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1 Materials and Methods

1.1 Generating the Relation Network

The initial network was created in 5 stages. Note that the initial network considers a normal

scenario with no pandemic and interventions. We explain how we handle the interventions in

Section 1.2. The initial network was created as follows:

Home relations The number of people in the same home follows a distribution de-

scribed in Table S1 and Figure S1a, which was derived from the microdata of the last

official census from the Brazilian Institute of Geography and Statistics (IBGE) [13].

Inside the same home, every person is connected to all other people within the same

home.

Community relations The number of relations of each person follows a distribution

described in Table S1 and Figure S1b.

Workplace relations The number of people per company follows a distribution de-

scribed in Table S1 and Figure S1c. We only model as workplace relations jobs that

involve agglomeration of people, such as people that work in the commerce, offices,

industry and public sectors. Other jobs, such as people that are autonomous workers or

people that work with agriculture, are indirectly modeled in the community relations.

The data regarding the number of employed people and per job type was extracted from

IBGE [11–13]. In summary, 64% of people with 18 years old or above work. Among

people that work, 45% were modeled using workplace relations. Also, inside the same

workplace, we consider that the probability of two people to be connected in the network

as 50%.

School relations The number of students inside the same class and the number of stu-

dents within each school follow the distributions described in Table S1, Figure S1d and
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Figure S1e. For the relations between students from different classrooms, two students

have a 0.5% of probability of having a relation in the network. For the relations between

students within the same classroom, two students have a 50% of probability of having

relation in the network. We add one teacher for each classroom, in which the teacher

has a relation to all the students of the same class in the network. According to the

census [13], 77.8% of people with 18 years old or below frequent the school.

Inter-city relations The number of people that routinely travel between the different

cities relations was gathered from the census [13], which indicates a 17.8% of mobility

between cities in the metropolitan region of São Paulo. However, the data does not

show the cities, only if the person goes to a different city. To overcome this issue, we

assume that 90% of the traffic from satellite cities go to the capital, and the rest is divided

between the other cities in proportion to their population size. Regarding the traffic from

the capital to satellite cities, the traffic is divided proportionally to their population size.

1.2 Handling Interventions

To handle interventions, we can modify the infection probabilities, as well as add and remove

edges from the graph. Different types of intervention require different modifications. We han-

dled the interventions evaluated in the paper as follows:

Quarantine To implement the quarantine, we first reduce the infection probabilities in-

side schools to zero. Afterwards, we remove the workplace relations corresponding to

50% of the workplaces. The 50% of the relations that are left correspond to essential

services that can not be interrupted. Finally, we reduce the infection probability of com-

munity, workplace and inter-city relations to match the target reduced reproduction rate,

which also simulates other sanitary measures such as wearing masks. Home relations

are not affected by quarantines.
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Reopening of economic activities During the quarantine, we zeroed the infection prob-

ability of half of the workplaces. To reopen the economic activities, we just increase the

infection probability of such edges.

Reopening schools with all students We only increase the infection probability of school

relations, which was zeroed by the quarantine.

Reopening schools with the São Paulo government strategy We first remove all school

relations from the graph, backing up the data regarding which students and teachers be-

longed to the same classroom. We create 3 more relation types to represent each group

of students. Afterwards, we divide each classroom in 3 and re-create the edges using

the newly created relation types. To select which students go to school in a day, we

just need to adjust the infection probabilities of the new relations, zeroing the school

relations corresponding to the students that will not go to school that day.

Vaccine To simulate the vaccines, we only need to change the state of the person being

vaccinated to the immune state, carefully considering that it takes some time for the

vaccine to make effect, and that not everyone that gets vaccinated will be immunized.

1.3 Other Simulations Parameters

Several simulation parameters can be found in Table S2 [7, 11–15, 21]. The frequency distribu-

tions found in the table can be seen in Figure S2.

In Table S3, we present the probabilities of an infected person to develop symptoms per-age.

The biggest challenge to generate this information is that there is no official data regarding the

number of unreported cases per age, as expected by the own definition of unreported. There-

fore, we need to make several transformations with the reported data to take into account the

unreported cases in the simulation. We now describe how we generated these information of

Table S3.
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We first define some functions and variables that return the input data of the algorithm:

• Function people(age) returns the number of people of age age in the entire population,

which we extracted from the census [14].

• Functions reportedMild(age), reportedSevere(age) and reportedCritical(age) should

return the number of people with mild, severe and critical symptoms per age, respectively.

We extracted this information from the microdata published by the Health Ministry [15].

• Variable globalRatioUnreported is the ratio of unreported cases in the entire popula-

tion. We set it to 0.85 in this paper, since the vast majority of COVID infections are

unreported [22]. Although this value seems high, Brazil’s underreporting rate is indeed

very high [31, 32].

Next, we define some variable and functions to be used later.

totalReportedMild =
9∑

age=0

reportedMild(age) (1)

totalReportedSevere =
9∑

age=0

reportedSevere(age) (2)

totalReportedCritical =
9∑

age=0

reportedCritical(age) (3)

reported(age) = reportedMild(age) + reportedSevere(age) + reportedCritical(age)
(4)

totalReported =
9∑

age=0

reported(age) (5)

To calculate the probability of a person to be unreported, we first calculate the ratio of
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reported cases:

ratioReportedMild(age) =
reportedMild(age)

reported(age)
(6)

ratioReportedSevere(age) =
reportedSevere(age)

reported(age)
(7)

ratioReportedCritical(age) =
reportedCritical(age)

reported(age)
(8)

Then, we use Equation 10, which finds a value u that forces the mean number of unreported

people to the desired value. In the equation, weight(age) returns the proportion of people of

age age that should be unreported. Since there is no data for unreported (as expected by the

own definition of unreported), we assume that weight has the same ratio of mild cases per age,

as it is the softer symptom recorded by official data.

Find u, such that:

weight(age) = ratioReportedMild(age) (9)

u ·
∑9

age=0 weight(age) · people(age)∑9
age=0 people(age)

= globalRatioUnreported (10)

After finding u, we calculate a temporary ratio of unreported cases by age, just used to

calculate the symptomatic ratios:

tmpRatioUnreported(age) = weight(age) · u (11)

Now that we know the ratio of unreported cases by age, we can calculate the relative pro-

portion (weight) of symptomatic people:

weightMild(age) = ratioReportedMild(age) · (1− tmpRatioUnreported(age)) (12)

weightSevere(age) = ratioReportedSevere(age) · (1− tmpRatioUnreported(age))
(13)

weightCritical(age) = ratioCriticalMild(age) · (1− tmpRatioUnreported(age)) (14)
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Now we define our target averages for the ratio of mild, severe and critical cases relative to

the entire population (not only relative to reported cases).

targetMildRatio =
totalReportedMild

totalReported
· (1− globalRatioUnreported) (15)

targetSevereRatio =
totalReportedSevere

totalReported
· (1− globalRatioUnreported) (16)

targetCriticalRatio =
totalReportedCritical

totalReported
· (1− globalRatioUnreported) (17)

Then, we use Equations 18, 19 and 20, which find values m, s and c that force the mean

ratio of people to the target value.

Find m, such that:

m ·
∑9

age=0weightMild(age) · people(age)∑9
age=0 people(age)

= targetMildRatio (18)

Find s, such that:

s ·
∑9

age=0 weightSevere(age) · people(age)∑9
age=0 people(age)

= targetSevereRatio (19)

Find c, such that:

c ·
∑9

age=0weightCritical(age) · people(age)∑9
age=0 people(age)

= targetCriticalRatio (20)

Finally, we calculate the ratios relative to the entire population:

ratioMild(age) = weightMild(age) ·m (21)

ratioSevere(age) = weightSevere(age) · s (22)

ratioCritical(age) = weightCritical(age) · c (23)

ratioUnreported(age) = 1− ratioMild(age)− ratioSevere(age)− ratioCritical(age)
(24)

Our model allows us to put different infection probabilities depending on the patient symp-

toms. For patients with severe and critical symptoms, we reduce the infection probabilities by
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50% to simulate the more controlled environments inside hospitals. For any symptomatic pa-

tients, we zero the infection probabilities to school and workplace relations. For patients with

severe and critical symptoms, we zero the infection probabilities to home relations.

Table S4 shows the death probability of each person depending on the symptoms and age.

As we can observe, the age of each person has a deep impact on the symptoms and death

rate. Due to that, we use real demographic data from the census [14]. Since the last census

is from 2010, we scale the number of people per age such that the total number of people

corresponds to the estimated population size in 2019 [14]. The demographic data of the entire

São Paulo Metropolitan Area can be seen in Figure S3.

1.4 Calibrating the Simulation to Match Real-World Behavior

Figure S4 contains a comparison of the simulator behavior to the real-world data of the São

Paulo Metropolitan Area. The calibration process involves setting the interventions, as ex-

plained in Section 1.2, as well as manipulating the infection probabilities. Calibration was

performed for the first 210 days of the pandemic, starting at 26 February 2020, which is the

date corresponding to the first documented case in Brazil. In Figure S4a, we compare the

estimated number of reported people in the infected state at a day (do not confuse with the

number of newly infected people per day). In Figure S4b, we compare the accumulated number

of reported people in the infected state. For these two calibrations, we used the value from

Equation 5, thereby unreported people were not considered, since they are not part of official

statistics. In Figure S4c, we compare the number of critical patients, which represents the ICU

occupancy. We also show a comparison of per-age statistics in Figure S5, where we can observe

that the simulator results follow the same tendency of real data, with a concentration of reported

cases in adults and a concentration of deaths in elder people. It is important to mention that a

perfect match between simulator and real-world behavior is impossible, mostly because of the
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fact that the vast majority of cases are unreported [22], such that it is impossible to accurately

measure real behavior with the official published data. Nevertheless, we were able to configure

the simulation parameters to reflect the real behavior with a reasonable precision, as can be seen

in the figures.
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Figs. S1 to S10
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Fig. S1. Frequency distributions used to create the network of relations of the population.
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Fig. S2. Frequency distributions of the parameters of Table S2.
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Fig. S3. Demographic data of the population of the São Paulo Metropolitan Area.
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Fig. S4. Comparison of simulator behavior to the real-world behavior.
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Fig. S5. Per-age amount of COVID-19 cases and deaths, from real data and from the
simulator (using the São Paulo plan experiment).
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Fig. S6. Curves of infected people when schools reopen with all students at once.
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Fig. S7. Curves of infected people when schools reopen following São Paulo’s strategy.
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Fig. S8. Curves of infected people when schools reopen following São Paulo’s strategy,
evaluating different isolation levels.
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Fig. S9. Curves of infected people considering a lower asymptomatic transmissibility.
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Fig. S10. Curves of infected people when schools reopen with all students on day 400.
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Tables S1 to S4

Relation Description Type Mean StdDev Min Max

Home Number of people per home Gamma 3.3 1.7 1 10

Community Number of community relations per person Gamma 15.0 10.0 5 50

Workplace Number of people per company Gamma 8.0 7.0 2 50

School – classroom Number of people per classroom Gamma 30.0 10.0 15 50

School – total Number of people per school Gamma 500.0 500.0 300 4,000

Table S1. Frequency distributions used to generate the relation network.
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Parameter Value

Cycle length 1 day.

R0 (basic reproduction rate) 3.0 (at the start of the pandemic).

Pre-symptomatic time 1 day.

Time for which people with unreported

and mild symptoms are contagious 4 days.

Incubation time Gamma, mean: 4.6 days, Stddev: 3.2, Min: 1, Max: 14.

Time from symptomatic to hospitalization 5 days.

Days in ICU for critical patients Gamma, mean: 15.0 days, Stddev: 15.0, Min: 1, Max:
60.

Days in hospital for severe patients (infirmary) Gamma, mean: 6.5 days, Stddev: 5.5, Min: 1, Max: 60.

Age of the teachers Gamma, mean: 41.2 years, Stddev: 9.9, Min: 20, Max:
70.

Vaccine – time to be effective 14 days.

Vaccine – number of people vaccinated per day 300,000 people per day.

Vaccine – immunity probability 80%.

Infection probability – home ×3.0 the community probability considering the begin-
ning of the pandemic (not changed by any intervention).

Infection probability – workplace ×1.5 the community probability.

Infection probability – school We evaluated both ×2 and ×4 the community probabil-
ity.

Infection probability – inter-city Equal to the community probability.

Infection probability – community We set it such that the epidemic behavior matches the
target reproduction rate.

Table S2. Other simulation parameters.

21



Age Unreported Mild Severe Critical

0-10 0.8916 0.1051 0.0024 0.0008

10-20 0.9613 0.0384 0.0003 0.0001

20-30 0.9447 0.0545 0.0006 0.0002

30-40 0.8987 0.0985 0.0022 0.0006

40-50 0.8340 0.1577 0.0064 0.0019

50-60 0.7211 0.2513 0.0202 0.0074

60-70 0.5560 0.3379 0.0737 0.0323

70-80 0.5079 0.1459 0.2274 0.1188

80-90 0.4939 0.2276 0.1854 0.0930

90+ 0.4931 0.2283 0.1901 0.0886

Mean 0.8500 0.1235 0.0182 0.0084

Table S3. Probability of an infected person to develop specific symptoms depending on the
age.
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Age Death (severe cases) Death (critical cases)

0-10 0.0093 0.0649

10-20 0.0264 0.1405

20-30 0.0194 0.1545

30-40 0.0312 0.1601

40-50 0.0517 0.2214

50-60 0.0932 0.3086

60-70 0.1623 0.4349

70-80 0.2379 0.5128

80-90 0.3548 0.5549

90+ 0.4702 0.5576

Mean 0.1365 0.3742

Table S4. Probability of a person to die depending on their symptoms and age.
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