, 139.2 mg, 4.8 equiv) in glove box. Then in fume hood, DMF (8 mL) and C<sub>6</sub>F<sub>5</sub>TMS (0.8 mmol, 151  $\mu$ L, 1.6 equiv) were successively added under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes, then TMSCF<sub>3</sub> (1.52 mmol, 216  $\mu$ L, 3.04 equiv) was added in two equal portions and the

second portion was added 6 hours later. The mixture was stirred at room temperature for another 22 hours and then heated to 60 °C and stirred at that temperature for 2 hours. After that, aryl iodide 1 (0.5 mmol, 1.0 equiv) was added under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 70 °C for time as indicated. After the reaction was completed, the reaction mixture was cooled to room temperature and quenched with 20 mL ammonium hydroxide, extracted with  $CH_2Cl_2$  (20 mL×3). The combined organic layer was washed with  $H_2O$  (30 mL×2) and brine (40 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford **2**.

#### **General procedure C:**

To an oven-dried sealed tube were added CuCl (3.6 mmol, 356.4 mg, 7.2 equiv) and KF (2.7 mmol, 156.6 mg, 5.4 equiv) in glove box. Then in fume hood, DMF (8 mL) and C<sub>6</sub>F<sub>5</sub>TMS (0.9 mmol, 170  $\mu$ L, 1.8 equiv) were successively added under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes, then TMSCF<sub>3</sub> (1.71 mmol, 242  $\mu$ L, 3.42 equiv) was added in two equal portions and the second portion was added 6 hours later. The mixture was stirred at room temperature for 2 hours and then heated to 60 °C and stirred at that temperature for 2 hours. After that, aryl iodide **1** (0.5 mmol, 1.0 equiv) was added under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 70 °C for time as indicated. After the reaction was completed, the reaction mixture was cooled to room temperature and quenched with 20 mL ammonium hydroxide, extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL×3). The combined organic layer was washed with H<sub>2</sub>O (30 mL×2) and brine (40 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford **2**.



Prepared from general procedure A; the reaction time was 6 hours; **2a** (132 mg, 68% yield) was obtained.

Yellow solid. Mp: 115–117 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.84–7.78 (m, 1H), 7.77–7.69 (m, 2H), 7.64–7.56 (m, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.0 (t, J = 30.8 Hz, 2F), –107.6 (m, 2F), –138.1 (m, 2F), –147.2 (tt, J = 21.1, 5.6 Hz, 1F), –160.2 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  149.7, 145.9 (dm, J = 259.8 Hz), 143.7 (dm, J = 259.5 Hz), 138.1 (dm, J = 253.0 Hz), 133.4, 131.3, 130.4 (t, J = 7.4 Hz), 124.1, 121.2 (t, J = 25.0 Hz), 115.5 (tt, J = 255.1, 35.4 Hz), 114.9 (tt, J = 258.0, 39.8 Hz), 105.5-104.7 (m);

**MS** (**EI**, *m/z*, %): 389 (M<sup>+</sup>, 18.59), 217 (100);

HRMS (EI): Calcd. For C<sub>14</sub>H<sub>4</sub>F<sub>9</sub>NO<sub>2</sub>: 389.0098; Found: 389.0093;

**IR (film)**: 2923, 1655, 1548, 1526, 1507, 1443, 1370, 1334, 1303, 1265, 1197, 1174, 1094, 1058, 1041, 1002, 992, 937, 852, 800, 784, 738, 692, 679, 614 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; **2b** (170 mg, 87% yield) was obtained.

Yellow solid. Mp: 125–127 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.52 (s, 1H), 8.47 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.4 (t, *J* = 31.2 Hz, 2F), –112.0 (t, *J* = 9.8 Hz, 2F), –138.0 (m, 2F), –147.0 (tt, *J* = 21.4, 5.6 Hz, 1F), –159.9 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  148.4, 145.9 (dm, J = 258.9 Hz), 143.7 (dm, J = 259.5 Hz), 138.2 (dm, J = 253.0 Hz), 133.1 (t, J = 6.0 Hz), 131.2 (t, J = 25.7 Hz), 130.2, 126.7, 122.7 (t, J = 6.8 Hz), 115.6 (tt, J = 252.3, 36.1 Hz), 114.8 (tt, J = 256.2, 41.8 Hz), 105.3-104.6 (m);

**MS** (**EI**, *m*/*z*, %): 389 (M<sup>+</sup>, 12.29), 172 (100);

**HRMS** (EI): Calcd. For C<sub>14</sub>H<sub>4</sub>F<sub>9</sub>NO<sub>2</sub>: 389.0098; Found: 389.0091;

**IR** (**film**): 3093, 1656, 1536, 1502, 1353, 1336, 1302, 1275, 1204, 1159, 1112, 1095, 1068, 1004, 992, 961, 910, 798, 750, 737, 713, 616 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; **2c** (157 mg, 81% yield) was obtained.

Yellow solid. Mp: 103–105 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.38 (d, J = 7.2 Hz, 2H), 7.85 (d, J = 7.2 Hz, 2H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.4 (t, *J* = 32.0 Hz, 2F), –112.4 (m, 2F), –138.1 (m, 2F), –147.0 (tt, *J* = 21.1, 6.0 Hz, 1F), –159.9 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 125 MHz)  $\delta$  150.2, 145.9 (dm, J = 261.4 Hz), 143.7 (dm, J = 259.6 Hz), 138.1 (dm, J = 254.1 Hz), 135.2 (t, J = 24.8 Hz), 128.7 (t, J = 6.3 Hz), 123.8, 115.8 (tt, J = 252.2, 36.4 Hz), 114.8 (tt, J = 255.9, 41.5 Hz), 105.5-104.5 (m); **MS** (**EI**, m/z, %): 389 (M<sup>+</sup>, 64.56), 217 (100);

HRMS (EI): Calcd. For C<sub>14</sub>H<sub>4</sub>F<sub>9</sub>NO<sub>2</sub>: 389.0098; Found: 389.0105;

**IR (film)**: 3121, 3085, 1654, 1613, 1532, 1505, 1429, 1413, 1348, 1335, 1286, 1197, 1160, 1139, 1096, 1070, 1016, 996, 939, 862, 798, 758, 712, 667, 467 cm<sup>-1</sup>.



Prepared from general procedure B; the reaction time was 20 hours; **2d** (172 mg, 89% yield) was obtained.

White solid. Mp: 105–107 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.08 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 2.66 (s, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.7 (t, *J* = 31.2 Hz, 2F), –112.6 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –147.6 (tt, *J* = 21.1, 5.6 Hz, 1F), –160.3 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  197.2, 145.8 (dm, J = 262.8 Hz), 143.5 (dm, J = 258.9 Hz), 139.7, 138.1 (dm, J = 252.9 Hz), 133.3 (t, J = 24.4 Hz), 128.4, 127.6 (t, J = 6.4 Hz), 116.2 (tt, J = 251.3, 35.6 Hz), 114.9 (tt, J = 256.7, 41.4 Hz), 105.7-105.0 (m), 26.7;

**MS** (**EI**, *m*/*z*, %): 386 (M<sup>+</sup>, 20.71), 169 (100);

HRMS (EI): Calcd. For C<sub>16</sub>H<sub>7</sub>F<sub>9</sub>O: 386.0353; Found: 386.0352;

**IR (film)**: 2927, 1692, 1656, 1531, 1501, 1425, 1408, 1336, 1289, 1261, 1200, 1151, 1107, 1096, 1019, 938, 838, 858, 798, 756, 710, 604 cm<sup>-1</sup>.

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 133.5 (t, J = 25.5 Hz), 132.4, 128.0 (t, J = 6.5 Hz), 117.6, 116.1,;



Prepared from general procedure B; the reaction time was 20 hours; **2e** (199 mg, 96% yield) was obtained.

White solid. Mp: 115–116 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.17 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.42 (q, *J* = 7.2 Hz, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.7 (t, *J* = 31.2 Hz, 2F), –112.6 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –147.7 (tt, *J* = 21.4, 5.3 Hz, 1F), –160.3 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 125 MHz)  $\delta$  165.6, 145.9 (dm, J = 262.2 Hz), 143.5 (dm, J = 258.5 Hz), 138.1 (dm, J = 253.3 Hz), 133.8, 133.2 (t, J = 23.9 Hz), 129.7, 127.3 (t, J = 6.2 Hz), 116.2 (tt, J = 251.5, 35.9 Hz), 114.9 (tt, J = 256.5, 40.6 Hz), 105.9-105.0 (m), 61.6, 14.3;

**MS** (**EI**, *m/z*, %): 416 (M<sup>+</sup>, 3.31), 199 (100);

**HRMS** (EI): Calcd. For C<sub>17</sub>H<sub>9</sub>F<sub>9</sub>O<sub>2</sub>: 416.0459; Found: 416.0463;

**IR (film)**: 2980, 1722, 1655, 1532, 1501, 1412, 1370, 1278, 1201, 1151, 1138, 1097, 1022, 1009, 991, 939, 863, 800, 771, 714, 692 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; **2f** (170 mg, 92% yield) was obtained.

White solid. Mp: 103–104 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.83 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.5 (t, *J* = 31.6 Hz, 2F), –112.9 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –147.1 (tt, *J* = 21.4, 5.3 Hz, 1F), –160.0 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  145.8 (dm, J = 259.4 Hz), 143.6 (dm, J = 259.2 Hz), 138.1 (dm, J = 254.5 Hz), 133.5 (t, J = 25.5 Hz), 132.4, 128.0 (t, J = 6.5 Hz), 117.6, 116.1, 115.8 (tt, J = 252.2, 36.1 Hz), 114.8 (tt, J = 256.9, 40.7 Hz), 105.5-104.3 (m); **MS** (**EI**, m/z, %): 369 (M<sup>+</sup>, 6.7), 152 (100);

HRMS (EI): Calcd. For C<sub>15</sub>H<sub>4</sub>F<sub>9</sub>N: 369.0200; Found: 369.0206;

**IR (film)**: 3113, 3081, 3065, 2236, 1655, 1527, 1509, 1424, 1337, 1287, 1197, 1157, 1091, 1072, 1023, 998, 940, 854, 840, 809, 773, 712, 674, 594, 551, 525 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; **2g** (167 mg, 90% yield) was obtained.

White solid. Mp: 104–105 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  10.12 (s, 1H), 8.03 (d, *J* = 8.0 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.6 (t, *J* = 31.2 Hz, 2F), –112.6 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –147.5 (tt, *J* = 21.1, 5.3 Hz, 1F), –160.2 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 125 MHz)  $\delta$  191.4, 145.9 (dm, J = 260.6 Hz), 143.6 (dm, J = 258.9 Hz), 138.7, 138.1 (dm, J = 253.6 Hz), 134.6 (t, J = 24.2 Hz), 129.7, 128.1 (t, J = 6.3 Hz), 116.1 (tt, J = 252.2, 35.6 Hz), 114.9 (tt, J = 256.5, 43.2 Hz), 105.6-104.8 (m);

**MS** (**EI**, *m*/*z*, %): 372 (M<sup>+</sup>, 31.89), 155 (100);

**HRMS** (EI): Calcd. For C<sub>15</sub>H<sub>5</sub>F<sub>9</sub>O: 372.0197; Found: 372.0193;

**IR (film)**: 2867, 1706, 1653, 1614, 1528, 1506, 1425, 1389, 1334, 1287, 1195, 1162, 1138, 1099, 1007, 995, 937, 850, 787, 722, 674 cm<sup>-1</sup>.



2h

Prepared from general procedure A; the reaction time was 6 hours; **2h** (214 mg, 87% yield) was obtained.

White solid. Mp: 198–200 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.90 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 3.77 (t, J = 4.4 Hz, 4H), 3.05 (t, J = 4.8 Hz, 4H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.6 (t, *J* = 31.2 Hz, 2F), –112.6 (t, *J* = 9.4 Hz, 2F), –138.1 (m, 2F), –147.1 (tt, *J* = 21.1, 5.6 Hz, 1F), –160.0 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 145.8 (dm, J = 260.2 Hz), 143.6 (dm, J = 259.1 Hz), 138.1 (dm, J = 254.3 Hz), 139.0, 133.8 (t, J = 25.0 Hz), 128.2 (t, J = 6.3 Hz), 128.1, 115.9 (tt, J = 252.1, 36.1 Hz), 114.8 (tt, J = 257.4, 38.9 Hz), 105.7-104.5 (m), 66.2, 46.1;

**MS** (**EI**, *m*/*z*, %): 493 (M<sup>+</sup>, 2.31), 91 (100);

**HRMS** (EI): Calcd. For C<sub>18</sub>H<sub>12</sub>F<sub>9</sub>NO<sub>3</sub>S: 493.0394; Found: 493.0397;

**IR (film)**: 2984, 2891, 2859, 1657, 1529, 1502, 1405, 1351, 1329, 1287, 1258, 1191, 1171, 1140, 1109, 1099, 1071, 1019, 991, 948, 939, 839, 757, 613, 598 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; **2i** (230 mg, 91% yield) was obtained.

White solid. Mp: 164–165 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.07 (d, *J* = 8.4 Hz, 2H), 8.03–7.96 (m, 2H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.22 (t, *J* = 8.8 Hz, 2H);

<sup>19</sup>**F** NMR (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –103.5 (m, 1F), –106.4 (t, *J* = 31.2 Hz, 2F), –112.4 (t, *J* = 10.2 Hz, 2F), –138.1 (m, 2F), –147.2 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.1 (m, 2F); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  165.9 (d, *J* = 255.5 Hz), 145.9 (dm, *J* = 258.9 Hz), 145.1, 143.6 (dm, *J* = 259.2 Hz), 138.1 (dm, *J* = 253.8 Hz), 136.9 (d, *J* = 3.2 Hz), 134.0 (t, *J* = 24.9 Hz), 131.0 (d, *J* = 9.7 Hz), 128.5 (t, *J* = 6.2 Hz), 127.9, 117.0 (d, *J* =

22.6 Hz), 115.8 (tt, J = 252.0, 36.4 Hz), 114.8 (tt, J = 257.4, 40.5 Hz), 105.5-104.6 (m);

**MS** (**EI**, *m/z*, %): 502 (M<sup>+</sup>, 4.36), 143 (100);

**HRMS** (EI): Calcd. For C<sub>20</sub>H<sub>8</sub>F<sub>10</sub>O<sub>2</sub>S: 502.0085; Found: 502.0079;

**IR** (**film**): 3109, 3085, 1657, 1594, 1531, 1504, 1404, 1326, 1290, 1242, 1196, 1165, 1154, 1136, 1104, 1092, 1073, 994, 836, 804, 752, 629, 551 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; **2j** (189 mg, 92% yield) was obtained.

White solid. Mp: 93–95 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.73 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.5 (t, *J* = 31.2 Hz, 2F), –112.1 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –147.4 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.1 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  145.9 (dm, J = 260.2 Hz), 143.6 (dm, J = 258.9 Hz), 138.2 (dm, J = 254.6 Hz), 136.9, 133.6, 130.9, 129.4 (t, J = 6.8 Hz), 129.1 (t, J = 25.3 Hz), 126.5 (t, J = 6.3 Hz), 115.7 (tt, J = 252.0, 36.3 Hz), 114.8 (tt, J = 258.1, 41.6 Hz), 105.6-104.8 (m);

**MS** (**EI**, *m*/*z*, %): 412 (M<sup>+</sup>, 3.1), 195 (100);

**HRMS** (EI): Calcd. For C<sub>14</sub>H<sub>3</sub>Cl<sub>2</sub>F<sub>9</sub>: 411.9468; Found: 411.9466;

**IR** (film): 3097, 1656, 1527, 1505, 1474, 1424, 1387, 1333, 1294, 1252, 1201, 1162, 1092, 1077, 995, 951, 891, 823, 770, 728, 677 cm<sup>-1</sup>.

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 133.5 (t, J = 25.5 Hz), 132.4, 128.0 (t, J = 6.5 Hz), 117.6, 116.1;



Prepared from general procedure A; the reaction time was 27 hours; **2k** (162 mg, 81% yield) was obtained.

White solid. Mp: 102–103 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.55 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 1.36 (s, 9H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.9 (t, J = 31.2 Hz, 2F), –118.6 (m, 2F), –138.2 (m, 2F), –148.5 (m, 1F), –160.8 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  155.3, 145.9 (dm, J = 258.5 Hz), 143.3 (dm, J = 258.2 Hz), 138.1 (dm, J = 252.9 Hz), 126.9 (t, J = 6.1 Hz), 126.2 (t, J = 24.4 Hz), 125.6, 116.8 (tt, J = 250.6, 35.3 Hz), 115.1 (tt, J = 256.2, 43.1 Hz), 106.4-105.8 (m), 35.1, 31.3;

**MS** (**EI**, *m/z*, %): 400 (M<sup>+</sup>, 7.68), 183 (100);

HRMS (EI): Calcd. For C<sub>18</sub>H<sub>13</sub>F<sub>9</sub>: 400.0874; Found: 400.0872;

**IR (film)**: 2968, 2879, 1927, 1654, 1613, 1527, 1501, 1408, 1366, 1333, 1294, 1195, 1160, 1140, 1105, 1093, 1071, 1017, 835, 800, 709, 596 cm<sup>-1</sup>.

 $1-(Benzyloxy)-4-(1,1,2,2,8,8,8,8,8-nonafluoro-8\lambda^8-octa-3,5,7-triyn-1-yl)$ benzene (21)



Prepared from general procedure A; the reaction time was 26 hours; **2l** (185 mg, 82% yield) was obtained.

White solid. Mp: 136–138 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.53 (d, *J* = 8.8 Hz, 2H), 7.48–7.32 (m, 5H), 7.07 (d, *J* = 8.8 Hz, 2H), 5.13 (s, 2H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –107.0 (t, *J* = 31.6 Hz, 2F), –111.4 (t, *J* = 9.8 Hz, 2F), –138.2 (m, 2F), –148.4 (tt, *J* = 21.1, 5.3 Hz, 1F), –160.7 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  161.4, 145.8 (dm, J = 258.6 Hz), 143.3 (dm, J = 258.5 Hz), 138.0 (dm, J = 252.5 Hz), 136.4, 128.8, 128.77 (t, J = 6.4 Hz), 128.4, 127.6, 121.3 (t, J = 24.9 Hz), 116.7 (tt, J = 250.8, 35.3 Hz), 115.0 (tt, J = 258.2, 39.8 Hz), 114.9, 106.4-105.6 (m), 70.3;

**MS** (**EI**, *m*/*z*, %): 450 (M<sup>+</sup>), 91 (100);

**HRMS** (EI): Calcd. For C<sub>21</sub>H<sub>11</sub>F<sub>9</sub>O: 450.0666; Found: 450.0671;

**IR** (**film**): 3085, 3040, 2944, 2883, 1654, 1613, 1530, 1504, 1455, 1423, 1384, 1331, 1255, 1197, 1155, 1138, 1106, 1092, 1007, 992, 929, 842, 815, 789, 754, 698 cm<sup>-1</sup>.



Prepared from general procedure C; the reaction time was 50 hours; **2m** (148 mg, 79% yield) was obtained.

White solid. Mp: 114–115 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.61 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 4.80 (d, J = 4.8 Hz, 2H), 1.79 (t, J = 5.6 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.9 (t, *J* = 31.6 Hz, 2F), –112.1 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –148.2 (tt, *J* = 21.1, 5.3 Hz, 1F), –160.6 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  145.8 (dm, J = 260.1 Hz), 144.8, 143.3 (dm, J = 258.6 Hz), 138.0 (dm, J = 252.6 Hz), 128.3 (t, J = 24.6 Hz), 127.4 (t, J = 6.3 Hz), 126.8, 116.5 (tt, J = 251.0, 35.4 Hz), 114.8 (tt, J = 256.8, 41.0 Hz), 105.5-104.3 (m), 64.6;

**MS** (**EI**, *m/z*, %): 374 (M<sup>+</sup>, 4.41), 157 (100);

**HRMS** (EI): Calcd. For C<sub>15</sub>H<sub>7</sub>F<sub>9</sub>O: 374.0353; Found: 374.0348;

**IR (film)**: 3327, 2960, 2879, 1653, 1613, 1527, 1506, 1424, 1332, 1290, 1195, 1158, 1139, 1093, 1071, 1018, 999, 934, 819, 779 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 27 hours; **2n** (154 mg, 78% yield) was obtained.

White solid. Mp: 208–209 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.30 (d, *J* = 8.0 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.64–7.52 (m, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –105.5 (t, *J* = 9.0 Hz, 2F), –105.9 (t, *J* = 30.8 Hz, 2F), –138.2 (m, 2F), –148.2 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.6 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  146.9-142.1 (m), 138.1 (dm, J = 252.3 Hz), 134.2, 133.2, 130.6, 129.1, 128.1 (t, J = 9.6 Hz), 127.6, 126.4, 125.3, 124.8 (t, J = 21.7 Hz), 124.4;

**MS** (**EI**, *m*/*z*, %): 394 (M<sup>+</sup>, 18.61), 177 (100);

**HRMS** (EI): Calcd. For C<sub>18</sub>H<sub>7</sub>F<sub>9</sub>: 394.0404; Found: 394.0415;

**IR (film**): 1655, 1527, 1501, 1423, 1328, 1255, 1184, 1120, 1089, 1004, 989, 806, 783, 769, 719, 614, 539 cm<sup>-1</sup>.

#### Methyl

4,5-dimethoxy-2-(1,1,2,2,8,8,8,8,8-nonafluoro-8λ<sup>8</sup>-octa-3,5,7-triyn-1-yl)benzoate (**20**)



Prepared from general procedure A; the reaction time was 33 hours; **20** (191 mg, 83% yield) was obtained.

White solid. Mp: 102–103 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.09 (s, 1H), 7.00 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.84 (s, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –105.7 (m, 2F), –106.0 (t, *J* = 31.2 Hz, 2F), –138.5 (m, 2F), –148.4 (tt, *J* = 21.48, 5.3 Hz, 1F), –160.9 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  168.4, 151.1, 150.0, 147.5-141.7 (m), 138.0 (dm, J = 253.4 Hz), 126.5 (t, J = 3.5 Hz), 118.9 (t, J = 24.1 Hz), 116.5 (tt, J = 254.0, 35.5 Hz), 115.2 (tt, J = 258.0, 39.7 Hz), 111.6, 111.3 (t, J = 7.9 Hz), 106.5-105.5 (m), 56.4, 56.3, 52.8;

**MS** (**ESI**, m/z): 463 (M+H<sup>+</sup>);

**HRMS (DART)**: Calcd. For C<sub>18</sub>H<sub>12</sub>F<sub>9</sub>O<sub>4</sub>: 463.0586 (M+H<sup>+</sup>); Found: 463.0585; **IR (film)**: 3012, 2954, 2855, 1736, 1657, 1607, 1529, 1507, 1466, 1436, 1361, 1331, 1283, 1216, 1195, 1173, 1130, 995, 961, 871, 826, 783, cm<sup>-1</sup>.

(**2p**)



Prepared from general procedure A; the reaction time was 41 hours; **2p** (175 mg, 85% yield) was obtained.

White solid. Mp: 143–144 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.01 (d, J = 2.4 Hz, 1H), 7.86 (d, J = 8.8 Hz, 2H), 7.77 (d, J = 1.6 Hz, 1H), 7.71 (d, J = 8.8 Hz, 2H), 6.52 (t, J = 2.4 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.8 (t, *J* = 31.2 Hz, 2F), –112.1 (t, *J* = 9.4 Hz, 2F), –138.1 (m, 2F), –147.9 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.4 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  145.8 (dm, J = 256.4 Hz), 143.4 (dm, J = 258.6 Hz), 142.7, 142.1, 138.1 (dm, J = 252.8 Hz), 128.6 (t, J = 6.3 Hz), 126.9, 126.7 (t, J = 25.2 Hz), 118.7, 116.4 (tt, J = 252.0, 35.2 Hz), 114.9 (tt, J = 254.9, 42.2 Hz), 108.6, 106.0-105.3 (m) ;

**MS** (**ESI**, m/z): 411 (M+H<sup>+</sup>);

**HRMS (DART)**: Calcd. For C<sub>17</sub>H<sub>8</sub>F<sub>9</sub>N<sub>2</sub>: 411.0538 (M+H<sup>+</sup>); Found: 411.0540; **IR (film)**: 3129, 1654, 1618, 1529, 1499, 1438, 1395, 1412, 1337, 1293, 1193, 1156, 1136, 1121, 1100, 1073, 990, 931, 846, 798, 756, 699 cm<sup>-1</sup>. ne (2q)



Prepared from general procedure A; the reaction time was 20 hours; **2q** (215 mg, 88% yield) was obtained.

White solid. Mp: 228–230 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.91 (s, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.6 (t, *J* = 31.6 Hz, 2F), –112.1 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –148.0 (tt, *J* = 21.1, 5.6 Hz, 1F), –160.5 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  160.3, 153.9, 145.9 (dm, J = 259.4 Hz), 143.4 (dm, J = 258.2 Hz), 141.1, 138.2, 138.1 (dm, J = 253.2 Hz), 132.2, 129.4 (t, J = 24.6 Hz), 128.8, 128.3, 127.4 (t, J = 6.3 Hz), 127.2, 124.9, 119.5, 116.8, 116.4 (tt, J = 251.0, 35.6 Hz), 114.8 (tt, J = 258.0, 42.0 Hz), 105.5-104.3 (m);

**MS** (**EI**, *m*/*z*, %): 488 (M<sup>+</sup>, 10.48), 271 (100);

**HRMS** (EI): Calcd. For C<sub>23</sub>H<sub>9</sub>F<sub>9</sub>O<sub>2</sub>: 488.0459; Found: 488.0462;

**IR (film)**: 1725, 1658, 1608, 1537, 1499, 1455, 1356, 1292, 1195, 1153, 1136, 1103, 1093, 990, 938, 830, 757, 641 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 41 hours; **2r** (190 mg, 75% yield) was obtained.

White solid. Mp: 209–212 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.41 (s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.68–7.49 (m, 9H), 7.39–7.33 (m, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.4 (t, *J* = 31.2 Hz, 2F), –109.8 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –148.6 (tt, *J* = 21.4, 5.3 Hz, 1F), –160.7 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  145.9 (dm, J = 258.9 Hz), 143.2 (dm, J = 258.6 Hz), 142.6, 141.7, 138.1 (dm, J = 253.2 Hz), 137.2, 130.2, 128.2, 127.3, 127.0, 124.5 (t, J = 5.8 Hz), 123.3, 123.0, 120.9, 120.8, 120.2 (t, J = 25.2 Hz), 119.9 (t, J = 6.8 Hz), 117.4 (tt, J = 251.2, 35.3 Hz), 115.2 (tt, J = 256.5, 41.3 Hz), 105.5-104.3 (m), 110.3,

109.8; **MS** (**ESI**, *m/z*): 510.1 (M+H<sup>+</sup>); **HRMS** (**EI**): Calcd. For C<sub>26</sub>H<sub>13</sub>F<sub>9</sub>N: 510.0899 (M+H<sup>+</sup>); Found: 510.0898; **IR** (**film**): 1654, 1599, 1526, 1504, 1456, 1423, 1330, 1262, 1238, 1191, 1139, 1089, 992, 893, 815, 773, 752, 697 cm<sup>-1</sup>.



Prepared from general procedure B; the reaction time was 41 hours; **2s** (188 mg, 83% yield) was obtained.

White solid. Mp: 173–175 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.38 (d, *J* = 8.0 Hz, 1H), 8.22 –8.16 (m, 1H), 7.90–7.85 (m, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.55–7.46 (m, 2H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.9 (t, *J* = 31.2 Hz, 2F), –111.5 (t, *J* = 9.4 Hz, 2F), –138.0 (m, 2F), –147.8 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.5 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  145.9 (dm, J = 256.5 Hz), 143.5 (dm, J = 258.7 Hz), 139.7 (t, J = 3.2 Hz), 138.2, 138.1 (dm, J = 252.5 Hz), 137.5, 134.2, 127.7, 126.9 (t, J = 7.3 Hz), 124.9, 124.8, 124.4, 123.8 (t, J = 25.6 Hz), 122.5, 121.8, 117.4 (tt, J = 253.6, 35.7 Hz), 115.6 (tt, J = 256.6, 42.3 Hz), 106.0-105.3 (m);

**MS** (**EI**, *m*/*z*, %): 450 (M<sup>+</sup>, 27.55), 233 (100);

HRMS (EI): Calcd. For C<sub>20</sub>H<sub>7</sub>F<sub>9</sub>S: 450.0125; Found: 450.0140;

**IR (film)**: 2908, 1658, 1531, 1503, 1403, 1331, 1277, 1187, 1129, 1090, 1038, 990, 946, 822, 774, 756, 743, 704, 612 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 33 hours; **2t** (164 mg, 83% yield) was obtained.

White solid. Mp: 162–164 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.05 (dd, J = 4.4, 1.6 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 8.8 Hz, 1H), 7.16 (s, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.53 (dd, J = 8.4, 4.0 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.4 (t, *J* = 31.6 Hz, 2F), –111.5 (t, *J* = 9.8 Hz, 2F), –138.1 (m, 2F), –147.8 (tt, *J* = 21.4, 5.3 Hz, 1F), –160.4 (m, 2F);

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  152.6, 149.3, 145.8 (dm, J = 258.4 Hz), 143.4 (dm, J = 258.7 Hz), 138.1 (dm, J = 252.9 Hz), 137.0, 130.4, 128.1 (t, J = 6.9 Hz), 127.4,

127.2 (t, J = 24.2 Hz), 126.8 (t, J = 5.7 Hz), 122.3, 116.5 (tt, J = 251.7, 35.7 Hz), 114.8 (tt, J = 258.3, 44.0 Hz), 106.0-105.3 (m); **MS (ESI**, m/z): 396 (M+H<sup>+</sup>); **HRMS (DART**): Calcd. For C<sub>17</sub>H<sub>7</sub>F<sub>9</sub>N: 396.0429 (M+H<sup>+</sup>); Found: 396.0430; **IR (film**): 1659, 1594, 1570, 1532, 1501, 1425, 1362, 1329, 1202, 1184, 1154, 1128, 1094, 1070, 991, 900, 846, 802, 616 cm<sup>-1</sup>.

5-(1,1,2,2,8,8,8,8,8-Nonafluoro-8λ<sup>8</sup>-octa-3,5,7-triyn-1-yl)-1H-indole (**2u**)



Prepared from general procedure C; the reaction time was 41 hours; **2u** (159 mg, 83% yield) was obtained.

Pale yellow solid. Mp: 191–192 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.34 (s, 1H), 7.93 (s, 1H), 7.48 (d, J = 8.7 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.32 (t, J = 2.8 Hz, 1H), 6.68–6.40 (m, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.7 (t, *J* = 31.2Hz, 2F), –110.0 (t, *J* = 10.2 Hz, 2F), –138.2 (m, 2F), –148.8 (tt, *J* = 21.1, 5.3 Hz, 1F), –160.9 (m, 2F);

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  145.8 (dm, J = 260.9 Hz), 143.2 (dm, J = 257.6 Hz), 138.0 (dm, J = 252.4 Hz), 137.3, 127.5, 125.8, 120.8–120.4 (m), 120.0–112.5 (m), 111.1, 103.7;

**MS** (**ESI**, *m*/*z*): 384 (M+H<sup>+</sup>);

**HRMS** (**DART**): Calcd. For C<sub>16</sub>H<sub>7</sub>F<sub>9</sub>N: 384.0429 (M+H<sup>+</sup>); Found: 384.0430;

**IR (film)**: 3484, 1657, 1619, 1527, 1506, 1420, 1332, 1304, 1198, 1174, 1090, 1059, 991, 962, 793, 735, 696, 481 cm<sup>-1</sup>.

(2v)



Prepared from general procedure A; the reaction time was 26 hours; **2v** (198 mg, 84% yield) was obtained.

Red solid. Mp: 195–197 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.93–7.81 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 3.33 (s, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.6 (t, *J* = 31.2Hz, 2F), –111.9 (m, 2F), –138.1 (m, 2F), –147.3 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.1 (m, 2F);

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  182.3, 158.0, 153.9, 145.8 (dm, J = 259.3 Hz), 143.5 (dm, J = 259.0 Hz), 138.1 (dm, J = 253.4 Hz), 137.2 (t, J = 6.3 Hz), 124.8 (t, J = 25.3

Hz), 124.3 (t, J = 6.4 Hz), 117.4, 115.9 (tt, J = 251.2, 36.3 Hz), 114.8 (tt, J = 255.5, 42.4 Hz), 105.5-104.6 (m), 110.3, 26.6; **MS (ESI**, m/z): 428 (M+H<sup>+</sup>); **HRMS (DART**): Calcd. For C<sub>17</sub>H<sub>7</sub>F<sub>9</sub>N O<sub>2</sub>: 428.0328 (M+H<sup>+</sup>); Found: 428.0327; **IR (film**): 3077, 2952, 1748, 1626, 1601, 1529, 1503, 1425, 1359, 1332, 1301, 1276, 1122, 1092, 996, 794, 739, 705, 477 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; 2w (125 mg, 72% yield) was obtained.

White solid. Mp: 92–93 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.68 (d, J = 4.8 Hz, 1H), 7.90 (t, J = 4.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.49 (dd, J = 7.2, 4.8 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –107.7 (t, *J* = 31.2Hz, 2F), –116.9 (m, 2F), –138.2 (m, 2F), –148.2 (tt, *J* = 21.4, 5.6 Hz, 1F), –160.8 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  149.8, 148.5 (t, J = 25.7 Hz), 145.8 (dm, J = 255.6Hz), 143.4 (dm, J = 258.5 Hz), 138.0 (dm, J = 252.9 Hz), 137.3, 126.2, 122.9 (t, J = 4.1 Hz), 115.0 (tt, J = 258.9, 37.6 Hz), 114.1 (tt, J = 253.1, 34.2 Hz), 106.2-105.5 (m);

**MS** (**EI**, *m/z*, %): 345 (M<sup>+</sup>, 44.05), 128 (100);

**HRMS** (EI): Calcd. For C<sub>13</sub>H<sub>4</sub>F<sub>9</sub>N: 345.0200; Found: 345.0206;

**IR (film)**: 1656, 1587, 1501, 1437, 1427, 1336, 1301, 1204, 1155, 1136, 1108, 1081, 1048, 990, 943, 809, 782, 693, 615 cm<sup>-1</sup>.



Prepared from general procedure A; the reaction time was 20 hours; 2x (132 mg, 70% yield) was obtained.

White solid. Mp: 86–88 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.61 (d, J = 5.2 Hz, 1H), 7.60 (s, 1H), 7.49 (d, J = 5.2 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –106.4 (t, *J* = 31.6Hz, 2F), –113.9 (m, 2F), –138.0 (m, 2F), –146.7 (tt, *J* = 21.4, 5.6 Hz, 1F), –159.8 (m, 2F);

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  152.6, 150.6, 145.9 (dm, J = 259.6 Hz), 143.8 (dm, J = 260.0 Hz), 140.4 (t, J = 26.0 Hz), 138.2 (dm, J = 253.3 Hz), 122.5 (t, J = 6.5 Hz), 120.1 (t, J = 6.0 Hz), 114.8 (tt, J = 252.3, 36.8 Hz), 114.6 (tt, J = 256.4, 40.4 Hz),

105.5-104.3 (m); **MS** (**ESI**, *m/z*): 380 (M+H<sup>+</sup>); **HRMS** (**DART**): Calcd. For C<sub>13</sub>H<sub>4</sub>ClF<sub>9</sub>N: 379.9883 (M+H<sup>+</sup>); Found: 379.9884; **IR** (**film**): 1658, 1590, 1552, 1529, 1512, 1427, 1373, 1335, 1300, 1272, 1202, 1129, 1099, 1080, 990, 956, 890, 845, 815, 763, 718, 696 cm<sup>-1</sup>.

 $1-Benzyl-4-(1,1,2,2,8,8,8,8,8-nonafluoro-8\lambda^8-octa-3,5,7-triyn-1-yl)-1H-imidazole$ 

(**2**y)



Prepared from general procedure C; the reaction time was 41 hours; **2y** (128 mg, 60% yield) was obtained.

White solid. Mp: 90–91 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.56 (s, 1H), 7.44–7.34 (m, 3H), 7.29 (s, 1H), 7.18 (dd, J = 8.0, 1.6 Hz, 2H), 5.16 (s, 2H);

<sup>19</sup>**F** NMR (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –108.3 (tt, J = 31.2, 4.5 Hz, 2F), –112.3 (m, 2F), –138.1 (m, 2F), –148.6 (tt, J = 21.4, 5.3 Hz, 1F), –161.0 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  145.8 (dm, J = 258.6 Hz), 143.2 (dm, J = 257.4 Hz), 138.4, 137.9 (dm, J = 252.1 Hz), 135.0, 131.7 (t, J = 30.7 Hz), 129.4, 128.9, 127.5, 121.2 (t, J = 4.0 Hz), 114.8 (tt, J = 257.8, 39.7 Hz), 113.9 (tt, J = 248.3 34.4 Hz), 106.2-105.3 (m), 51.4;

**MS** (**EI**, *m/z*, %): 424 (M<sup>+</sup>, 24.86), 91 (100);

**HRMS** (EI): Calcd. For C<sub>18</sub>H<sub>9</sub>F<sub>9</sub>N<sub>2</sub>: 424.0622; Found: 424.0626;

**IR (film)**: 3101, 3032, 2944, 1656, 1562, 1528, 1505, 1456, 1331, 1230, 1179, 1120, 1100, 1045, 995, 912, 842, 806, 718 cm<sup>-1</sup>.

3,5-Dimethyl-4-(1,1,2,2,8,8,8,8,8,8-nonafluoro- $8\lambda^8$ -octa-3,5,7-triyn-1-yl)isoxazole (**2z**)



Prepared from general procedure C; the reaction time was 41 hours; **2z** (153 mg, 84% yield) was obtained.

White solid. Mp: 95–97 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.51 (s, 3H), 2.33 (s, 3H); <sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –107.3 (tt, *J* = 31.6, 10.9 Hz, 2F), –109.1 (t, *J* = 10.2 Hz, 2F), –138.4 (m, 2F), –147.3 (tt, *J* = 21.1, 5.6 Hz, 1F), –160.1 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  171.7 (t, *J* = 4.3 Hz), 158.5, 145.8 (dm, *J* = 255.4 Hz), 143.6 (dm, *J* = 259.0 Hz), 138.2 (dm, *J* = 254.2 Hz), 115.4 (tt, *J* = 254.5, 39.7 Hz), 115.2 (tt, *J* = 248.2, 37.9 Hz), 105.7 (t, *J* = 29.0 Hz), 105.2-104.5 (m), 12.3, 10.9 (t, *J* = 2.0 Hz);

**MS** (**ESI**, m/z): 364 (M+H<sup>+</sup>);

**HRMS (DART)**: Calcd. For C<sub>13</sub>H<sub>7</sub>F<sub>9</sub>NO: 364.0378 (M+H<sup>+</sup>); Found: 364.0382; **IR (film)**: 2996, 1662, 1633, 1531, 1505, 1425, 1332, 1303, 1257, 1197, 1127, 1091, 1070, 992, 928, 791, 731, 658 cm<sup>-1</sup>.



Prepared from general procedure C; the reaction time was 41 hours; **2aa** (123 mg, 70% yield) was obtained.

White solid. Mp: 89–91 °C. <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.58 (d, J = 5.2 Hz, 1H), 7.46 (d, J = 3.6 Hz, 1H), 7.17–7.12 (m, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –102.4 (t, *J* = 9.8Hz, 2F), –106.7 (tt, *J* = 31.6, 14.3 Hz, 2F), –137.9 (m, 2F), –147.9 (tt, *J* = 21.1, 5.3 Hz, 1F), –160.5 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  145.9 (dm, J = 258.4 Hz), 143.5 (dm, J = 258.6 Hz), 138.1 (dm, J = 253.4 Hz), 130.4 (t, J = 5.4 Hz), 130.0, 129.8 (t, J = 29.2 Hz), 127.5, 115.7 (tt, J = 250.5, 35.8 Hz), 114.7 (tt, J = 256.9, 41.8 Hz), 105.8-105.2 (m) ; **MS** (**EI**, m/z, %): 350 (M<sup>+</sup>, 4.14), 133 (100);

**HRMS (EI)**: Calcd. For  $C_{12}H_3F_9S$ : 349.9812; Found: 349.9819;

**IR (film)**: 1654, 1533, 1503, 1427, 1359, 1332, 1278, 1203, 1153, 1121, 1093, 1031, 1002, 990, 910, 785, 725 cm<sup>-1</sup>.

 $5-(1,1,2,2,8,8,8,8,8,8) \text{Nonafluoro-}8\lambda^8-\text{octa-}3,5,7-\text{triyn-}1-\text{yl})-1H-\text{pyrrole-}2-\text{carbaldehyde}$ 

(**2ab**)



Prepared from general procedure C; the reaction time was 41 hours; **2ab** (97 mg, 54% yield) was obtained.

White solid. Mp: 154–156 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  10.3 (br, 1H), 9.60 (s, 1H), 7.46 (s, 1H), 7.21 (s, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –107.1 (m, 4F), –138.1 (m, 2F), –148.0 (tt, *J* = 21.1, 5.3 Hz, 1F), –160.5 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 150 MHz)  $\delta$  179.9, 145.8 (dm, J = 255.2 Hz), 143.4 (dm, J = 258.5 Hz), 138.1 (dm, J = 252.5 Hz), 133.4, 125.9 (t, J = 6.6 Hz), 119.2 (t, J = 4.4 Hz), 115.7 (t, J = 28.4 Hz), 115.2 (tt, J = 247.6, 36.9 Hz), 114.8 (tt, J = 255.2, 44.1 Hz), 106.0-105.4 (m);

**MS** (**ESI**, *m*/*z*): 361.9 (M+H<sup>+</sup>);

**HRMS (DART)**: Calcd. For C<sub>13</sub>H<sub>5</sub>F<sub>9</sub>NO: 362.0222 (M+H<sup>+</sup>); Found: 362.0223; **IR (film)**: 3143, 3065, 3012, 2964, 1663, 1578, 1527, 1503, 1456, 1400, 1358, 1330,

1289, 1179, 1143, 1110, 1089, 992, 899, 844, 758, 765, 725, 692 cm<sup>-1</sup>.



Prepared from general procedure C; the reaction time was 41 hours; **2ac** (135 mg, 75% yield) was obtained.

White solid. Mp: 53–54 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.78 (s, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.05 (d, J = 3.6 Hz, 1H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –107.1 (t, *J* = 31.2 Hz, 2F), –113.3 (m, 2F), –138.1 (m, 2F), –146.8 (tt, *J* = 21.1, 5.6 Hz, 1F), –159.9 (m, 2F);

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  178.2, 154.5, 147.2–142.2 (m), 145.9 (t, *J* = 33.8 Hz), 138.1 (dm, *J* = 253.9 Hz), 119.2, 115.6 (t, *J* = 3.6 Hz), 114.5 (tt, *J* = 258.5, 38.4 Hz), 113.7 (tt, *J* = 251.1, 37.0 Hz);

**MS** (**EI**, *m/z*, %): 362 (M<sup>+</sup>, 21.2), 145 (100);

HRMS (EI): Calcd. For C<sub>13</sub>H<sub>3</sub>F<sub>9</sub>O<sub>2</sub>: 361.9989; Found: 361.9980;

**IR** (film): 3137, 2843, 1696, 1655, 1589, 1529, 1506, 1426, 1286, 1233, 1142, 1109, 1090, 1022, 997, 963, 804, 790, 753, 730 cm<sup>-1</sup>.

Ethyl (*Z*)-4,4,5,5,11,11,11,11,11,11-nonafluoro- $11\lambda^8$ -undeca-2-en-6,8,10-triynoate (**2ad**)

$$EtO_2C$$
  $CF_2CF_2C_6F_5$   
**2ad**

Prepared from general procedure B; the reaction time was 41 hours; **2ad** (161 mg, 88% yield) was obtained.

Yellow oil. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  6.43 (d, J = 12.4 Hz, 1H), 6.03 (q, J = 12.8 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –107.8 (t, *J* = 31.2 Hz, 2F), –111.7 (m, 2F), –138.0 (m, 2F), –147.8 (tt, *J* = 21.4, 5.3 Hz, 1F), –160.6 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.3, 131.8 (t, J = 5.9 Hz), 123.2 (t, J = 24.5 Hz), 61.8, 13.9;

**MS** (**EI**, *m/z*, %): 366 (M<sup>+</sup>, 11.51), 217 (100);

HRMS (EI): Calcd. For C<sub>13</sub>H<sub>7</sub>F<sub>9</sub>O<sub>2</sub>: 366.0302; Found: 366.0294;

**IR (film)**: 2996, 2952, 1742, 1658, 1529, 1507, 1426, 1389, 1333, 1230, 1166, 1110, 997, 807 cm<sup>-1</sup>.

(S)-3-(4-((2-Chloro-5-(1,1,2,2,8,8,8,8,8,8-nonafluoro-8 $\lambda^{8}$ -octa-3,5,7-triyn-1-yl)phenyl)

methyl)phenoxy)tetrahydrofuran (2ae)



Prepared from general procedure A; the reaction time was 33 hours; **2ae** (265 mg, 96% yield) was obtained.

White solid. Mp: 81–83 °C.  $[\alpha]_D = 5.23$  (CHCl<sub>3</sub>, c= 1.1050 w/v%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.51 (d, J = 8.4 Hz, 1H), 7.46–7.39 (m, 1H), 7.35 (s, 1H), 7.07 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.93–4.87 (m, 1H), 4.09 (s, 2H), 4.03–3.94 (m, 3H), 3.93–3.86 (m, 1H), 2.25–2.08 (m, 2H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  -107.1 (t, *J* = 31.2 Hz, 2F), -112.5 (t, *J* = 9.8 Hz, 2F), -138.1 (m, 2F), -147.8 (tt, *J* = 21.1, 5.3 Hz, 1F), -160.4 (m, 2F);

<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  156.2, 147.2-141.8 (m), 139.8, 138.2, 137.9 (dm, J = 253.7 Hz), 130.9, 130.0, 129.9, 129.4 (t, J = 6.3 Hz), 127.8 (t, J = 24.5 Hz), 126.4 (t, J = 6.3 Hz), 116.1 (tt, J = 251.9, 34.9 Hz), 115.5, 114.8 (tt, J = 256.9, 41.0 Hz), 77.4, 73.2, 67.3, 38.5, 33.1;

**MS** (**ESI**, *m*/*z*): 572 (M+NH<sub>4</sub><sup>+</sup>);

**HRMS** (**DART**): Calcd. For C<sub>25</sub>H<sub>20</sub>O<sub>2</sub>ClF<sub>9</sub>N: 572.1033 (M+NH<sub>4</sub><sup>+</sup>); Found: 572.1033; **IR (film)**: 2988, 2944, 2859, 1655, 1610, 1333, 1302, 1242, 1179, 1123, 1080, 1046, 996, 913, 801 cm<sup>-1</sup>.

1,5-Dimethyl-4-(1,1,2,2,8,8,8,8,8-nonafluoro-8λ<sup>8</sup>-octa-3,5,7-triyn-1-yl)-2-phenyl-1,2-

dihydro-3H-pyrazol-3-one (2af)



Prepared from general procedure C; the reaction time was 41 hours; **2af** (201 mg, 88% yield) was obtained.

White solid. Mp: 208–210 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.46 (t, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.8 Hz, 2H), 3.24 (s, 3H), 2.42 (s, 3H);

<sup>19</sup>**F NMR** (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –109.5 (tt, J = 31.2, 8.3 Hz, 2F), –111.2 (m, 2F), –139.1 (m, 2F), –148.0 (tt, J = 21.4, 5.3 Hz, 1F), –161.1 (m, 2F);

<sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  161.9 (t, J = 3.6 Hz), 154.6 (t, J = 2.9 Hz), 145.9 (dm, J = 257.1 Hz), 143.3 (dm, J = 257.9 Hz), 138.0 (dm, J = 252.1 Hz), 134.1, 129.6, 128.3, 125.9, 115.4 (tt, J = 252.8, 34.0 Hz), 115.37 (tt, J = 230.2, 14.5 Hz), 106.4-105.6 (m), 96.3 (t, J = 27.1 Hz), 34.6, 12.0;

**MS** (**ESI**, *m*/*z*): 455 (M+H<sup>+</sup>);

**HRMS** (**DART**): Calcd. For C<sub>19</sub>H<sub>12</sub>F<sub>9</sub>N<sub>2</sub>O: 455.0800 (M+H<sup>+</sup>); Found: 455.0800; **IR** (**film**): 3044, 1671, 1565, 1532, 1499, 1457, 1419, 1333, 1306, 1127, 1088, 989,

949, 811, 776, 763, 748, 719, 598 cm<sup>-1</sup>. <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 133.5 (t, J = 25.5 Hz), 132.4, 128.0 (t, J = 6.5 Hz), 117.6, 116.1;

## 3. Procedures for Gram-Scale Synthesis



5 mmol, 1.12 g

83%, 1.5 g

To an oven-dried sealed tube were added CuCl (36 mmol, 3.56 g, 7.2 equiv) and KF (27 mmol, 1.57 g, 5.4 equiv) in glove box. Then in fume hood, DMF (80 mL) and C<sub>6</sub>F<sub>5</sub>TMS (9 mmol, 1.70 mL, 1.8 equiv) were successively added under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes, then TMSCF<sub>3</sub> (17.1 mmol, 2.42 mL, 3.42 equiv) was added in two equal portions and the second portion was added 6 hours later. The mixture was stirred at room temperature for 2 hours. After that, aryl iodide **1z** (5 mmol, 1.12 g, 1.0 equiv) was added under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 70 °C for 41 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and quenched with 200 mL ammonium hydroxide, extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL×3). The combined organic layer was washed with H<sub>2</sub>O (50 mL×2) and brine (80 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford **2z** (83%, 1.5 g).



To an oven-dried sealed tube were added CuCl (30 mmol, 2.97 g, 6.0 equiv) and KF (22.5 mmol, 1.305 g, 4.5 equiv) in glove box. Then in fume hood, DMF (80 mL) and C<sub>6</sub>F<sub>5</sub>TMS (7.5 mmol, 1.42 mL, 1.5 equiv) were successively added under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes, then TMSCF<sub>3</sub> (14.25 mmol, 2.02 mL, 2.85 equiv) was added in two equal portions and the second portion was added 6 hours later. The mixture was stirred at room temperature for 2 hours and then heated to 60 °C and stirred at that temperature for 2 hours. After that, aryl iodide **1ae** (5 mmol, 2.07 g, 1.0 equiv) was added under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 70 °C for 41 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and quenched with 200 mL ammonium hydroxide, extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL×3). The combined organic layer was washed with H<sub>2</sub>O (50 mL×2) and brine (80 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford **2ae** (98%, 2.71 g).



To an oven-dried sealed tube were added CuCl (36 mmol, 3.56 g, 7.2 equiv) and KF (27 mmol, 1.57 g, 5.4 equiv) in glove box. Then in fume hood, DMF (80 mL) and S-22

 $C_6F_5TMS$  (9 mmol, 1.70 mL, 1.8 equiv) were successively added under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes, then TMSCF<sub>3</sub> (17.1 mmol, 2.42 mL, 3.42 equiv) was added in two equal portions and the second portion was added 6 hours later. The mixture was stirred at room temperature for another 22 hours and then heated to 60 °C and stirred at that temperature for 2 hours. After that, aryl iodide **1af** (5 mmol, 1.57 g, 1.0 equiv) was added under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 70 °C for 41 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and quenched with 200 mL ammonium hydroxide, extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL×3). The combined organic layer was washed with H<sub>2</sub>O (50 mL×2) and brine (80 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford **2af** (84%, 1.9 g).

# 4. X-ray Crystal Structure of 2n





| Table 1. Crystal data and structure refinement for mo_d8v18839_0m. |                                             |                          |  |  |
|--------------------------------------------------------------------|---------------------------------------------|--------------------------|--|--|
| Identification code                                                | mo_d8v18839_0m                              |                          |  |  |
| Empirical formula                                                  | C18 H7 F9                                   |                          |  |  |
| Formula weight                                                     | 394.24                                      |                          |  |  |
| Temperature                                                        | 296(2) K                                    |                          |  |  |
| Wavelength                                                         | 0.71073 Å                                   |                          |  |  |
| Crystal system                                                     | Triclinic                                   |                          |  |  |
| Space group                                                        | P -1                                        |                          |  |  |
| Unit cell dimensions                                               | a = 7.427(2)  Å                             | $\alpha = 89.382(10)$ °. |  |  |
|                                                                    | b = 7.782(3)  Å                             | $\beta$ = 89.146(10) °.  |  |  |
|                                                                    | c = 13.740(5) Å                             | $\gamma = 68.679(10)$ °. |  |  |
| Volume                                                             | 739.7(4) Å <sup>3</sup>                     |                          |  |  |
| Z                                                                  | 2                                           |                          |  |  |
| Density (calculated)                                               | 1.770 Mg/m <sup>3</sup>                     |                          |  |  |
| Absorption coefficient                                             | 0.182 mm <sup>-1</sup>                      |                          |  |  |
| F(000)                                                             | 392                                         |                          |  |  |
| Crystal size                                                       | $0.190 \ge 0.160 \ge 0.120 \text{ mm}^3$    |                          |  |  |
| Theta range for data collection                                    | 2.810 to 24.998 °.                          |                          |  |  |
| Index ranges                                                       | -8<=h<=8, -9<=k<=9, -16<=l<=16              |                          |  |  |
| Reflections collected                                              | 8138                                        |                          |  |  |
| Independent reflections                                            | 2575 [R(int) = 0.0651]                      |                          |  |  |
| Completeness to theta = $25.242^{\circ}$                           | 98.1 %                                      |                          |  |  |
| Absorption correction                                              | Semi-empirical from equivalents             |                          |  |  |
| Max. and min. transmission                                         | 0.7456 and 0.5257                           |                          |  |  |
| Refinement method                                                  | Full-matrix least-squares on F <sup>2</sup> |                          |  |  |
| Data / restraints / parameters                                     | 2575 / 0 / 246                              |                          |  |  |
| Goodness-of-fit on F <sup>2</sup>                                  | 1.231                                       |                          |  |  |
| Final R indices [I>2sigma(I)]                                      | R1 = 0.0956, wR2 = 0.2657                   |                          |  |  |
| R indices (all data)                                               | R1 = 0.1222, $wR2 = 0.3183$                 |                          |  |  |
| Extinction coefficient                                             | 0.24(5)                                     |                          |  |  |
| Largest diff. peak and hole                                        | 0.306 and -0.318 e.Å <sup>-3</sup>          |                          |  |  |

Table 2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ )

|       | X         | У        | Z       | U(eq)  |
|-------|-----------|----------|---------|--------|
| F(1)  | 4753(5)   | 2892(5)  | 8604(3) | 80(1)  |
| F(2)  | 5315(5)   | 2234(4)  | 7070(3) | 72(1)  |
| F(3)  | 8817(5)   | 2839(5)  | 7271(4) | 92(1)  |
| F(4)  | 7889(6)   | 3718(5)  | 8742(3) | 96(1)  |
| F(5)  | 4799(7)   | 6582(5)  | 9041(3) | 90(1)  |
| F(6)  | 2671(6)   | 9877(5)  | 8331(3) | 95(1)  |
| F(7)  | 2613(6)   | 10581(5) | 6406(3) | 94(1)  |
| F(8)  | 4777(8)   | 7931(7)  | 5171(3) | 105(2) |
| F(9)  | 6902(7)   | 4612(6)  | 5837(3) | 94(1)  |
| C(1)  | 8618(8)   | -1096(8) | 7531(4) | 58(1)  |
| C(2)  | 8645(9)   | -813(8)  | 6493(4) | 67(1)  |
| C(3)  | 9708(10)  | -2206(9) | 5904(5) | 78(2)  |
| C(4)  | 10825(10) | -3944(9) | 6271(5) | 76(2)  |
| C(5)  | 10876(9)  | -4241(8) | 7252(5) | 73(2)  |
| C(6)  | 9784(8)   | -2842(8) | 7894(4) | 62(1)  |
| C(7)  | 9881(10)  | -3189(8) | 8925(5) | 75(2)  |
| C(8)  | 8822(11)  | -1882(9) | 9550(4) | 79(2)  |
| C(9)  | 7603(10)  | -159(9)  | 9202(4) | 74(2)  |
| C(10) | 7478(8)   | 251(7)   | 8215(4) | 61(1)  |
| C(11) | 6218(8)   | 2171(8)  | 7931(4) | 65(1)  |
| C(12) | 7214(9)   | 3587(8)  | 7857(5) | 70(2)  |
| C(13) | 6004(8)   | 5461(7)  | 7477(4) | 61(1)  |
| C(14) | 4858(9)   | 6855(8)  | 8080(4) | 65(1)  |
| C(15) | 3730(9)   | 8561(8)  | 7732(5) | 70(2)  |
| C(16) | 3702(9)   | 8944(8)  | 6743(5) | 66(1)  |
| C(17) | 4787(9)   | 7577(9)  | 6121(4) | 70(2)  |
| C(18) | 5906(9)   | 5880(8)  | 6477(4) | 66(2)  |
|       |           |          |         |        |

for mo\_d8v18839\_0m. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| F(1)-C(11)  | 1.375(7)  |
|-------------|-----------|
| F(2)-C(11)  | 1.361(7)  |
| F(3)-C(12)  | 1.372(8)  |
| F(4)-C(12)  | 1.340(8)  |
| F(5)-C(14)  | 1.339(7)  |
| F(6)-C(15)  | 1.326(7)  |
| F(7)-C(16)  | 1.319(7)  |
| F(8)-C(17)  | 1.331(7)  |
| F(9)-C(18)  | 1.328(7)  |
| C(1)-C(6)   | 1.410(8)  |
| C(1)-C(10)  | 1.432(8)  |
| C(1)-C(2)   | 1.442(8)  |
| C(2)-C(3)   | 1.353(9)  |
| C(2)-H(2)   | 0.9300    |
| C(3)-C(4)   | 1.398(10) |
| C(3)-H(3)   | 0.9300    |
| C(4)-C(5)   | 1.363(10) |
| C(4)-H(4)   | 0.9300    |
| C(5)-C(6)   | 1.407(9)  |
| C(5)-H(5)   | 0.9300    |
| C(6)-C(7)   | 1.437(9)  |
| C(7)-C(8)   | 1.344(10) |
| C(7)-H(7)   | 0.9300    |
| C(8)-C(9)   | 1.401(10) |
| C(8)-H(8)   | 0.9300    |
| C(9)-C(10)  | 1.386(9)  |
| C(9)-H(9)   | 0.9300    |
| C(10)-C(11) | 1.497(8)  |
| C(11)-C(12) | 1.537(9)  |
| C(12)-C(13) | 1.500(9)  |
| C(13)-C(14) | 1.383(8)  |
| C(13)-C(18) | 1.405(9)  |
| C(14)-C(15) | 1.372(9)  |
| C(15)-C(16) | 1.388(9)  |
| C(16)-C(17) | 1.373(9)  |
| C(17)-C(18) | 1.369(9)  |

Table 3. Bond lengths [Å] and angles [ ] for mo\_d8v18839\_0m.

| C(6)-C(1)-C(10)   | 117.8(5) |
|-------------------|----------|
| C(6)-C(1)-C(2)    | 117.3(5) |
| C(10)-C(1)-C(2)   | 124.9(5) |
| C(3)-C(2)-C(1)    | 120.3(6) |
| C(3)-C(2)-H(2)    | 119.8    |
| C(1)-C(2)-H(2)    | 119.8    |
| C(2)-C(3)-C(4)    | 121.9(6) |
| C(2)-C(3)-H(3)    | 119.1    |
| C(4)-C(3)-H(3)    | 119.1    |
| C(5)-C(4)-C(3)    | 119.3(5) |
| C(5)-C(4)-H(4)    | 120.4    |
| C(3)-C(4)-H(4)    | 120.4    |
| C(4)-C(5)-C(6)    | 121.0(6) |
| C(4)-C(5)-H(5)    | 119.5    |
| C(6)-C(5)-H(5)    | 119.5    |
| C(5)-C(6)-C(1)    | 120.2(6) |
| C(5)-C(6)-C(7)    | 119.8(5) |
| C(1)-C(6)-C(7)    | 120.0(5) |
| C(8)-C(7)-C(6)    | 120.7(5) |
| C(8)-C(7)-H(7)    | 119.7    |
| C(6)-C(7)-H(7)    | 119.7    |
| C(7)-C(8)-C(9)    | 120.2(6) |
| C(7)-C(8)-H(8)    | 119.9    |
| C(9)-C(8)-H(8)    | 119.9    |
| C(10)-C(9)-C(8)   | 121.3(6) |
| C(10)-C(9)-H(9)   | 119.4    |
| C(8)-C(9)-H(9)    | 119.4    |
| C(9)-C(10)-C(1)   | 120.0(5) |
| C(9)-C(10)-C(11)  | 116.6(5) |
| C(1)-C(10)-C(11)  | 123.3(5) |
| F(2)-C(11)-F(1)   | 105.2(4) |
| F(2)-C(11)-C(10)  | 112.6(4) |
| F(1)-C(11)-C(10)  | 110.5(5) |
| F(2)-C(11)-C(12)  | 106.7(5) |
| F(1)-C(11)-C(12)  | 104.9(5) |
| C(10)-C(11)-C(12) | 116.1(5) |
| F(4)-C(12)-F(3)   | 105.7(5) |

| F(4)-C(12)-C(13)  | 110.5(5) |
|-------------------|----------|
| F(3)-C(12)-C(13)  | 109.5(6) |
| F(4)-C(12)-C(11)  | 107.3(6) |
| F(3)-C(12)-C(11)  | 107.2(5) |
| C(13)-C(12)-C(11) | 116.1(5) |
| C(14)-C(13)-C(18) | 115.9(5) |
| C(14)-C(13)-C(12) | 122.4(5) |
| C(18)-C(13)-C(12) | 121.7(5) |
| F(5)-C(14)-C(15)  | 116.8(5) |
| F(5)-C(14)-C(13)  | 120.7(5) |
| C(15)-C(14)-C(13) | 122.5(6) |
| F(6)-C(15)-C(14)  | 121.0(6) |
| F(6)-C(15)-C(16)  | 118.8(5) |
| C(14)-C(15)-C(16) | 120.2(5) |
| F(7)-C(16)-C(17)  | 120.8(6) |
| F(7)-C(16)-C(15)  | 120.3(6) |
| C(17)-C(16)-C(15) | 118.8(5) |
| F(8)-C(17)-C(18)  | 120.2(6) |
| F(8)-C(17)-C(16)  | 119.4(6) |
| C(18)-C(17)-C(16) | 120.4(6) |
| F(9)-C(18)-C(17)  | 117.4(5) |
| F(9)-C(18)-C(13)  | 120.4(5) |
| C(17)-C(18)-C(13) | 122.2(5) |
|                   |          |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters  $(Å^2x \ 10^3)$  for mo\_d8v18839\_0m. The anisotropic

|       | $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| F(1)  | 77(2)    | 73(2)           | 78(2)           | -1(2)           | 13(2)           | -13(2)          |
| F(2)  | 74(2)    | 65(2)           | 72(2)           | 4(2)            | -19(2)          | -18(2)          |
| F(3)  | 63(2)    | 67(2)           | 140(4)          | 3(2)            | 6(2)            | -18(2)          |
| F(4)  | 107(3)   | 76(2)           | 103(3)          | 10(2)           | -49(2)          | -29(2)          |
| F(5)  | 120(3)   | 88(2)           | 51(2)           | -2(2)           | 9(2)            | -26(2)          |
| F(6)  | 101(3)   | 73(2)           | 92(3)           | -19(2)          | 13(2)           | -8(2)           |
| F(7)  | 96(3)    | 70(2)           | 111(3)          | 24(2)           | -26(2)          | -23(2)          |
| F(8)  | 151(4)   | 111(3)          | 57(2)           | 15(2)           | -9(2)           | -54(3)          |
| F(9)  | 119(3)   | 91(3)           | 66(2)           | -20(2)          | 22(2)           | -32(2)          |
| C(1)  | 61(3)    | 60(3)           | 54(3)           | -3(2)           | -2(2)           | -21(2)          |
| C(2)  | 71(3)    | 68(3)           | 56(3)           | 3(2)            | 0(3)            | -19(3)          |
| C(3)  | 82(4)    | 91(4)           | 63(4)           | -13(3)          | 8(3)            | -35(4)          |
| C(4)  | 74(4)    | 79(4)           | 73(4)           | -18(3)          | 16(3)           | -24(3)          |
| C(5)  | 65(3)    | 64(3)           | 88(5)           | -1(3)           | -5(3)           | -21(3)          |
| C(6)  | 60(3)    | 65(3)           | 62(3)           | 0(3)            | -3(3)           | -25(3)          |
| C(7)  | 86(4)    | 60(3)           | 77(4)           | 13(3)           | -16(3)          | -23(3)          |
| C(8)  | 106(5)   | 73(4)           | 50(3)           | 3(3)            | -6(3)           | -23(3)          |
| C(9)  | 90(4)    | 72(4)           | 54(3)           | -7(3)           | 2(3)            | -22(3)          |
| C(10) | 68(3)    | 60(3)           | 54(3)           | -3(2)           | -3(2)           | -21(2)          |
| C(11) | 67(3)    | 65(3)           | 56(3)           | -1(2)           | -4(3)           | -16(3)          |
| C(12) | 62(3)    | 67(3)           | 73(4)           | -6(3)           | -7(3)           | -15(3)          |
| C(13) | 64(3)    | 59(3)           | 60(3)           | -6(2)           | -1(2)           | -22(3)          |
| C(14) | 74(4)    | 68(3)           | 53(3)           | -3(2)           | -1(3)           | -24(3)          |
| C(15) | 67(4)    | 64(3)           | 71(4)           | -10(3)          | -1(3)           | -16(3)          |
| C(16) | 68(3)    | 60(3)           | 73(4)           | 5(3)            | -8(3)           | -25(3)          |
| C(17) | 77(4)    | 82(4)           | 54(3)           | 11(3)           | -12(3)          | -32(3)          |
| C(18) | 77(4)    | 69(3)           | 55(3)           | -10(3)          | 9(3)            | -32(3)          |

displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|      | Х     | у     | Z     | U(eq) |
|------|-------|-------|-------|-------|
|      |       |       |       |       |
| H(2) | 7929  | 332   | 6227  | 80    |
| H(3) | 9696  | -2001 | 5236  | 93    |
| H(4) | 11525 | -4888 | 5852  | 91    |
| H(5) | 11644 | -5386 | 7500  | 87    |
| H(7) | 10685 | -4330 | 9163  | 90    |
| H(8) | 8898  | -2122 | 10216 | 95    |
| H(9) | 6864  | 727   | 9641  | 89    |
|      |       |       |       |       |

Table 5. Hydrogen coordinates ( x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for mo\_d8v18839\_0m.

| C(6)-C(1)-C(2)-C(3)     | 2.1(9)    |
|-------------------------|-----------|
| C(10)-C(1)-C(2)-C(3)    | -177.0(6) |
| C(1)-C(2)-C(3)-C(4)     | -0.7(10)  |
| C(2)-C(3)-C(4)-C(5)     | -1.2(10)  |
| C(3)-C(4)-C(5)-C(6)     | 1.7(10)   |
| C(4)-C(5)-C(6)-C(1)     | -0.3(9)   |
| C(4)-C(5)-C(6)-C(7)     | -179.4(6) |
| C(10)-C(1)-C(6)-C(5)    | 177.5(5)  |
| C(2)-C(1)-C(6)-C(5)     | -1.6(8)   |
| C(10)-C(1)-C(6)-C(7)    | -3.4(8)   |
| C(2)-C(1)-C(6)-C(7)     | 177.5(6)  |
| C(5)-C(6)-C(7)-C(8)     | -178.8(6) |
| C(1)-C(6)-C(7)-C(8)     | 2.1(9)    |
| C(6)-C(7)-C(8)-C(9)     | 0.1(11)   |
| C(7)-C(8)-C(9)-C(10)    | -0.9(11)  |
| C(8)-C(9)-C(10)-C(1)    | -0.4(10)  |
| C(8)-C(9)-C(10)-C(11)   | -176.5(6) |
| C(6)-C(1)-C(10)-C(9)    | 2.6(8)    |
| C(2)-C(1)-C(10)-C(9)    | -178.4(6) |
| C(6)-C(1)-C(10)-C(11)   | 178.4(5)  |
| C(2)-C(1)-C(10)-C(11)   | -2.6(9)   |
| C(9)-C(10)-C(11)-F(2)   | -145.9(5) |
| C(1)-C(10)-C(11)-F(2)   | 38.1(7)   |
| C(9)-C(10)-C(11)-F(1)   | -28.6(7)  |
| C(1)-C(10)-C(11)-F(1)   | 155.4(5)  |
| C(9)-C(10)-C(11)-C(12)  | 90.6(7)   |
| C(1)-C(10)-C(11)-C(12)  | -85.3(7)  |
| F(2)-C(11)-C(12)-F(4)   | 171.9(4)  |
| F(1)-C(11)-C(12)-F(4)   | 60.6(5)   |
| C(10)-C(11)-C(12)-F(4)  | -61.7(6)  |
| F(2)-C(11)-C(12)-F(3)   | -75.0(6)  |
| F(1)-C(11)-C(12)-F(3)   | 173.7(5)  |
| C(10)-C(11)-C(12)-F(3)  | 51.4(7)   |
| F(2)-C(11)-C(12)-C(13)  | 47.7(7)   |
| F(1)-C(11)-C(12)-C(13)  | -63.6(6)  |
| C(10)-C(11)-C(12)-C(13) | 174.1(5)  |
|                         |           |

Table 6. Torsion angles [ ] for mo\_d8v18839\_0m.

| F(4)-C(12)-C(13)-C(14)  | -34.3(8)  |
|-------------------------|-----------|
| F(3)-C(12)-C(13)-C(14)  | -150.3(6) |
| C(11)-C(12)-C(13)-C(14) | 88.2(7)   |
| F(4)-C(12)-C(13)-C(18)  | 148.3(6)  |
| F(3)-C(12)-C(13)-C(18)  | 32.4(8)   |
| C(11)-C(12)-C(13)-C(18) | -89.1(7)  |
| C(18)-C(13)-C(14)-F(5)  | 178.0(5)  |
| C(12)-C(13)-C(14)-F(5)  | 0.5(9)    |
| C(18)-C(13)-C(14)-C(15) | -1.6(9)   |
| C(12)-C(13)-C(14)-C(15) | -179.1(5) |
| F(5)-C(14)-C(15)-F(6)   | 1.4(9)    |
| C(13)-C(14)-C(15)-F(6)  | -178.9(6) |
| F(5)-C(14)-C(15)-C(16)  | -179.5(6) |
| C(13)-C(14)-C(15)-C(16) | 0.1(10)   |
| F(6)-C(15)-C(16)-F(7)   | -1.2(9)   |
| C(14)-C(15)-C(16)-F(7)  | 179.7(5)  |
| F(6)-C(15)-C(16)-C(17)  | -179.5(5) |
| C(14)-C(15)-C(16)-C(17) | 1.4(9)    |
| F(7)-C(16)-C(17)-F(8)   | 1.9(9)    |
| C(15)-C(16)-C(17)-F(8)  | -179.8(6) |
| F(7)-C(16)-C(17)-C(18)  | -179.7(6) |
| C(15)-C(16)-C(17)-C(18) | -1.4(9)   |
| F(8)-C(17)-C(18)-F(9)   | -2.4(9)   |
| C(16)-C(17)-C(18)-F(9)  | 179.2(5)  |
| F(8)-C(17)-C(18)-C(13)  | 178.2(5)  |
| C(16)-C(17)-C(18)-C(13) | -0.2(9)   |
| C(14)-C(13)-C(18)-F(9)  | -177.7(5) |
| C(12)-C(13)-C(18)-F(9)  | -0.2(9)   |
| C(14)-C(13)-C(18)-C(17) | 1.6(9)    |
| C(12)-C(13)-C(18)-C(17) | 179.1(6)  |
|                         |           |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for mo\_d8v18839\_0m [Å and °].

| D-HA | d(D-H) | d(HA) | d(DA) | <(DHA) |
|------|--------|-------|-------|--------|
|      |        |       |       |        |

# 5. <sup>1</sup>H, <sup>19</sup>F, <sup>13</sup>C Spectroscopy of the New Compounds
































































































































































CF<sub>2</sub>CF<sub>2</sub>C<sub>6</sub>F<sub>5</sub> 2aa <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



$$CF_2CF_2C_6F_5$$
**2aa** <sup>19</sup>F NMR
(376 MHz, CDCl<sub>3</sub>)























240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)











