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Text 1. Estimating 𝜷𝒌
𝑩𝑮𝑪 and 𝜸𝒌

𝑹𝑨𝑫 across different timescales using CMIP5 simulations 

We developed a new method for quantifying the two feedback parameters on timescales of 

∆𝑡 years (∆𝑡 = 2, ⋯ , 𝑁 − 1), based on the FEA approach, see Supplementary Fig.10. The 

feedback parameters on the timescale of ∆𝑡  are defined as the average of all feedback 

parameters calculated from all time intervals (𝑛) of ∆𝑡 over the period of 𝑁 years (e.g. 𝑁 =

140 years for CMIP5 models): 𝛽𝑘
𝐵𝐺𝐶 =

1

𝑛
∑ 𝛽𝐵𝐺𝐶

𝑖
, 𝛾𝑘

𝑅𝐴𝐷 =
1

𝑛
∑ 𝛾𝑅𝐴𝐷

𝑖
, thus, for 𝑖 = 1,2,3, ⋯ , 𝑛, 

 𝛽𝑘=∆𝑡
𝐵𝐺𝐶 =

1

𝑛
∑

∆𝐶𝐵,𝑖
𝐵𝐺𝐶

∆𝐶𝐴,𝑖
𝐵𝐺𝐶 =

1

𝑛
∑

𝐶𝐵
𝐵𝐺𝐶(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐵

𝐵𝐺𝐶(𝑡0+𝑖∆𝑡)

𝐶𝐴
𝐵𝐺𝐶(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐴

𝐵𝐺𝐶(𝑡0+𝑖∆𝑡)
  (S1) 

𝛾𝑘=∆𝑡
𝑅𝐴𝐷 =

1

𝑛
∑

∆𝐶𝐵,𝑖
𝑅𝐴𝐷

∆𝑇𝐴,𝑖
𝑅𝐴𝐷 =

1

𝑛
∑

𝐶𝐵
𝑅𝐴𝐷(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐵

𝑅𝐴𝐷(𝑡0+𝑖∆𝑡)

𝑇𝐴
𝑅𝐴𝐷(𝑡0+(𝑖+1)∆𝑡)−𝑇𝐴

𝑅𝐴𝐷(𝑡0+𝑖∆𝑡)
  (S2) 

where 𝑡0 is the first simulation year of model run, and 𝑛 is the number of ∆𝑡 over 𝑁 simulation 

years. 𝐶𝐵
𝐵𝐺𝐶  (in GtC) is the total carbon storage in land and ocean from the BGC simulations, 

 𝐶𝐵
𝑅𝐴𝐷  (in GtC) and 𝑇𝐴

𝑅𝐴𝐷  (in K) are from the RAD simulations. The cumulative airborne 

fraction on different timescales for the COU simulations (𝐴𝐹𝑘
𝐶𝑂𝑈) is 

𝐴𝐹𝑘=∆𝑡
𝐶𝑂𝑈 =

1

𝑛
∑

𝐶𝐴
𝐶𝑂𝑈(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐴

𝐶𝑂𝑈(𝑡0+𝑖∆𝑡)

𝐶𝐸(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐸(𝑡0+𝑖∆𝑡)
    (S3) 

where the total diagnosed emission is 𝐶𝐸 = ∆𝐶𝐴
𝐶𝑂𝑈 + ∆𝐶𝐵

𝐶𝑂𝑈  from the fully-coupled 

simulations. According to equation (10), the gain factor over on timescales of ∆𝑡 years is: 

𝑔𝑘
𝐶𝑂𝑈 = 1 −

1

𝐴𝐹𝑘
𝐶𝑂𝑈[1+𝛽𝑘

𝐵𝐺𝐶]
     (S4) 

We estimated the 𝛽𝑘
𝐵𝐺𝐶  and 𝛾𝑘

𝑅𝐴𝐷 across timescales using equations (S3-S4) with the BGC 

simulations and the RAD simulations with 1% year-1 increasing atmospheric CO2 scenario over 

140 years from 9 CMIP5 models (BCC-CSM1-1, CanESM2, CESM1-BGC, HadGEM2-ES, 

IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-LR, NorESM-ME, UVic ESCM2.9) by Arora et 

al 1. The 𝐴𝐹𝑘
𝐶𝑂𝑈 and 𝑔𝑘

𝐶𝑂𝑈 calculated using the fully-coupled (COU) simulations from CMIP5 

models. Results are shown in Supplementary Fig.7. 
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Text 2. Estimating 𝜷𝒌
𝑩𝑮𝑪 and 𝜸𝒌

𝑪𝑶𝑼−𝑩𝑮𝑪 across timescales for C4MIP coupled/uncoupled 

simulations 

We made use of the coupled and uncoupled simulations of eleven C4MIP models2, including 

the early coupled climate-carbon cycle models of BERN-CC, CSM-1, CLIMBER, FRCGC, 

HadCM3LC, IPSL-CM2C, LLNL, IPSL-CM4-LOOP, MPI, UMD, UVic-2.7, to estimate β 

and γ across different timescales. All C4MIP simulations were forced by anthropogenic fossil 

fuel emission for 1860-2000 period and by prescribed IPCC SRES A2 CO2 emission scenario 

for the 2000-2100 period. Hence, the fully coupled models were emission-driven which 

calculate the atmospheric CO2 interactively, with biogeochemically and radiatively coupled in 

the climate-carbon cycle feedback system. While the “uncoupled” runs in C4MIP experiments 

represent that the radiatively coupled process was not active, so that the physical climate would 

not be affected by CO2 emission (e.g. non CO2-induced warming). Following the FEA 

approach developed by Friedlingstein et al 2, 3, we further diagnose the 𝛽𝐵𝐺𝐶 on timescales of 

∆𝑡 years (∆𝑡 = 2, ⋯ , 𝑁 − 1) by 

𝛽𝑘=∆𝑡
𝐵𝐺𝐶 =

1

𝑛
∑

𝐶𝐵
𝑢𝑛𝑐(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐵

𝑢𝑛𝑐(𝑡0+𝑖∆𝑡)

𝐶𝐴
𝑢𝑛𝑐(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐴

𝑢𝑛𝑐(𝑡0+𝑖∆𝑡)
   (S5) 

where 𝑡0 is the first simulation year (𝑡0 =1860) of model run, and 𝑛 is the number of ∆𝑡 over 

𝑁(= 2100 − 1860) simulation years. where 𝐶𝐴
𝑢𝑛𝑐 is the atmospheric CO2 concentration and 

𝐶𝐵
𝑢𝑛𝑐  is the total carbon storage in biosphere (land+ocean), both of which are from the 

radiatively-uncoupled simulations. The 𝛾𝐶𝑂𝑈−𝐵𝐺𝐶  on timescales from the fully-coupled and 

uncoupled simulation of each C4MIP model are calculated by,  

𝛾𝑘=∆𝑡
𝐶𝑂𝑈−𝐵𝐺𝐶 =

1

𝑛
∑

[𝐶𝐵
𝑐𝑜𝑢(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐵

𝑐𝑜𝑢(𝑡0+𝑖∆𝑡)]−[𝐶𝐵
𝑢𝑛𝑐(𝑡0+(𝑖+1)∆𝑡)−𝐶𝐵

𝑢𝑛𝑐(𝑡0+𝑖∆𝑡)]

𝑇𝐴
𝑐𝑜𝑢(𝑡0+(𝑖+1)∆𝑡)−𝑇𝐴

𝑐𝑜𝑢(𝑡0+𝑖∆𝑡)
 (S6) 

where  𝐶𝐴
𝑐𝑜𝑢 ,  𝐶𝐵

𝑐𝑜𝑢  and 𝑇𝐴
𝑐𝑜𝑢  are from the fully-coupled simulations. We also estimate the 

airborne fraction (AF) and the gain factor (𝑔) on timescales for each C4MIP model using 

Equations (S3-4) in the Methods section. Results are shown in Supplementary Fig.8. 
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Text 3. Comparison of the nonlinear feedback contributions estimated in this study with 

previous modeling studies 

In this study, we defined the nonlinear feedback term as: 𝑓(𝛽, γ) = [∆𝐶𝐵
𝐶𝑂𝑈 − (∆𝐶𝐵

𝐵𝐺𝐶 +

∆𝐶𝐵
𝑅𝐴𝐷)]/∆𝐶𝐴

𝐶𝑂𝑈∆𝑇𝐴
𝐶𝑂𝑈 and estimated its contributions to the feedback parameters 𝛽 and 𝛾* 

(in units of GtC ppm-1 or GtC K-1), whereas previous studies (i.e., Gregory et al., 2009; 

Schwinger et al., 2014)4, 5 only estimated the nonlinear feedback contributions to the overall 

carbon uptakes by land and ocean or by ocean only (in units of Gt C) based on model 

simulations. Schwinger et al. (2014) estimated that the contribution of nonlinearity to the 

estimated carbon uptake by ocean under fully coupled simulation was relatively small (3.6% 

to 10.6%). Our results show that the nonlinear feedback (𝑓(𝛽, 𝛾)∆𝐶𝐴) only has very small 

impact (3±3%) on the estimated carbon-concentration feedback parameter (𝛽 of land + ocean), 

and that the contribution of nonlinear feedback to the climate-carbon feedback parameter (𝛾∗ 

or 𝛾𝐶𝑂𝑈−𝐵𝐺𝐶 of land + ocean) is 15±23% across the CMIP5 models (see Supplementary Table 

4).  

We further estimated the nonlinear contributions to feedback parameters with 𝑓(𝛽, γ) 

defined in this study using the published results from Gregory et al., 2009 or Schwinger et al. 

(2014). We showed that using the modeling result in Schwinger et al. (2014)’s study, the non-

linear contribution to the ocean 𝛾-feedback 𝛾𝑂
𝑛𝑙 is -9.9 GtC K-1, which is about 60% of the total 

ocean 𝛾 -feedback 𝛾𝑂
𝐶𝑂𝑈−𝐵𝐺𝐶  (-16.6 GtC K-1). The non-linear contribution to the ocean 𝛾 -

feedback 𝛽𝑂
𝑛𝑙 is -0.053 GtC ppm-1, which is only 6.6% of the 𝛽𝑂

𝐶𝑂𝑈−𝐵𝐺𝐶 (0.801 GtC ppm-1). 

Moreover, by using the result of the HadCM3LC model under the 1% yr-1 CO2 increase 

scenario from Fig.3 in Gregory et al. (2009), we estimated that the non-linear contribution to 

the land+ocean 𝛾-feedback is -53.84 GtC K-1 which is 45% of the total land+ocean 𝛾-feedback 

𝛾𝐵
𝐶𝑂𝑈−𝐵𝐺𝐶 (-119 GtC K-1), and the non-linear contribution to the land+ocean 𝛽-feedback is -

0.33 GtC ppm-1, which is 20% of the land+ocean 𝛽-feedback 𝛽𝐵
𝐶𝑂𝑈−𝐵𝐺𝐶  (1.65 GtC ppm-1). 
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These estimations based on Gregory et al. (2009) are noticeably larger than our results from 

the nine CMIP5 models (Supplementary Table 4). For example, for the HadGEM2 in CMIP5 

models, the largest non-linear contribution to 𝛾 is -28.71 GtC K-1 (45% of the total 𝛾-feedback) 

and the largest non-linear contribution to 𝛽 is -0.185 GtC ppm-1 (9.6% of the total 𝛽 -feedback). 

However, across CMIP5 models, the non-linear contributions show large spreads (0.2 to 9.6% 

for 𝛽-feedback and 0.8 to 45% for 𝛾-feedback, see Supplementary Table 4), implying that there 

exist large uncertainties of the nonlinearity in CMIP5 models and the HadCM3LC used in 

Gregory et al. (2009). 
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Supplementary Table 1 | Estimates of 𝛽 from observational datasets over 1880-2017. 

Observational Dataset 
p 

(ppm ppm-1) 

𝜷 

(GtC ppm-1)
 

HadCRUT4 
2.5088 

±0.3037 

3.199 

±0.644 

Berkeley Earth 
2.5024 

±0.3030 

3.185 

±0.642 

GISTEMP 
2.5233 

±0.3059 

3.229 

±0.648 

NOAAGlobalTemp 
2.5362 

±0.3078 

3.257 

±0.652 

Ensemble Mean 2.5177 3.217 

+/-S.D. ±0.153 ±0.323 
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Supplementary Table 2 | Estimates of 𝜸𝟏𝟎𝟎𝒚𝒓 from temperature reconstructions and CO2 ice-

core records over 1000-1850 with optimal 𝜷=3.22±0.32 GtC ppm-1 (Supplementary Table 1).  

Ice-core CO2 

records 

Reconstructed 

Temperature 

𝜼𝟏𝟎𝟎𝒚𝒓  

(ppm °C-1) 

𝜸𝟏𝟎𝟎𝒚𝒓  

(GtC °C-1) 

Low Dome 

PAGES2k 45.35 -242.06 

Frank2010 20.75 -110.74 

Mann2009 32.92 -175.76 

Mann EIV 23.14 -123.51 

Moberg2005 10.54 -56.24 

WAIS 

PAGES2k 28.91 -154.3 

Frank2010 13.23 -70.59 

Mann2009 20.99 -112.04 

Mann EIV 14.75 -78.73 

Moberg2005 6.72 -35.85 

DML 

PAGES2k 43.7 -233.24 

Frank2010 19.99 -106.7 

Mann2009 31.73 -169.36 

Mann EIV 22.3 -119.01 

Moberg2005 10.15 -54.19 

Ensemble Mean 23.01 -122.82 

+/-S.D. +/-11.27 +/-60.16 
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Supplementary Table 3 | Estimates of 𝜷 and 𝜸 for eleven C4MIP models for the periods of 1880-

2017 and 1880-2100. 

 Model 𝜷𝑩𝑮𝑪 (GtC ppm-1) 𝜸𝑪𝑶𝑼−𝑩𝑮𝑪 (GtC K-1) 

 1880-2017 1880-2100 1880-2017 1880-2100 

BERN-CC 3.52 2.94  -38.97 -61.23  

CCSM-1 2.46 1.97  -12.97 -21.77  

CLIMBER 2.47 1.99  -17.99 -41.21  

FRCGC 3.18 2.36  -36.29 -72.19  

HadCM3LC 2.95 2.14  -41.19 -113.29  

IPSL-CM2C 3.49 3.25  -13.22 -48.79  

IPSL-CM4-LOOP 3.17 2.34  -10.20 -19.05  

LLNL 4.27 3.70  -25.89 -32.71  

MPI 3.27 2.50  -36.83 -44.11  

UMD 1.67 1.71  -30.64 -52.22  

UVic-2.7 3.26 2.29  -38.54 -67.40  

Ensemble Mean 3.07 2.47 -27.52 -52.18 

±S.D. ±0.68 ±0.60 ±11.93 ±26.54 
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Supplementary Table 4 | Estimates of 𝜷, 𝜸 and 𝒇(𝜷, 𝜸) for the nine CMIP5 models from the 

1pctCO2 climate-carbon cycle feedback experiments. 

 Model 𝜷𝑩𝑮𝑪 𝒇(𝜷, 𝜸)∆𝑻𝑨 𝜸𝑪𝑶𝑼−𝑩𝑮𝑪 𝜸𝑹𝑨𝑫 𝒇(𝜷, 𝜸)∆𝑪𝑨 𝒇(𝜷, 𝜸) 

 (GtC ppm-1) (GtC ppm-1) (GtC K-1) (GtC K-1) (GtC K-1)  (GtC ppm-1 K-1) 

BCC-CSM1 2.06 -0.045 -89.95 -86.22 -9.71 -11.35×10-3 

CanESM2 1.66 0.004 -75.75 -78.82 0.64 0.75×10-3 

CESM1-BGC 0.96 0.022 -17.27 -23.77 5.04 5.89×10-3 

HadGEM2 1.92 -0.185 -63.34 -44.04 -28.71 -33.57×10-3 

IPSL-CM5A-LR 2.05 -0.036 -63.06 -65.13 -6.08 -7.15×10-3 

MIROC-ESM 1.55 -0.041 -104.15 -100.14 -6.3 -7.41×10-3 

MPI-ESM-LR 2.30 -0.111 -102.38 -88.09 -18.98 -22.19×10-3 

NorESM-ME 1.11 -0.042 -21.69 -14.08 -9.76 -11.41×10-3 

UVic ESCM2.9 1.74 -0.058 -93.67 -85.44 -12.59 -14.60×10-3 

Ensemble Mean 1.71 -0.055 -70.14 -65.08 -9.6 -11.22×10-3 

±S.D. ±0.44 0.062 ±32.43 ±30.74 ±10.03 ±11.72×10-3 
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Supplementary Fig. 1 | Fourier analysis of historical anthropogenic cumulative CO2 emission, 

atmospheric CO2, and global mean temperature anomaly over 1850-2017. Left panels, Fourier 

synthesis time series of cumulative CO2 emission mean (𝐶𝐸) at periods of 2, 5, 10, 20, 50, 100, 150 

years, respectively. Middle panels, Fourier synthesis time series of atmospheric CO2 (𝐶𝐴) at periods of 

2, 5, 10, 20, 50, 100, 150 years, respectively. Right panels, Fourier synthesis time series of global mean 

temperature (𝑇𝐴 ) from HadCRUT4 at periods of 2, 5, 10, 20, 50, 100, 150 years, respectively. 

Amplitudes for 𝐶𝐸, 𝐶𝐴, and 𝑇𝐴 at all timescales (k) were used for estimating 𝑇𝐶𝑅𝐸−1
𝑘 and 𝛼−1

𝑘 in this 

study (Methods). 
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Supplementary Fig. 2 | Simulations of CO2 and temperature using a simple three parameters box 

model for climate-carbon cycle feedback analysis. The box model (see equations (32-33) in Method) 

was used here to predict temperature and CO2 over 1850-2017 by setting 𝛽=3.22 GtC ppm-1, 𝛾∗=-10.9 

GtC K-1, 𝑠 =3±1.5 K and 𝜀 being the detrended 𝑇𝐴 anomaly time series from HadCRUT4 using annual 

cumulated CO2 emissions as input (b, d, f) or no CO2 emissions input (a, c, e). Result shows predicted 

atmospheric CO2 driven by CO2 emissions is very close to the observation (𝑅2 = 0.99, 𝑅𝑀𝑆𝐸 =

3.5 𝑝𝑝𝑚 ) (d), but predicted temperature shows larger increasing trend from 1980-2017 ( 𝑅2 =

0.96, 𝑅𝑀𝑆𝐸 = 0.17 𝐾) (f). The shaded area in plots are the uncertainty due to 𝑠 varied from 1.5 to 4.5 

K. 
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Supplementary Fig. 3 | Climate variability and feedback across timescales for the period 1000-

1850. a, Amplitude spectrum for atmospheric CO2 from three Antarctic ice-core CO2 records (Low 

Dome, WAIS Divide and Dronning Maud Land) using Fourier analysis. b, Same as a but for 

hemispheric mean temperature from 5 reconstructions (PAGES 2k, Frank2010, Mann2009, Mann EIV, 

Moberg2005). c, Ensemble estimates of 𝜂 across timescales from 15 combinations of 3 ice-core CO2 

records × 5 reconstructed temperature reconstructions. d, Same as c but for the climate change feedback 

parameter 𝛾. 
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Supplementary Fig. 4 | Large ensemble estimates of temperature variability and climate-carbon 

cycle feedback. a, 521 estimates of calibrated temperature anomaly reconstructions over the period 

1000-1850 from Frank et al. 2010. b, Ensemble estimates of 𝜂 across timescales from >1,500 members 

(based on 3 ice-core CO2 records × 521 calibrated temperature reconstructions, EnOBS) over the period 

1000-1850. Coloring of encumber members in a and b are based on distance from their ensemble mean. 
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Supplementary Fig. 5 | Error sensitivity analysis of 𝜸 on different timescales in response to 

changes in 𝛃. The β is 3.22 GtC ppm-1 with an uncertainty of 10%, estimated from observational 

datasets over 1880-2017. We applied this value of β to estimate pre-industrial γ on timescales from 10 

to 1000 years using the EnOBS ensemble 𝜂 across timescales from >1,500 members (based on 3 ice-

core CO2 records ×521 calibrated temperature reconstructions 6). This figure shows that when the β has 

overestimations (or underestimations) of 10% to 50% of its industrial observation-based value (3.22 

GtC ppm-1), the γ shows underestimations (or overestimations) of about 6% to 30%. This largest change 

of 30% (~25 GtC K-1) in γ100yr is still smaller than the uncertainty of γ100yr (a standard deviation of 

41.90 GtC K-1) that was mainly caused by the large divergences in the three ice-core CO2 records and 

reconstructed temperatures. 
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Supplementary Fig. 6 | Ensemble estimates of climate-carbon feedback parameters for the period 

1000-1850. a, Evolution of the 𝜂  estimates across timescales of 10-850 years derived from 5 

reconstructed temperature members (on average over 3 ice-core CO2 record combinations) and from 

EnOBS ensemble mean with uncertainty (±1σ) of >1,500 members (3 ice-core CO2 × 521 calibrated 

temperature reconstructions) for 1000-1850. b, Same as a, but for evolution of the 𝛾 estimates across 

timescales of 10-850 years. 
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Supplementary Fig. 7 | Estimates of the climate-carbon cycle feedback parameters over timescales 

derived from the CMIP5 and C4MIP models. a, Evolution of the β𝐺𝐵𝐶 estimates across timescales 

derived from the biogeochemically coupled simulations of nine CMIP5 models. b, Same as a but for 

the γ𝑅𝐴𝐷 estimates from the radiatively coupled simulations. c, Evolution of the cumulative airborne 

fraction (𝐴𝐹) estimates (mean ±1σ) across timescales from observations and from the fully coupled 

simulations of the CMIP5 and the C4MIP models. d, Same as c but for the feedback gain factor (g) 

derived from the β and 𝐴𝐹 estimates. Observation-based estimates were calculated for the period 1880-

2017. All CMIP5 model simulations were forced by 1% year-1 increasing atmospheric CO2 

concentrations over 140 years with an initial level at 285 ppm 1. All C4MIP models were forced by the 

historical and the prescribed IPCC SRES A2 CO2 emissions scenario for the 1860-2100 period. 
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Supplementary Fig. 8 | Estimates of the climate-carbon cycle feedback parameters over timescales 

from the coupled/uncoupled simulations of eleven C4MIP models for the period 1880-2100. a, 

Evolution of the β𝐵𝐺𝐶 estimates across timescales from the uncoupled simulations with equation (S1). 

b, Evolution of the γ𝐶𝑂𝑈−𝐵𝐺𝐶  estimates across timescales from the fully-coupled simulations with 

equation (S2). c, Evolution of the airborne fraction (𝐴𝐹) estimates across timescales from the fully-

coupled simulations. d, Evolution of the feedback gain factor (g) estimates across timescales from the 

β and 𝐴𝐹  estimates. All C4MIP models simulations were forced by anthropogenic fossil fuel CO2 

emissions for the historical and the prescribed IPCC SRES A2 CO2 emissions scenario for the 1860-

2100 period. 
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Supplementary Fig. 9 | Exponential growths of global annual CO2 emissions flux, atmospheric 

CO2 concentration, GPP flux, and cumulative land carbon sink during industrial period. a, 

Comparison of observed and fitted CO2 emissions (Gt C year-1) over 1850-2017. The fitted CO2 

emissions (in red) was calculated by 𝑦 = 0.27𝑒0.018𝑡 . b, Comparison of observed and fitted 

atmospheric CO2 (ppm) over 1850-2017. The fitted atmospheric CO2 (in red) was calculated by 𝑦 =

2.6𝑒0.023𝑡 + 285. c, Comparison of modeled ensemble mean GPP and fitted GPP increase (Gt C year-

1) over 1901-2010. The fitted GPP increase (in red) was calculated by 𝑦 = 1.5𝑒0.023𝑡 + 0.5 . d, 

Comparison of modeled ensemble mean cumulative NEP and fitted cumulative NEP (Gt C) over 1901-

2010. The fitted cumulative NEP (in red) was calculated by 𝑦 = 29𝑒0.018𝑡 − 29. The modeled GPP 

and NEP were calculated from the differences between experiment SG3 and experiment SG2 of an 

ensemble of 14 MsTMIP terrestrial ecosystem models. The shaded area in d and c represents an 

uncertainty of one standard deviation (in grey-shaded) in MsTMIP ensemble simulations. In the 

experiment SG2 of the MsTMIP project 7, all 14 terrestrial ecosystem models were forced by historical 

observational climate and land use change data over 1901-2010 and a constant CO2 value of 1901 over 

1901-2010. In the experiment SG3, all 14 MsTMIP models were forced by historical observational 

climate, land use change data, and annual CO2 values over 1901-2010. The difference of SG3-SG2 

represents that the MsTMIP models were driven only by increasing atmospheric CO2 over 1901-2010. 
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Supplementary Fig. 10 | A diagram to show the difference between the FEA approach and the 

timescale approach used in this study. The FEA approach is used to calculate 𝛽𝐵𝐺𝐶 and 𝛾𝑅𝐴𝐷 for 

different time intervals since the first simulation year (boxes in blue for different ∆𝑡 intervals), and the 

timescale approach is used to calculate 𝛽𝑘
𝐵𝐺𝐶  and 𝛾𝑘

𝑅𝐴𝐷  on different time scales (boxes in red for 

different ∆𝑡 intervals), which are the average of all 𝛽𝐵𝐺𝐶 and 𝛾𝑅𝐴𝐷 from all time intervals (𝑛) of ∆𝑡 

over the period of 𝑁 years. See also equations (S1-S2), more details about the timescale approach is 

shown in Texts 1-2. 
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Supplementary Fig. 11 | Comparison of 𝜷 and 𝜸∗ during 1880-2017 for the C4MIP models from 

between Fourier analysis-based method and the FEA-based approach. The historical observed CO2 

emissions, and global atmospheric CO2 concentration, global mean near-surface temperature, global 

land and ocean carbon uptakes derived from the COU (fully-coupled) simulations of 11 C4MIP models 

were used. Our result showed that the 𝛽 for the C4MIP ensemble from the Fourier analysis-

based method is 2.997±0.556 GtC ppm-1, which is close to the value of 3.064±0.680 GtC ppm-

1 for the C4MIP from the FEA approach. The 𝛾∗ for the C4MIP ensemble estimated using the 

Fourier analysis-based method is -30.66±18.72 GtC K-1, which is about 10% larger in 

magnitude than the FEA approach-based estimate (-27.52±11.92 GtC K-1). Then, the Fourier 

analysis-based 𝑔 for the C4MIP using equation (10) is 0.09±0.05, which is consistent with the 

FEA approach-based 𝑔 (0.09±0.04). 
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