Supporting Information

Fast Automated Approach for the Derivation of Acellular Extracellular Matrix Scaffolds from Porcine Soft Tissues

Andreea Badileanu[#], Camilo Mora-Navarro[#], Ana M. Gracioso Martins, Mario E. Garcia, Daphne Sze, Emily W. Ozpinar, Lewis Gaffney, Jeffrey R. Enders, Ryan C. Branski, and Donald O. Freytes^{*}

List of abbreviations S1 Method S1 Figures S1-S5 Table S1

List of abbreviations S1

Abbreviation	Explanation		
ECM	Extracellular Matrix		
Col	Type I Collagen hydrogel		
ТСР	Tissue Culture Plastic		
sH-ECM	sheet Heart-Extracellular Matrix		
sH-ECMh	sheet Heart-Extracellular Matrix hydrogel		
mH-ECM	micronized Heart-Extracellular Matrix		
mH-ECM-O	micronized Heart-Extracellular Matrix Optimized		
mH-ECMh-O	micronized Heart-Extracellular Matrix hydrogel Optimized		
sVFLP-ECM	sheet Vocal Fold Lamina Propria-Extracellular Matrix		
sVFLP-ECMh	sheet Vocal Fold Lamina Propria-Extracellular Matrix hydrogel		
mVFLP-ECM	micronized Vocal Fold Lamina Propria-Extracellular Matrix		
mVFLP-ECMh	micronized Vocal Fold Lamina Propria-Extracellular Matrix hydrogel		

Method S1 Gelation kinetics

After hydrogel preparation (Section 2.5) 100 μ L of hydrogel/well at least in triplicate were aliquoted in a 96-well plate and kept on ice until measurement. The samples were measured using a BioTek SYNERGYneo2 multimode reader pre-heated to 37 °C. Absorbance measurements were taken at 405 nm every 1 minute for 90 minutes. The data was normalized using the following equation:

Normalized absorbance_{405 nm} =
$$\frac{(A_x - A_{min})}{(A_{max} - A_{min})}$$

Where A_x = experimental measurement, A_{min} = minimum absorbance, A_{max} = maximum absorbance. The data was graphed using Prism 8.0.

Figure S1 Final decellularized product placed inside the inline filtration bioreactor.

Figure S2 Histological analysis showing Hematoxylin and Eosin (H&E) stain. Box and Whisker plot showing double stranded DNA (dsDNA) quantification per mg of dry tissue for native, wet micronized (W), and freeze-dried (D) decellularized sH-ECM and mH-ECM after 3 and/or 9 hours.

Three independent organs were decellularized at least three independent times (n=9). The error bars represent the standard error of the mean (SEM). ref. ~2 μ g/mg (for Urinary Bladder Matrix–UBM). W & D were the pre-treatment conditions for the tissue to be decellularized W = wet micronized, D = freeze-dried. Scale bar = 360 μ m.

Figure S3 Gene Ontology (GO)

Gene ontology (GO) based on cellular components using the proteins in Figure 5C and extracted from Proteome Discoverer 2.4.0.305 as input in Cystoscope V3.0 and the application Bingo to plot overrepresenting analysis. The scale bar represents the P-value for the nodes.

Figure S4 Gelation kinetics curves

The curves were plotted based on the normalized absorbance at 405 nm for sH-ECMh, mH-ECMh, sVFLP-ECMh, mVFLP-ECMh, and collagen type I hydrogel (Col) control. The error bars represent the SEM of at least three replicates.

Figure S5 Differences in selected cellular proteins between automated (mH-ECM) vs. manual (sH-ECM).

A Log2 ratio equal to 0 (.....) indicates the 3-hour method (mH-ECM) yielded the same abundance for the protein than the 9-hour method (sH-ECM).

Table S1 Approximate total number of manual steps calculated based on steps involvingtissue preparation and manual reagent changes.

	Approx. Number of Manual Steps		Total Number
Decellularization Protocol	Tissue Preparation	Manual Reagent Changes	of Manual Steps
mH-ECM*	4	1	5
mVFLP-ECM*	6	1	7
Sheet-Heart (Freytes et al.)	3	15	18
Sheet-Heart (Singelyn et al.)	2	4	6
Sheet-Heart (Shah et al.)	2	19	21
Sheet-VFLP (Wrona et al.)	3	9	12
Sheet-VFLP (Tse et al.)	3	5	8
Sheet-VFLP (Xu et al.)	2	5	7
Sheet-UBM (Freytes et al.)	3	5	8
Sheet-Aorta (Pellegata et al.)	6	1	7
Whole-Lungs (Price et al.)	4	1	5
Whole-Kidneys (Poornejad et al.)	4	1	5
Whole-Heart (Momtahan et al.)	4	1	5

* = Present Study