Patterns

Network-based virus-host interaction prediction with application to SARS-CoV-2

Highlights

- We built a virus-host interaction network with 7 human coronaviruses and 17 hosts
- We developed an ML-based method to predict protein- and organism-level interactions
- We revealed five potential infection targets of SARS-CoV-2
- We predicted 19 highly possible interactions between SARS-CoV-2 and human proteins

Authors

Hangyu Du, Feng Chen, Hongfu Liu, Pengyu Hong

Correspondence hongfuliu@brandeis.edu

In brief

Given a new virus, our method can utilize existing knowledge and data about other highly relevant viruses to predict multiscale interactions between the new virus and potential hosts.

Article

Network-based virus-host interaction prediction with application to SARS-CoV-2

Hangyu Du,^{1,2} Feng Chen,^{1,2} Hongfu Liu,^{1,3,*} and Pengyu Hong^{1,3}

¹Department of Computer Science, Brandeis University, Waltham, MA 02453, USA

²These authors contributed equally

³Lead contact

*Correspondence: hongfuliu@brandeis.edu

https://doi.org/10.1016/j.patter.2021.100242

THE BIGGER PICTURE SARS-CoV-2, a novel single-stranded RNA coronavirus causing COVID-19, is mounting an unprecedented threat against our society and the world. Although tremendous efforts have been devoted into SARS-CoV-2 research, most of them either focused on a few proteins or only provided high-level overviews. Deeper and more comprehensive analyses are needed to shed new light onto the molecular mechanisms underlying the COVID-19 pandemic. Moreover, there is a massive amount of data and knowledge about highly relevant RNA viruses which have yet to be fully utilized.

In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. We developed a machine-learning-based method to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2 and 19 highly possible interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway.

5 Development/Pre-production: Data science output has been rolled out/validated across multiple domains/problems

SUMMARY

1 2 3 4

COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has quickly become a global health crisis since the first report of infection in December of 2019. However, the infection spectrum of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a massive amount of underutilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2 and proteins of their hosts. More in-depth and more comprehensive analyses of that knowledge and data can shed new light on the molecular mechanisms underlying the COVID-19 pandemic and reveal potential risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. We developed a machine-learning-based method to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2 and 19 highly possible interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway.

INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a novel virus causing the COVID-19 disease, was first reported in Wuhan, China, in December of 2019. Since then, it has quickly become a global health crisis¹ with over 50 million people infected and over 1,250,000 deaths across 200 countries by November 2020.² The impact of SARS-CoV-2 has significantly surpassed previous outbreaks of coronaviruses, such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012. Besides humans, SARS-CoV-2 has been confirmed to infect several other mammals closely related to human activities, including dogs,³ cats,⁴ tigers,⁵ rats,⁶ and golden Syrian hamsters.⁷ Also, there is a high possibility for infected animals to transmit and spread the virus to humans.⁸ It is important to identify a comprehensive set of such mammals because they can potentially serve as covert means to exacerbate the spread of COVID-19. Moreover, identifying interactions between SARS-CoV-2 proteins and host proteins can deepen our understanding

CellPress

Figure 1. Infection mechanism and spectrum prediction

Patterns

(A) The virus-host interaction network. Nodes represent proteins, viruses, and hosts; edges represent relationships (i.e., PPI, infection, protein-homolog similarity, and organism-protein belonging). The color of a node indicates its organism. The thickness of a protein-homolog similarity edge indicates its level of similarity. For the full network, refer to the viral entry graph (Figure S3), interferon signaling pathway graph (Figure S4), and infection graph (Figure S5).

(B) IMSP learns a representation for each potential edge, which contains a structural embedding and a content embedding. The structural embedding captures the local structural features of an edge. The content embedding captures the attributes that reveal biological aspects of an edge. The representation of each edge is derived by concatenating its structural and content embeddings, where S stands for a structural embedding element and C stands for a content embedding element. A Multilayer Perceptron (MLP) is trained to take the edge representations as input and reports negative (nonconnected) edges whose corresponding edge representations are classified as infection or PPI. Note that no-interaction is also a potential class for the classification task. See experimental procedures for calculation of the structural and content embeddinas.

(C) Exemplar predicted edges are highlighted and colored accordingly to their types. Existing edges are dimmed.

We have developed a network-based multi-level virus-host interaction modeling and prediction, termed infection mechanism and spectrum prediction (IMSP)

of the viral invasion processes and may help design treatments and vaccines. In general, we want to promptly achieve the above two goals for new zoonotic viruses, which we believe can be done by leveraging the knowledge and data about known viruses highly relevant to the new ones.

The research community has accumulated a great deal of knowledge about several other human coronaviruses (including SARS-CoV, 9-16 HCoV-HKU1, 14 HCoV-OC43, 17, 18 HCoV-NL63,¹⁹ and MERS-CoV)²⁰⁻²⁴ and has collected a large amount of data about them. For example, it was shown that human angiotensin-converting enzyme 2 (ACE2) was the primary host receptor used by the S protein (S-protein) of SARS-CoV-2 for the virus to gain entry into human cells²⁵ (Figure S1). ACE2 is also the host receptor used by SARS-CoV¹³ and HCoV-NL63.¹⁹ The S-protein of SARS-CoV-2 binds significantly tighter to ACE2 than its counterpart in SARS-CoV.²⁶ After the virus enters host cells, interferon-stimulated genes are essential for a host to defend against viral infection (Figure S2). This knowledge and data can be utilized to investigate the infection spectrum of SARS-CoV-2 and its interactions with hosts at the protein level. Using this information, we have built a virus-host interaction network of 7 viruses and 17 hosts that summarizes the existing protein-protein interaction (PPI) and infection relationships among them (Figure 1A; for more details, see Figures S3–S5 and Tables S1, S2, S3, and S4).

(Figure 1B; for details, see experimental procedures), which uses machine-learning techniques to learn from the constructed virushost interaction network and predict novel virus-host interactions at both the protein (i.e., Mechanism) and organism (i.e., Spectrum) levels. IMSP predicts that the SARS-CoV-2 S-protein can bind well with ACE2 receptors in five mammalian hosts, which have not been reported. Among those hosts, five are predicted to have high risks of being infected by SARS-CoV-2. Moreover, IMSP identifies 19 new interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway. To our best knowl-edge, our work is the first to apply machine-learning techniques for predicting virus-host interactions at both protein and organism levels. Previous works^{27,28} only focused on the relationships between SARS-CoV-2.

RESULTS

Here we explain the structure of our virus-host interaction network, highlight the predicted interactions of SARS-CoV-2, and present the link prediction performance evaluation of our model IMSP. We built our network with two layers (an organism layer and a protein layer). The organism layer consisted of 7 human coronaviruses and 17 mammalian hosts. Those hosts are either close to human

Figure 2. PPIs prediction for SARS-CoV-2

(A) The known and predicted bindings between the S-protein in SARS-CoV-2 and ACE2 in mammalian hosts. Host names are displayed in their abbreviation form: Hom.Sap., *Homo sapiens*; Mus.Mus., *Mus musculus*; Fel.Cat., *Felis catus*; Can.Lup., *Canis lupus familiaris*; Ovi.Ari., *Ovis aries*; Rat.Nor., *Rattus norvegicus*; Mac.Mul., *Macaca mulatta*; Rhi.Fer., *Rhinolophus ferrumequinum*; Mes.Aur., *Mesocricetus auratus*; Bos.Tau., *Bos taurus*; Ict.Tri., *Ictidomys tridecemlineatus*; Cam.Dro., *Camelus dromedarius*; Sus.Scr., Sus scrofa domesticus.

(B–D) The known and predicted interactions of M protein (B), nsp15 (C), and ORF6 (D) in SARS-CoV-2 with proteins in the human IFN signaling pathway that contribute to IFN signaling pathway suppression.

activities or proven to be infected by some human coronaviruses in our network. The protein layer contained 10 virus proteins and 13 host proteins. The proteins were selected based on two primary considerations: proteins involved in viral entry and the interferon (IFN) signaling pathway, both of which are critical to a successful virus infection. The virus needs to enter the host cells through the receptors on the membrane, and the binding ability between the S-protein of the virus and the host receptor determines the success of such viral entry. The suppression ability on the IFN signaling pathway of the virus negatively affects the efficiency and the effectiveness of the response of the innate immune system, which would allow the virus to rapidly replicate and spread among cells. IMSP performed a network-based representation learning to integrate information about virus-host infections, PPIs, organism-protein belongings, and similarities between protein homologs. This produced comprehensive representations and a neural-networkbased classifier for accurately predicting novel viral infection and interactions between virus proteins and host proteins.

SARS-CoV-2-host multiple-type interaction predictions

We applied IMSP on SARS-CoV-2 and six other human coronaviruses to obtain high-confidence predictions of PPIs and infections. Figure S1 shows the mechanism of the binding of S-proteins and host receptor ACE2. Figure S2 shows the interactions between virus proteins and host proteins involved in the IFN pathway. Figure S3 shows the S-protein binding subnetwork. Figure S4 shows the innate immune pathway subnetwork. Figure S5 shows the organism layer. Tables S1 and S2 show the complete node and linkage information of the virus-host network. All infection predictions are shown in Table S3, and PPI predictions are presented in Table S4.

SARS-CoV-2 S-protein binding predictions

The binding ability of the S-protein of SARS-CoV-2 with the host ACE2 receptors is a key factor deciding the infection

capability of SARS-CoV-2. IMSP predicted that the S-protein of SARS-CoV-2 could have a high probability of binding well with the ACE2 receptors in rats, sheep, camels, and squirrels (Figure 2A).

Rats were recognized to be susceptible to several other human coronaviruses, such as SARS-CoV,⁹ MERS-CoV,²⁹ HCoV-OC43,¹⁸ and HCoV-HKU1.^{30,31} It is highly possible that rats could still be the potential host for SARS-CoV-2.

The overall similarity of ACE2 for the squirrel, sheep, and camel is 91.82%, 90.81%, and 92.42%, respectively compared with human ACE2. These predictions still require more practical research to determine the binding affinity between the S-protein of SARS-CoV-2 with ACE2s on these mammals. It was shown that ACE2 could tolerate up to seven amino acid changes out of 20 critical ones that contact with the S-protein without losing the functionality as the target receptor³² for SARS-CoV-2. This means that sequence similarity might not be the only factor that influences the binding affinity between the ACE2 receptor and the S-protein of SARS-CoV-2.

SARS-CoV-2 and human interferon pathway interactome prediction

The IFN pathway plays a critical role in the human immune response. After the virus infection is detected, the innate immune system will induce IFN signaling, and the expression of IFN genes will increase the cellular resistance to viral invasion. Viruses have developed various strategies to inhibit IFN signaling to facilitate successful viral invasion.³³ SARS-CoV and MERS-CoV were studied quite comprehensively in terms of counteracting the IFN signaling responses compared with SARS-CoV-2. From IMSP, 19 interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway were identified, shown in Figures 2B–2D. These PPIs had a high probability of playing crucial roles in the suppression of the innate immune system response of the host.

Membrane (M) protein not only serves as the protein in virus to bind to all other structural proteins³⁴ but also is found to inhibit IFN production in SARS-CoV³⁵ and MERS-CoV.²⁴ From IMSP prediction, it was highly possible that M protein in SARS-CoV-2 could interact with nuclear factor kappa-light-chain-enhancer of activated B (NF- κ B), interferon regulatory factor 3 (IRF3), and retinoic acid-inducible gene I (RIG-I).

Open reading frame protein 6 (ORF6) and non-structural protein 15 (nsp15) in SARS-CoV-2 were discovered to be crucial viral IFN antagonists of SARS-CoV-2. From previous research, we knew that these two proteins inhibit the localization of IRF3 by interacting with RIG-I.³⁶ A similar function was found for ORF6 in SARS-CoV.37 ORF6 and nsp15 in SARS-CoV were proved to interact with signal transducer and activator of transcription 1 (STAT1) and STAT2.38 From predictions made by IMSP (shown in Figures 2C and 2D), ORF6 and nsp15 in SARS-CoV-2 were suggested to have potential interactions with melanoma differentiation-associated protein 5 (MDA5), mitochondrial anti-viral-signaling protein (MAVS), STAT1, STAT2, NF-κB, IRF9, and TANK binding kinase 1 (TBK1). Since MAVS works as the adaptor molecule for MDA5,³⁹ it is possible that a viral protein that interacts with either one of these two would also interact with the other. Besides these, ORF6 was also predicted to interact with protein kinase interferon-inducible double-stranded RNA-dependent activator (PRKRA) and IRF7. As nsp15 and ORF6 both function in nuclear transport machinery after viral entry,²⁷ it is reasonable that, for these two proteins, similar interactions with innate immune pathways are predicted. Careful experiments should be conducted to identify the impact of nsp15 and ORF6 on the innate immune system.

SARS-CoV-2 infection prediction

Based on both the protein-level and organism-level interaction predictions, we concluded five highly possible infection predictions for SARS-CoV-2. These mammals were predicted to be Figure 3. Infection prediction for SARS-CoV-2

This figure shows all 17 mammalian hosts in our network and their infection relationships with SARS-CoV-2.

susceptible to SARS-CoV-2 in the organism layer. They were also proved or predicted to have a successful spike-receptor binding between the S-protein of SARS-CoV-2 and their own ACE2 receptors. As shown in Figure 3, these animals included rats, sheep, camels, swine, and squirrels.

Rat was identified as a host for all betacoronaviruses: SASR-CoV, ⁹ MERS-CoV, ²⁹ HCoV-OC43, ¹⁸ and HCoV-HKU1.^{30,31} SARS-CoV-2 also falls into the category of beta-coronavirus, ⁴⁰ which has a high possibility of infecting rats.

Swine's ACE2 was identified to be able to bind with the S-protein of SARS-CoV-2,⁴¹ and our model predicted that swine

could be successfully infected after the receptor binding. This is also supported by recent research on swine. $^{\rm 42}$

Camels are hosts for MERS-CoV.²² This means that camels can also be hosts for other coronaviruses. Camels, along with sheep and squirrels, are closely related to the human living environment or daily diet. They could be potential mammalian hosts that again transmit the virus back to human society. The investigation of these highly possible infections could potentially help identify the transition path of the virus and further control the transmission of SARS-CoV-2 from and between mammalian hosts. Further research on these potential hosts might be crucial to social health and safety.

Interaction prediction performance evaluation

Many machine-learning and graph-embedding methods have been developed and applied to various applications.43-48 In this work, we compared IMSP with five other baseline models on our dataset in a 5-fold stratified cross-validation setting. The baseline models include two famous random-walk-based models (DeepWalk⁴³ and Node2vec),⁴⁵ two neural-networkbased models (Large-scale Information Network Embedding [LINE]⁴⁴ and Structural Deep Network Embedding [SDNE]),⁴ and a classical matrix-based model, Graph Factorization GF.⁴⁹ For the stratified cross-validation experiment, we created a sampling strategy to ensure that the training subset in each crossvalidation run can form a fully connected network. Such a fully connected network could ensure that our network structural embedding model embedded nodes into the same vector space. To ensure the balance of input data, we gathered negative (nonconnected) edges in addition to positive (connected) edges that already existed in each fold. We sampled negative edges from two directions: known negatives (i.e., true negatives) and unknown negatives. We considered spike-receptor interactions demonstrated as nonexistent as known negatives, such as the one between the S-protein of SARS-CoV-2 and the host receptor

Patterns Article

Table 1	Link	prediction:	Overall	performance	evaluation	and	comparison
Tuble I		prediction	overun	periormanoe	cruidution	unu	oompunson

			the second second second			
Model	Accuracy	Weighted precision	Weighted recall	Weighted F1-score	AUC macro	AUC weighted
GF ⁴⁹	0.879 ± 0.008	0.852 ± 0.011	0.879 ± 0.008	0.863 ± 0.009	0.913 ± 0.007	0.944 ± 0.006
Deepwalk43	0.894 ± 0.008	0.870 ± 0.010	0.894 ± 0.008	0.879 ± 0.009	0.926 ± 0.010	0.952 ± 0.007
LINE ⁴⁴	0.742 ± 0.026	0.727 ± 0.030	0.742 ± 0.026	0.732 ± 0.029	0.874 ± 0.021	0.881 ± 0.023
Node2vec ⁴⁵	0.902 ± 0.007	0.868 ± 0.007	0.902 ± 0.007	0.883 ± 0.007	0.896 ± 0.011	0.932 ± 0.010
SDNE ⁴⁶	0.820 ± 0.015	0.791 ± 0.019	0.820 ± 0.015	0.799 ± 0.017	0.904 ± 0.012	0.930 ± 0.011
IMSP	0.971 ± 0.005	0.972 ± 0.006	0.971 ± 0.005	0.971 ± 0.006	0.997 ± 0.001	0.996 ± 0.001

AUC, area under the receiver-operating characteristic curve. This table presents six evaluation metrics regarding the link prediction performance of our model compared with five other baseline models. While evaluating performance, we followed 5-fold stratified cross-validation setting with shuffle enabled. This method preserved the percentage of samples for each class (i.e., type of edge) in each fold. We created a sampling strategy to ensure that the training subset in each cross-validation run can form a fully connected network. To ensure the balance of input data, we gathered negative (non-connected) edges in addition to positive (connected) edges that already existed in each fold. While sampling negative edges, we randomly selected some from known negative edges (i.e., true negatives), which consisted of spike-receptor interactions demonstrated as nonexistent. We randomly selected the remaining negative edges from other non-connected node pairs, which we assumed did not exist. These negative edges were then added to each fold to match the number of positive edges. We performed this 5-fold stratified cross-validation experiment for 30 runs. In each run, we would generate a new 5-fold split. We then performed two-sample heteroscedastic t tests for these six overall performance evaluation metrics to test the significance of IMSP improvement. Lastly, we reported the average with SD for each metric.

dipeptidyl peptidase 4 (DPP4; the target host receptor of MERS-CoV). Since we still lacked a comparable amount of negative edges, we randomly selected non-connected node pairs as negative edges, which we assumed as not existing. We added these negative samples into each fold to match the number of positive samples. We then evaluated IMSP and other models under the 5-fold stratified cross-validation setting as described above. We repeated the cross-validation experiment for 30 independent runs. In each run, we generated a new 5-fold split. Finally, we performed a two-sample heteroscedastic t test at the 0.01 significance level to test the significance of our model's improvement against other models.

Table 1 shows the performance comparison measured in six common link prediction evaluation metrics. IMSP achieved an overall link prediction accuracy of 97.1% with a standard deviation (SD) of 0.005, which demonstrated a 7.7% gain compared with the second-best model. Our model also excelled in its weighted F1-score, achieving 0.971 with SD of 0.006, which exceeded the second-best model by 10.0%. The p values for these two metrics were all smaller than 0.01, which indicated significant improvement for our model. We also presented the performance on infection and PPI predictions (Figure 4). IMSP achieved an F1-score of 0.854 with a 0.090 SD for infection predictions, a 40.4% increase compared with the second-best model. The p value was smaller than 0.01, indicating a significant improvement in our model. For PPI predictions, our model achieved an F1-score of 0.867 with 0.034 SD, a 1.6% increment compared with the second-best model. The p value also demonstrated a significant improvement for IMSP under the 0.01 significance level. In conclusion, our model showed statistically significant improvements compared with all existing models in 11 of 12 evaluation metrics.

The high performance of IMSP might result from its ability to take full advantage of well-studied knowledge and data from previous biology research with protein-level variations. Thanks to the novel design of our virus-host interaction network, cross-organism information and multi-class linkage information can be well preserved. Another reason behind the performance improvement of IMSP is that it factors essential biological metadata for nodes into the learned representations of edges. This design substantially helped the classifier output a correct predicted class when formulating edge representations. However, around 10% of PPI predictions were unlikely predictions by our definition, i.e., PPIs between S-protein and non-receptor host proteins. To minimize unlikely predictions, we also utilized known negative edges (true negatives) in the protein layer to constitute part of the negative samples for training and testing. This finally reduced the unlikely PPI predictions to around 5%.

In conclusion, IMSP exhibited robust and stable performance in both top-level and detailed evaluation metrics, which was substantially improved compared with existing tools. When analyzing newly emerged viruses with limited available information, namely SARS-CoV-2, IMSP could provide reasonable and reliable predictions.

DISCUSSION

This study assembled 260 nodes and 1,995 known edges. Each node represented a virus/virus protein/host/host protein, and each edge represented a virus-host infection/PPI/protein-homolog similarity/organism-protein belonging. Based on this network, we predicted the potential host for viruses and undiscovered PPIs. Among all currently known seven human coronaviruses, SARS-CoV and MERS-CoV were relatively well studied in terms of interactions (i.e., infection and PPI). However, interactions of HCoV-OC43, HCoV-NL63, HCov-HKU1, HCoV-229E, and the newly emerged SARS-CoV-2 remained relatively less discovered. Our model predicted 939 PPIs and 24 infections that were likely to happen. These predictions need further experiments for validation.

Established discoveries about the viral interactions with host proteins were scarce for SARS-CoV-2. However, SARS-CoV-2 was highly suspected of suppressing the innate immune response and reducing the production of IFN. Thus, the findings by IMSP could help discover the protein-level mechanism of virus invasion and host response to provide clues toward developing therapeutic strategies for the treatment of this disease. Some of our prediction results have been revealed as

Figure 4. Performance on PPI and infection predictions

This figure demonstrates the performance of IMSP on PPI and infection predictions in comparison with five other baseline models. The ocean-blue columns represent the performance of IMSP derived from the average of 30 independent 5-fold stratified cross-validation runs. The error bars for each column mark the 25th and 75th percentile. Our IMSP model achieved 0.854 for the infection F1-score and 0.867 for the PPI F1-score. Compared with other models, our model outperformed them in all the evaluation metrics except in PPI Precision. Specifically, in terms of infection F1-score, our model outperformed the second-best model Node2vec⁴⁵ by 40.4%. In terms of PPI F1-score, our model also surpassed the second-best model Node2vec⁴⁵ by 1.6%.

meaningful. It should be noted that, during the review period, two of our prediction results were validated in wet-lab experiments by independent labs,^{42,50} which demonstrated that swine is susceptible to SARS-CoV-2 and that the M protein of SARS-CoV-2 inhibits IFN production by targeting RIG-I/MDA-5 signaling.

More broadly, IMSP could be applied to any other analysis of the virus-host interaction network predictions. IMSP would build the network based on the information of the PPIs, protein-homolog similarities, virus-host infection relations, and related protein function knowledge if available. Based on such a network, IMSP could predict high-possibility PPIs and infections. We hope to use this pipeline as a guideline for investigating various similar viruses and their mechanisms with hosts on both organism level and protein level.

Limitations of the study

This section discusses the limitation of our work in terms of prediction validation, quality of data sources, model bias, and potential improvements. Concerning prediction validation, ideally wet-lab experiments should be conducted to validate our predictions, which require special facilities not commonly available. Thus, we were unable to validate our predictions through biological experiments. We collected protein sequences, infection relationships, and known PPIs from the best available data sources when carrying out this study. The quality, errors, and uncertainty of these data sources could affect the performance of our approach. This may harm the reliability of our predictions, and hence biologists should exercise extra caution when using our predictions to aid the design of experiments. Our approach may suffer from sampling bias, representation bias, and population bias.⁵¹ For example, we only included the proteins known to play crucial roles in viral entry and the IFN signaling pathway. It is possible that some related proteins were ignored, i.e., our model potentially carries sampling bias. Our model might also suffer from representation bias due to missing protein sequences, which could lead to non-uniform protein representation in different mammalian hosts in our network. Additionally, we could not include some

mammals (e.g., rabbits and civets) because most of their protein sequences are either unavailable or of low quality in the National Center for Biotechnology Information (NCBI) database, which led to population bias. As more data become available, a more comprehensive network could be constructed by our IMSP model, which would substantially mitigate the model bias. Lastly, the model can also be improved by incorporating gene set enrichment and sequence motif analysis.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and will be fulfilled by the lead contact, Hongfu Liu (hongfuliu@brandeis.edu). *Materials availability*

This study did not generate any physical materials.

This study did not generate any physical materi

Data and code availability

All data and codes are available at Github repositories. IMSP model, its predictions, and performance evaluations can be found at https://github.com/ hangyu98/IMSP; data and parsing code can be found at https://github.com/ hangyu98/IMSP-Parser. Additional supplemental items are available from Mendeley Data at doi: 10.17632/3s2dr7y6s2.1.

Virus-host interaction network data selection

The virus-host interaction network consists of two layers (an organism layer and a protein layer). The organism layer contains a set of viruses (including SARS-CoV-2, SARS-CoV, HCoV-229E, HCoV-HKU1, HCoV-OC43, HCoV-NL63, and MERS-CoV) and a set of hosts (including human, mouse, rat, dog, cat, camel, squirrel, cattle, chimpanzee, red junglefowl, rabbit, horse, monkey, rat, sheep, swine, and golden Syrian hamster). At the protein layer, we focus on proteins that are known to be involved in viral invasion or immune system response and suppression. The network contains 13 host protein-homolog groups obtained from NCBI: ACE2, DPP4, IRF3, IRF7, IRF9, MAVS, MDA5, NF-KB, PRKRA, TBK1, RIG-I, STAT1, and STAT2. The virus proteins include homologs of S-protein, M protein, nucleocapsid protein, nsp1, nsp15, ORF3b, ORF4a, ORF4b, ORF6, and papain-like protease (PLpro). There are four types of edges in the network: PPI, virus-host infection, organism-protein belonging, and similarity relation between protein homologs. PPI and infection relationships are gathered from academic publications.9-24 Organism-protein belonging and protein-homolog similarity relation are innately connected. Detailed PPI data resources are presented in Table S5.

Patterns Article

Table 2. Notations				
Notation	Description			
Vi	node <i>i</i> in the network			
V	the set of all nodes			
l _{ij}	edge between node <i>i</i> and node <i>j</i>			
I	the set of all edges in the network			
R_i^S	structure embedding vector for node i			
R_i^C	content embedding vector for node i			
$CE_{i,j}$	content embedding vector for edge I_{ij}			
IE _{i,j}	full edge embedding vector for edge I_{ij}			
W _{i,j}	edge weight for edge $I_{i,j}$			
$ED_{i,j}$	Euclidean distance between node <i>i</i> and node <i>j</i>			
$MD(R_i^C, R_j^C)$	magnitude difference between vector R_i^C and R_j^C			
$TS - SS_{ij}$	TS-SS similarity between vector R_i^C and R_j^C			

Infection mechanism and spectrum prediction

Our IMSP model requests three inputs: pairwise similarity matrices (parsed from percentage of positives from NCBI BLASTp result) for protein homologs, a set of known PPIs and infections, and protein function data. Given these three inputs, the model constructs a heterogeneous two-layer virus-host interaction network. IMSP then performs graph representation learning and combines the structural embeddings with the content embeddings to form edge representations. Lastly, in the link prediction phase, IMSP trains a neuralnetwork-based Multi-layer Perceptron (MLP) classifier on learned representations to perform multi-class classification task. Along with post-process procedures, our model outputs high-possibility undiscovered PPIs and infections. In the following, we elaborate on the two main steps of IMSP in terms of virus-host interaction network construction and representation learning, and virus-host interaction prediction. To show the design of our model, we present the pseudocode sample in Alg. 1 in supplemental information. The time complexity is $O(|V|^2)$ and the space complexity is $O(|V|^2)$. Please refer to Table 2 for notations.

Virus-host interaction network construction and representation learning

We utilized nodes to represent either organisms or proteins. Edges were used to represent PPI/infection/similarity/belonging relationships. To model the network, we constructed an undirected two-layer heterogeneous network using NetworkX.⁵² The network carried four groups of nodes: host, host protein, virus, and virus protein. We organized the virus group and the host group into the organism layer. Similarly, host protein groups and virus protein groups were put into the protein layer. By nature, the network held four types of edges: PPI (between virus protein groups and host protein groups), infection (between virus group and host group), protein-homolog similarity relation (between virus/host protein homologs in protein layer), and organism-protein belonging relation (between organism layer and protein layer). Protein-homolog similarity and organism-protein belonging relationships were innately connected. PPIs and infections were connected based on proven molecular level knowledge or infection data from existing research. $^{\rm 3-24,53-55}$ After building the network, the virus-host interaction network contained 260 nodes and 1,995 edges. Intuitively, if there is an interaction edge (infection or PPI) between two nodes V_i and V_j , an edge with the same type (infection or PPI) is more likely to form between V_i and another node with high biological similarity to V_i . We therefore designed a method that assigns a weight to each relationship in the network. A structure embedding model⁴⁵ was then applied to factor in such information into the node representations, which is later used in predicting interactions between nodes. To be more specific, if a relationship connects two protein homologs, its weight is equal to the similarity between their full-length sequences. For other relationships, we calculated its weight as the similarity between the text content of the connected nodes. The text content of a node includes the name and molecular functions if a node represents a

protein. The text content is processed by Text2vec, a Word2vec⁵⁶-based model, to obtain the node content embedding denoted as R_i^C for V_i . We then utilized the *TS*-SS similarity metric, ⁵⁷ a robust and reliable similarity measurement in the field of textual mining, to calculate w_{ij} as the *TS*-SS similarity between R_i^C and R_i^C . The technical details are explained below:

$$^{T}S - SS_{ij} = |R_{i}^{C}| \cdot |R_{j}^{C}| \cdot \sin\left(\theta'\right) \cdot \theta' \cdot \pi \cdot \left(ED\left(R_{i}^{C}, R_{j}^{C}\right) + MD\left(R_{i}^{C}, R_{j}^{C}\right)\right)^{2} / 720,$$
(Equation 1)

where $MD(R_i^C, R_j^C)^{57}$ is defined as the magnitude difference between R_i^C and R_i^C , which is calculated as

$$MD\left(R_{i}^{C}, R_{j}^{C}\right) = \left|\sqrt{\sum_{n=1}^{\dim R_{j}^{C}} R_{i}^{C^{2}}} - \sqrt{\sum_{n=1}^{\dim R_{j}^{C}} R_{j}^{C^{2}}}\right|,$$
 (Equation 2)

and θ' is defined as

$$\theta' = \cos^{-1}\left(\cos\left(R_i^C, R_j^C\right)\right) + 10.$$
 (Equation 3)

Note that θ' is increased by 10° to overcome the problem of overlapping vectors. $w_{i,j}$ is then calculated as

$$w_{i,j} = \sigma \left(TS - SS_{i,j} / \overline{TS - SS} \right),$$
 (Equation 4)

where σ is the sigmoid function, and $\overline{TS} - SS$ denotes the average of $TS - SS_{ij}$, for all i,j, if $i \neq j$ and $V_i, V_j \subset V$.

For graph representation learning, we captured the graph heterogeneity by adding the heterogeneous content information to its structural information. Specifically, we performed network structural embedding assuming the network is homogeneous. We then added the content embedding on top of structural embedding to model the heterogeneity.

First, for network structural embedding, we used a powerful network representation learning model, Node2vec,⁴⁶ to learn the structural embedding for nodes. Node2vec is a state-of-the-art model for homogeneous network embedding. We took full advantage of the biased searching algorithm offered by Node2vec during our application. Precisely, the Node2vec model performed a biased fixed-length random walk for graph sampling, which takes edge weight into account. Let c_m denote the *m*th node in walk with c_0 denoting the starting node of the current random walk. Nodes c_m are generated by the following distribution:

$$P(c_m = V_i \mid c_{m-1} = V_j) = \begin{cases} \pi_{V_j, V_i} / Z & \text{if } I_{i,j} \subset I \\ 0 & \text{otherwise} \end{cases},$$
 (Equation 5)

where $m \ge 1, Z$ is the normalizing constant, and π_{V_i,V_i} is the unnormalized transition probability between V_j and V_i , which is calculated as $\pi_{V_i,V_i} = \alpha_{\rho q}(V_t, V_i) \cdot w_{ij}$. Note that the edge weight w_{ij} is taken into consideration. Assume we have just transitioned from V_t to V_j and are now evaluating the transition probability leaving V_j . Let V_i represents the set of all neighbors of V_j . $\alpha_{\rho q}(V_t, V_i)$, termed as search bias, is calculated as

$$\alpha_{pq} \begin{pmatrix} V_t, V_i \end{pmatrix} = \begin{cases} 1/p & \text{if} \quad d_{V_t, V_i} = 0\\ 1 & \text{if} \quad d_{V_t, V_i} = 1\\ 1/q & \text{if} \quad d_{V_t, V_i} = 2 \end{cases}$$
(Equation 6)

where d_{V_t,V_i} denotes the shortest path between V_t and V_i .

In Equation 6, p (return hyperparameter) and q (in-out hyperparameter) are the two crucial hyperparameters of Node2vec. They can be adjusted to influence the probability of going back to V_i after visiting V_j and the probability of exploring the undiscovered components of the network. In this way, we were able to tune the hyperparameters of the structural embedding model, Node2vec, through a grid search algorithm to generate the structural embeddings.

Second, to generate edge content embeddings, i.e., CE_{ij} for all possible I_{ij} , we combined the textualized node content (including name, group, layer, and function) of V_i and V_j with expected edge type such as PPI/infection/protein-homolog similarity/organism-protein belonging. We then input such text into

Text2vec, a Word2vec⁵⁶-based model, to generate edge content embeddings. The full edge representations that consider both structural and content information for edge I_{ij} are formulated as follows:

$$\begin{split} & IE_{ij} = \left[R_i^{\rm S} \ , \ R_j^{\rm S} \ , \ CE_{ij} \right], \\ & IE_{jj} = \left[R_j^{\rm S} \ , \ R_j^{\rm S} \ , \ CE_{jj} \right]. \end{split} \tag{Equation 7}$$

Note that by the nature of Text2vec, the order of input document does not affect its output, meaning that CE_{ij} is the same as $CE_{j,i}$. Upon finishing this step, we obtained all edge representations, IE_{ij} , for all V_i and $V_j \subset V$ and $i \neq j$.

Virus-host interaction prediction

In the interaction prediction phase, we utilized a neural-network-based classification model, MLP classifier, provided by scikit-learn⁵⁸ to perform multi-class classification. The classifier would classify edges into infection, PPI, no-interaction, organism-protein belongings, and similarity relations between protein homologs, using the learned edge representations. The predicted interactions (i.e., infection and PPI) would go through a post-processing step to eliminate unlikely interaction predictions. The processed result would be the output of IMSP.

Here we performed 5-fold stratified cross-validation. While splitting data into folds, we let each fold have roughly the same percentage of interactions in each interaction type. Besides, each fold has the same number of positive (i.e., known interactions) and negative (i.e., non-interaction) samples. It should be noted that the negatives consist of both validated non-interactions (e.g., the S-protein of SARS-CoV-2 is known not to bind well to the human ACE2 receptor) and other non-interactions that have yet to be validated experimentally. To mitigate the issue caused by sampling undiscovered true positive links as the negative training samples, we trained multiple independent MLP classifiers on different training sets, where the negative links were randomly sampled for each set. We then aggregated their edge classification results to pass to the post-processing step. We defined the following rules from both the computational and biological perspectives to remove unlikely predictions in the postprocessing step. Computationally, since there exist two representations for I_{ij} , i.e., IE_{ij} and IE_{ji} , the prediction for I_{ij} is defined as a "strong" one if and only if both IEij and IEj are classified into the same interaction type (excluding the non-interaction type). Biologically, we assumed that the virus S-protein would only bind with its known target receptor.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j. patter.2021.100242.

ACKNOWLEDGMENTS

This work was partially supported by NSF OAC 1920147.

AUTHOR CONTRIBUTIONS

Conceptualization, P.H. and H.L.; methodology, H.D., F.C., and H.L.; software, H.D.; formal analysis, H.D.; investigation, F.C. and H.D.; writing – original draft, F.C. and H.D.; writing – review & editing, all authors; visualization, F.C. and H.D.; supervision, H.L. and P.H.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 20, 2020 Revised: January 6, 2021 Accepted: March 24, 2021 Published: March 29, 2021

REFERENCES

1. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Kathy, S.M.L., Lau, E.H.Y., Wong, J.Y., et al. (2020). Early transmission dynamics

in wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207.

- World Health Organization WHO Coronavirus (COVID-19) Dashboard. World Health Organization. https://covid19.who.int/. Accessed April, 17, 2020.
- Sit, T.H.C., Brackman, C.J., Ip, S.M., Tam, K.W.S., Law, P.Y.T., To, E.M.W., Veronica, Y.T. Yu, Sims, L.D., Tsang, D.N.C., Chu, D.K.W., et al. (2020). Infection of dogs with SARS-CoV-2. Nature 586, 776–778.
- Halfmann, P.J., Hatta, M., Chiba, S., Maemura, T., Fan, S., Takeda, M., Kinoshita, N., Hattori, S.I., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., et al. (2020). Transmission of SARS-CoV-2 in domestic cats. N. Engl. J. Med. 383, 592–594.
- Wang, L., Mitchell, P.K., Calle, P.P., Bartlett, S.L., McAloose, D., Killian, M.L., Yuan, F., Fang, Y., Goodman, L.B., Fredrickson, R., et al. (2020). Complete genome sequence of SARS-CoV-2 in a tiger from a US zoological collection. Microbiol. Resourc. Announce. 9, e00468-20.
- Schlottau, K., Rissmann, M., Graaf, A., Schön, J., Sehl, J., Wylezich, C., Höper, D., Mettenleiter, T.C., Balkema-Buschmann, A., Harder, T., et al. (2020). SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1, e218–e225.
- Sia, S.F., Yan, L.M., Chin, A.W.H., Fung, K., Choy, K.T., Wong, A.Y.L., Kaewpreedee, P., Perera, R.A.P.M., Poon, L.L.M., Nicholls, J.M., et al. (2020). Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838.
- Munnink, B.B., Sikkema, R.S., Nieuwenhuijse, D.F., Molenaar, R.J., Munger, E., Molenkamp, R., Van Der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., et al. (2020). Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-Cov-2 on mink farms. bioRxiv. https://doi.org/10.1101/2020.09.01.277152.
- Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., and Perlman, S. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19, 181–193.
- Matthews, K., Schäfer, A., Pham, A., and Frieman, M. (2014). The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity. Virol. J. 11, 209.
- Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., Ma, Q., Liu, X., and Cao, C. (2017). SARS coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J. Virol. *91*, e02143-16.
- Chen, X., Yang, X., Zheng, Y., Yang, Y., Xing, Y., and Chen, Z. (2014). SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 5, 369–381.
- 13. Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454.
- Lei, Y., Moore, C.B., Liesman, R.M., O'Connor, B.P., Bergstralh, D.T., Chen, Z.J., Pickles, R.J., and Ting, J.P. (2009). MAVS-mediated apoptosis and its inhibition by viral proteins. PloS One 4, e5466.
- 15. Haagmans, B.L., Kuiken, T., Martina, B.E., Fouchier, R.A., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., de Jong, T., Itamura, S., Chan, K.H., et al. (2004). Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10, 290–293.
- Dahl, H., Linde, A., and Strannegård, O. (2004). In vitro inhibition of SARS virus replication by human interferons. Scand. J. Infect. Dis. 36, 829–831.
- Szczepanski, A., Owczarek, K., Bzowska, M., Gula, K., Drebot, I., Ochman, M., Maksym, B., Rajfur, Z., Mitchell, J.A., and Pyrc, K. (2019). Canine respiratory coronavirus, bovine coronavirus, and human coronavirus OC43: receptors and attachment factors. Viruses *11*, 328.
- Niu, J., Shen, L., Huang, B., Ye, F., Zhao, L., Wang, H., Deng, Y., and Tan, W. (2020). Non-invasive bioluminescence imaging of hCoV-OC43

Patterns Article

infection and therapy in the central nervous system of live mice. Antivir. Res. *173*, 104646.

- Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., and Pöhlmann, S. (2005). Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. U S A 102, 7988–7993.
- Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Jonges, M., Farag, E., Diab, A., et al. (2014). Middle east respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14, 140–145.
- Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., and Bosch, B.J. (2013). The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J. Virol. 87, 9379–9383.
- Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Jrijer, J., Moatasim, Y., Kutkat, O., Bagato, O., et al. (2019). Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals. Emerg. Microbes Infect. 8, 103–108.
- 23. Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Bredenbeek, P.J., Snijder, E.J., Kikkert, M., and Mark, B.L. (2014). Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J. Biol. Chem. 289, 34667–34682.
- 24. Lui, P.Y., Wong, L.Y., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Chan, C.P., Woo, P.C., Yuen, K.Y., and Jin, D.Y. (2016). Middle East respiratory syndrome coronavirus m protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg. Microbes Infect. 5, e39.
- Zhang, H., Penninger, J.M., Li, Y., Zhong, N., and Slutsky, A.S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46, 586–590.
- Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., and Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224.
- Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., White, K.M., O'Meara, M.J., Rezelj, V.V., Guo, J.Z., Swaney, D.L., et al. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468.
- Messina, F., Giombini, E., Agrati, C., Vairo, F., Ascoli Bartoli, T., Al Moghazi, S., Piacentini, M., Locatelli, F., Kobinger, G., Maeurer, M., et al. (2020). Covid-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J. Transl. Med. *18*, 233.
- Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Marasco, W.A., Heise, M.T., and Baric, R.S. (2016). A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2, 16226.
- Gorse, G.J., O'Connor, T.Z., Hall, S.L., Vitale, J.N., and Nichol, K.L. (2009). Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease. J. Infect. Dis. 199, 847–857.
- 31. Lim, Y.X., Ng, Y.L., Tam, J.P., and Liu, D.X. (2016). Human coronaviruses: a review of virus-host interactions. Diseases 4, 26.
- 32. Zhai, X., Sun, J., Yan, Z., Zhang, J., Zhao, J., Zhao, Z., Gao, Q., He, W.T., Veit, M., and Su, S. (2020). Comparison of severe acute respiratory syndrome coronavirus 2 spike protein binding to ACE2 receptors from human, pets, farm animals, and putative intermediate hosts. J. Virol. 94, e00831–20.
- **33.** Schulz, K.S., and Mossman, K.L. (2016). Viral evasion strategies in type I IFN signaling—a summary of recent developments. Front. Immunol. *7*, 498.

- **34.** Thomas, Sunil (2020). The structure of the membrane protein of SARS-CoV-2 resembles the sugar transporter semisweet. Pathog. Immun. 5, 342.
- 35. Siu, K.L., Kok, K.H., Ng, M.J., Poon, V.K.M., Yuen, K.Y., Zheng, B.J., and Jin, D.Y. (2009). Severe acute respiratory syndrome coronavirus m protein inhibits type I interferon production by impeding the formation of TRAF3• TANK• TBK1/IKKɛ complex. J. Biol. Chem. 284, 16202–16209.
- 36. Yuen, C.K., Lam, J.Y., Wong, W.M., Mak, L.F., Wang, X., Chu, H., Cai, J.P., Jin, D.Y., To, K.K., Chan, J.F., Yuen, K.Y., and Kok, K.H. (2020). SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerging Microbes Infect. 9, 1418–1428.
- 37. Kopecky-Bromberg, S.A., Martínez-Sobrido, L., Frieman, M., Baric, R.A., and Palese, P. (2007). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557.
- 38. Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., and Baric, R.S. (2007). Severe acute respiratory syndrome coronavirus ORF6 antagonizes stat1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol. *81*, 9812–9824.
- 39. Wu, B., and Hur, S. (2015). How RIG-I like receptors activate MAVS. Curr. Opin. Virol. 12, 91–98.
- 40. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet *395*, 565–574.
- 41. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.
- 42. Pickering, B.S., Smith, G., Pinette, M.M., Embury-Hyatt, C., Moffat, E., Marszal, P., and Lewis, C.E. (2021). Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerging Infect. Dis. 27, 104.
- Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). DeepWalk: online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14, ACM), pp. 701–710.
- 44. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). Line: large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web (ACM), pp. 1067–1077.
- 45. Grover, A., and Leskovec, J. (2016). node2vec: scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM), pp. 855–864.
- 46. Wang, D., Cui, P., and Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16 ACM), pp. 1225–1234.
- Jiang, X., Li, P., Li, Y., and Zhen, X. (2019). Graph neural based end-to-end data association framework for online multiple-object tracking. arXiv, 1907.05315.
- Li, P., Wang, Y., Zhao, H., Hong, P., and Liu, H. (2021). On dyadic fairness: exploring and mitigating bias in graph connections. In Proceedings of International Conference on Learning Representations.
- 49. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., and Smola, A.J. (2013). Distributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web (ACM), pp. 37–48.
- 50. Zheng, Y., Zhuang, M.W., Han, L., Zhang, J., Nan, M.L., Zhan, P., Kang, D., Liu, X., Gao, C., and Wang, P.H. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct. Targeted Ther. 5, 299.

- Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2019). A survey on bias and fairness in machine learning. arXiv, 1908.09635.
- 52. Hagberg, A., Swart, P., and Chult, D.S. (2008). Exploring network structure, dynamics, and function using networkx. In Proceedings of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman, eds., pp. 11–15, United States.
- Li, C.K., and Xu, X. (2010). Host immune responses to SARS coronavirus in humans. In Molecular Biology of the SARS-Coronavirus, S.K. Lal, ed. (Springer), pp. 259–278.
- Totura, A.L., and Baric, R.S. (2012). SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr. Opin. Virol. 2, 264–275.

- 55. Frieman, M., Heise, M., and Baric, R. (2008). SARS coronavirus and innate immunity. Virus Res. *133*, 101–112.
- Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv, 1301.3781.
- 57. Heidarian, A., and Dinneen, M.J. (2016). A hybrid geometric approach for measuring similarity level among documents and document clustering. In Proceedings of the 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), pp. 142–151.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: machine learning in Python. J. Machine Learn. Res. 12, 2825–2830.

Patterns, Volume 2

Supplemental information

Network-based virus-host interaction prediction

with application to SARS-CoV-2

Hangyu Du, Feng Chen, Hongfu Liu, and Pengyu Hong

This supplementary material contained visualized demonstrations of viral entry in Figure S1 and IFN pathway mechanisms in Figure S2. The full network with predictions made by the model was visualized in three figures: Figure S3 for viral entry, Figure S4 for IFN pathway and Figure S5 for host infection. The full nodes and edges in the network are presented in Table S1 and Table S2. The predicted interactions are presented in Table S3 and Table S4. The PPI data source are shown in Table S5. The IMSP algorithm is presented in Alg. 1.

Supplementary Note 1: Virus Entry - Receptor Binding of S Protein

Fig. S1. The Process for Coronavirus Receptor Binding and Virus Entry. The S protein in coronaviruses plays a crucial role in viral entry. It binds with host receptors and facilitates the fusion between the viral envelope and the host cell membrane.

Fig. S2. Innate Immune Response to Coronaviruses' Viral Infection and IFN signaling Mechanism. *RIG-I and MDA5 detect the pattern of virus and trigger the production of Interferons (IFNs)*^{S1} and the activation of the NF-κB.^{S2} The activated NF-κB induces the Pro-inflammatory cytokines, ^{S3} which play a central role in inflammatory diseases of infectious. ^{S4} STAT1 and STAT2 associate with IRF9 to induce the expression of interferon-stimulated genes (ISGs)^{S5} and produce antiviral proteins. ^{S6} In this way, viral interactions with the host innate immune system to suppress immune responses become the critical determinant of the disease outcome and viral infection.

Supplementary Note 3: Full Map of Binding Interactions between Coronaviruses' S Protein and Mammalian Hosts' Receptor

Fig. S3. Virus entry: binding relationships between the S-proteins of human coronaviruses and the ACE2 receptors of mammalian hosts. This figure of the network is visualized by Cytoscape. Virus Protein nodes are represented in green, and Host Protein Layer nodes are represented in blue. The original interactions are represented in light grey lines, including the known receptor bindings between viruses spike and mammalian hosts ACE2. Predicted receptor bindings are represented in orange lines. As the infection relations have been checked for likelihood in the IMSP model, all predicted interactions are strong predicted interactions.

Supplementary Note 4: Full Map of PPIs in IFN Signaling Pathway between Coronaviruses' Proteins and Mammalian Hosts' Proteins

Fig. S4. IFN interactions: virus proteins interactions with IFN signaling pathway to suppress the IFN signaling. Same representations for nodes and interactions as described in Figure 3. The predicted interactions are represented in orange lines: the solid lines stand for strong predictions, and dotted lines stand for weak predictions as defined in the IMSP model.

Supplementary Note 5: Full Map of Infection Relationships between Coronaviruses and Mammalian Hosts

Fig. S5. Coronaviruses and mammalian hosts infection relationships Virus Layer nodes are represented in green rhombi, and Host Layer nodes are represented in blue. The original infection interactions are represented in grey lines. Predicted infection relations are represented in orange lines: the solid lines stand for strong predictions and dotted lines stand for weak predictions as defined in the IMSP model.

Supplementary Note 6: Network Node

Table S1. Node IDs and Node Full Names.

Node ID	Full name representation	Node ID	Full name representation
0	nsp15 Severe acute respiratory syndrome coronavirus 2	130	IRF7 Mus musculus
1	nsp15 Severe acute respiratory syndrome-related coronavirus	131	IRF7 Bos taurus
2	nsp15 Human coronavirus HKU1	132	IRF7 Canis lupus familiaris
3	STATT Homo sapiens	133	IRF/ Gallus gallus
4	STATT Pan troglodytes	134	MDA5 Homo sapiens
5	STATT Estis estre	135	MDA5 Pan troglodytes
6	STATI Complex drama drains	136	MDA5 Macaca mulatta
/	STATI Camelus dromedarius	13/	MDA5 Equus caballus
8	STATI Conic lunus familiaria	138	MDA5 Oryctolagus culliculus
9	STATI Canis lupus familiaris	139	MDA5 Icidomys indecemineatus
10	STATT Des terrumequinum	140	MDA5 Fells catus
11	STATI Dos tautus	141	MDA5 Callelus drolledarius
12	STATI Latidomus tridocomlineatus	142	MDA5 Bos taurus
15	STATI Orgatelegue eupiculue	145	MDA5 Ovis aries
14	STATI Battue porvegieue	144	MDA5 Pattus norvegicus
15	STATI Mus musculus	145	MDA5 Mesocricetus auratus
17	STATI Mesocricetus auratus	140	MDA5 Canis lunus familiaris
18	STATI Gallus gallus	147	MDA5 Gallus gallus
10	IRF0 Homo saniens	140	PRKRA Homo saniens
20	IRE9 Macaca mulatta	150	PRKRA Macaca mulatta
20	IREQ Pan troglodytes	150	PRKRA Felis catus
21	IRF9 Felis catus	152	PRKRA Forus caballus
23	IRF9 Camelus dromedarius	152	PRKRA Canis lupus familiaris
23	IRF9 Sus scrofa domesticus	155	PRKRA Camelus dromedarius
25	IRF9 Equus caballus	155	PRKRA Mesocricetus auratus
26	IRF9 Rhinolophus ferrumeauinum	155	PRKRA Mus musculus
27	IRF9 Ovis aries	157	PRKRA Ictidomys tridecemlineatus
28	IRF9 Canis lunus familiaris	158	PRKRA Ovis aries
29	IRF9 Bos taurus	159	PRKRA Bos taurus
30	IRF9 Ictidomys tridecemlineatus	160	PRKRA Rattus norvegicus
31	IRF9 Oryctolagus cuniculus	161	PRKRA Rhinolophus ferrumeauinum
32	IRF9 Mus musculus	162	PRKRA Orvetolagus cuniculus
33	IRF9 Mesocricetus auratus	163	PRKRA Pan troglodytes
34	IRF9 Rattus norvegicus	164	ORF3b Severe acute respiratory syndrome-related coronavirus
35	IRF9 Gallus gallus	165	ORF3b Human coronavirus NL63
36	RIG-I Homo sapiens	166	DPP4 Homo sapiens
37	RIG-I Pan troglodytes	167	DPP4 Pan troglodytes
38	RIG-I Macaca mulatta	168	DPP4 Macaca mulatta
39	RIG-I Canis lupus familiaris	169	DPP4 Oryctolagus cuniculus
40	RIG-I Rattus norvegicus	170	DPP4 Ovis aries
41	RIG-I Mesocricetus auratus	171	DPP4 Ictidomys tridecemlineatus
42	RIG-I Mus musculus	172	DPP4 Bos taurus
43	ORF4b Middle East respiratory syndrome-related coronavirus	173	DPP4 Felis catus
44	ORF4b Human coronavirus 229E	174	DPP4 Equus caballus
45	nsp1 Severe acute respiratory syndrome coronavirus 2	175	DPP4 Canis lupus familiaris
46	nsp1 Severe acute respiratory syndrome-related coronavirus	176	DPP4 Rhinolophus ferrumequinum
47	nsp1 Middle East respiratory syndrome-related coronavirus	177	DPP4 Mesocricetus auratus
48	nsp1 Human coronavirus HKU1	178	DPP4 Rattus norvegicus
49	Spike Human coronavirus OC43	179	DPP4 Mus musculus
50	Spike Human coronavirus HKU1	180	DPP4 Camelus dromedarius
51	Spike Middle East respiratory syndrome-related coronavirus	181	DPP4 Gallus gallus
52	Spike Severe acute respiratory syndrome coronavirus 2	182	ORF6 Severe acute respiratory syndrome-related coronavirus
53	Spike Severe acute respiratory syndrome-related coronavirus	183	OKP6 Severe acute respiratory syndrome coronavirus 2
54	Spike Human coronavirus NL03	184	STAT2 Homo sapiens
55	Spike Human coronavirus 229E	185	STAT2 Pan troglodytes
50	IRF5 Homo sapiens	180	STAT2 Macaca mulatta
59	IRF3 Pail floglodytes	187	STAT2 Conic lunus familiaria
50	IRF3 Macaca inutatia	180	STAT2 Camelus dromodorius
60	IPE3 Phinolophus ferrumequinum	109	STAT2 Callelus diolledatius
61	IRF3 Felis catus	190	STAT2 Forus caballus
62	IRF3 Camelus dromedarius	191	STAT2 Equus cabanus
63	IRF3 Ovis aries	192	STAT2 Bos taurus
64	IRF3 Bos taurus	193	STAT2 Mesocricetus auratus
65	IRF3 Equus caballus	195	STAT2 Rattus norvegicus
66	IRF3 Oryctolagus cuniculus	196	STAT2 Ictidomys tridecemlineatus
67	IRF3 Rattus norvegicus	197	STAT2 Mus musculus
68	IRF3 Mesocricetus auratus	198	STAT2 Gallus gallus
69	IRF3 Mus musculus	199	PLpro Middle East respiratory syndrome-related coronavirus
70	IRF3 Canis lupus familiaris	200	PLpro Severe acute respiratory syndrome-related coronavirus
71	IRF3 Gallus gallus	201	PLpro Severe acute respiratory syndrome coronavirus 2
72	N protein Middle East respiratory syndrome-related coronavirus	202	PLpro Human coronavirus OC43
73	N protein Severe acute respiratory syndrome coronavirus 2	203	PLpro Human coronavirus HKU1
74	N protein Severe acute respiratory syndrome-related coronavirus	204	Homo sapiens
75	N protein Human coronavirus HKU1	205	Mus musculus
76	N protein Human coronavirus OC43	206	Rattus norvegicus

Table S1. Node IDs and Node Full Names.

78 N protein Human coronavirus NL63 207 Cancilus dromodarius 78 Notein Human coronavirus OC43 209 Felis catus 80 Human coronavirus OC43 209 Felis catus 81 Middle East respiratory syndrome-related coronavirus 211 Bos taurus 82 Severe acute respiratory syndrome-related coronavirus 212 Par toglodytes 84 Human coronavirus SU63 214 Oryctologus curclus 85 Human coronavirus SU63 214 Oryctologus curclus 86 ACE2 Hone sagiens 216 Maccar mulata 87 ACE2 Hone sagiens 216 Maccar mulata 88 ACE2 Cause caballus 219 Miconesticus 90 ACE2 Corecolagus curclus 220 Moscar entile coronavirus 140 91 ACE2 Cause caballus 221 M protein Human coronavirus 740 92 ACE2 Cause caballus 221 M protein Human coronavirus 740 93 ACE2 Cause caballus 221 M protein Human coronavirus 740 94 ACE2 Cause cabarts	Node ID	Full name representation	Node ID	Full name representation
78 N protein Huma coronavirus NL03 208 Canada constraints 79 Huma coronavirus NKU1 210 Ictions with the constraints 80 Huma coronavirus NKU1 210 Ictions with the constraints 81 Middle East respiratory syndrome coronavirus 211 Bot taruns 82 Severe acute respiratory syndrome coronavirus 213 Gallus gallus 84 Human coronavirus NL63 214 Oryclagus cuniculus 85 Human coronavirus S20E 215 Equat cabulus 86 ACE2 Homo sapiens 216 Macaca nulata 87 ACE2 Indionys tridecemineatus 219 Rhinolopha fermequinum 88 ACE2 Conclust concellentas 210 Moreins Middle East respiratory syndrome related coronavirus 91 ACE2 Camelus dromedarius 221 M protein Funana coronavirus NL03 92 ACE2 Camelus dromedarius 221 M protein Human coronavirus NL03 93 ACE2 Sus cordi Anomesticus 225 M protein Human coronavirus NL03 94 ACE2 Muse nonesclentas 226 M protein Human coron	77	N protein Human coronavirus 229E	207	Canis lupus familiaris
79 Human coronavirus OC43 209 Felis catus 80 Human coronavirus 211 Bos taurus 81 Middle East respiratory syndrome-related coronavirus 211 Pant traglodytes 82 Severe acute respiratory syndrome-related coronavirus 212 Pant traglodytes 83 Severe acute respiratory syndrome-related coronavirus 213 Gallus gallus 84 Human coronavirus 220E 215 Eguues caballus 85 Human coronavirus 220E 216 Maccan mulata 86 ACE2 Hont sapires 216 Maccan mulata 87 ACE2 Concol mulata 218 Sus corfo domesticus 90 ACE2 Concol mulata 218 Midole East respiratory syndrome-related coronavirus 91 ACE2 Canco mulata 220 Moscoricitus arratus 214 92 ACE2 Canco mulata 223 M protein Human coronavirus OC43 93 ACE2 Canco mulata 224 M protein Human coronavirus OC43 94 ACE2 Mascoricitus arratus 225 M protein Human coronavirus OC43	78	N protein Human coronavirus NL63	208	Camelus dromedarius
81 Human coronavirus HKU1 210 Itelefectory 82 Severe acute respiratory syndrome coronavirus 2 212 Pan troglodytes 83 Severe acute respiratory syndrome coronavirus 2 213 Gallus galus 84 Human coronavirus 225E 215 Eques cancitus 85 Human coronavirus 225E 215 Eques cancitus 86 ACE2 Hono spicots 216 Macaca nulata 87 ACE2 Hono spicots 217 Ovis ares 88 ACE2 Hono spicots 217 Ovis ares 81 ACE2 Indives tradicominentus 219 Rhinolophus torgy syndrome-related coronavirus 90 ACE2 Cancius doronadrus 221 M protein Human coronavirus NLG3 91 ACE2 Cancius doronadrus 223 M protein Human coronavirus NLG3 92 ACE2 Cancius doronadrus 224 M protein Human coronavirus NLG3 93 ACE2 Disto carda 225 M protein Human coronavirus NLG3 94 ACE2 Musco moderalius 226 M protein Human coronavirus NLG3 95 ACE2 Cansu	79	Human coronavirus OC43	209	Felis catus
81 Middle East respiratory syndrome -related coronavirus 211 Bos taurus 82 Severe acute respiratory syndrome coronavirus 213 Gallus gallus 83 Severe acute respiratory syndrome -related coronavirus 213 Gallus gallus 84 Human coronavirus 229E 215 Equus calculus 85 Human coronavirus 229E 216 Macase canulata 86 ACE2 Pan troglocytes 217 Ovis aries 87 ACE2 Into multati 218 Sus cord domesticus 89 ACE2 Indicomys tridecemlineatus 219 Rhinolophus fortunequinum 90 ACE2 Chycolague cuniculus 220 Mesocriceus auruus 91 ACE2 Indions challus 221 M protein Human coronavirus HKU1 92 ACE2 Concolague cuniculus 224 M protein Human coronavirus MKU1 93 ACE2 Concolague cuniculus 224 M protein Human coronavirus M23 94 ACE2 Mesocriceus 225 M protein Human coronavirus M24 95 ACE2 Mus nusculus 226 M protein Human coronavirus M23	80	Human coronavirus HKU1	210	Ictidomys tridecemlineatus
82 Severa acute respiratory syndrome coronavirus 2 212 Pan troglodytes 83 Severa acute respiratory syndrome-related coronavirus 213 Gallus gallus 84 Human coronavirus NL63 214 Oryctolagus cuniculus 85 Human coronavirus 229E 215 Eques caballus 86 ACE2 Homo sopiens 216 Macaca mulata 87 ACE2 Datoglodyts 217 Ovis aris 88 ACE2 Indexea mulata 218 Sus scrofa domesticus 90 ACE2 Carboyctolagus cuniculus 220 Mescricetus aurata 91 ACE2 Carboyctolagus cuniculus 220 Motein Middle East respiratory syndrome-related coronavirus 92 ACE2 Carboscricetus auratus 224 M protein Middle care respiratory syndrome-related coronavirus 93 ACE2 Carboscricetus auratus 224 M protein Human coronavirus NC3 94 ACE2 Mescricetus auratus 224 M protein Human coronavirus NC3 95 ACE2 Mescricetus 225 M protein Human coronavirus NC3 96 ACE2 Mus musculus 227 M protein Hum	81	Middle East respiratory syndrome-related coronavirus	211	Bos taurus
83Severe acute respiratory syndrome-related coronarius213Gallus gallus84Human coronarius XL63214Orycolague cuniculus85Human coronarius 229E215Equus cabullus86ACE2 Hono sopients216Macasa muluta87ACE2 Pan troglocytes217Ovis aries89ACE2 Indicomy tridecemlineatus219Rhinolophus ferrumequinum90ACE2 Chyctolague cuniculus220Mesocinetus auratus91ACE2 Equus caballus221M protein Huidan Economic related coronarius92ACE2 Concellus catas222M protein Huidan coronarius HKU193ACE2 Cabus cuniculus223M protein Severa acute respiratory syndrome-related coronarius94ACE2 Suscenticulus225M protein Human coronarius UKU195ACE2 Suscenticulus226M protein Human coronarius CA396ACE2 Obis suratus228TBK Hano suptems97ACE2 Mus nusculus228TBK Hano suptems98ACE2 Dis starus229TBK I Huma suptems99ACE2 Casis lups and aniaris231TBK I Macasa malata100ACE2 Casis lups and aniaris231TBK I Macasa malata101ACE2 Casis lups and aniaris231TBK I Macasa malata102NF+aB Huma coronarius235TBK I Nine Suptems103ORF4a Midda Econarius235TBK I Nine Suptem104ORF4a Huma coronarius236TBK I Nine Suptem105NF+aB Pan trog	82	Severe acute respiratory syndrome coronavirus 2	212	Pan troglodytes
84Human coronavirus NL63214Oryctolagus cuniculus85Human coronavirus 229E215Equus caballus86ACE2 Patropologies217Ovis aries87ACE2 Patropologies217Ovis aries88ACE2 Macaca mulata218Buino consultance90ACE2 Clickomys rickeemlineatus219Rhinologius ferrumequinum91ACE2 Clickomys rickeemlineatus210Mesocricetus auratus92ACE2 Felis catus221M protein Human coronavirus HKU193ACE2 Click catus223M protein Sterea cuter respiratory syndrome-related coronavirus94ACE2 Mesocricetus auratus224M protein Sterea cuter respiratory syndrome coronavirus95ACE2 Mesocricetus auratus224M protein Human coronavirus OC4396ACE2 Mesocricetus auratus226M protein Human coronavirus NL6397ACE2 Mus musculus228TBKI Homo sapiens98ACE2 Mus musculus228TBKI Clickows99ACE2 Altus norvegicus229TBKI Ovis aries100ACE2 Altus norvegicus230TBKI Mono sapiens101ACE2 Altus norvegicus231TBKI Felis catus102ACE2 Altus policy familiaris231TBKI Clickowys tidecemlineatus103ORF44 Muma coronavirus 229E235TBKI Homo sapiens104ORF44 Huma coronavirus 224TBKI Felis catus105NF-kB B to saturus234TBKI Felis catus106NF-kB B Norvegicus<	83	Severe acute respiratory syndrome-related coronavirus	213	Gallus gallus
85 Human coronavirus 229E 215 Equits calabilities 86 ACE2 Pan troglodytes 217 Ovis aries 87 ACE2 Pan troglodytes 217 Ovis aries 88 ACE2 Incompletions 218 Sussofid domesticus 89 ACE2 Incompletions 218 Sussofid domesticus 90 ACE2 Pails calabilis 221 Minitial Pail Pail Pail Pail Pail Pail Pail P	84	Human coronavirus NL63	214	Oryctolagus cuniculus
86 ACE2 Part projecty 216 Maccar mulata 87 ACE2 Part projecty 217 Ovis aries 88 ACE2 Maccar mulata 218 Sus scrofa domesticus 89 ACE2 Oryctologus caniculus 210 Rhinolophus ferromequinum 90 ACE2 Oryctologus caniculus 220 Mescoricetus auratus 91 ACE2 Tequus caballus 221 M protein Human coronavirus MKU1 92 ACE2 Tequus caballus 223 M protein Human coronavirus MKU1 93 ACE2 Canclus dromedarius 224 M protein Human coronavirus Occas 94 ACE2 Mesoricetus auratus 224 M protein Human coronavirus OC43 95 ACE2 Mus musculus 226 M protein Human coronavirus NL63 96 ACE2 Cabus musculus 228 TBKI Hono sepiens 97 ACE2 Autus norvegicus 229 TBKI Hono sepiens 98 ACE2 Cabinadophus ferrumequinum 230 TBKI Neacea mulata 101 ACE2 Calalus gallus 232 TBKI Indecemineatus 102 ACE2 Calalus gallus 232 TBKI Neiceemineatus 103 ORF4a Middle Ext respiratory syndrome-related coronavirus 233 TBKI Indicemineatus 104 ORF4a Buno serumonequinum 230 T	85	Human coronavirus 229E	215	Equus caballus
87 ACE2 Pan troglodytes 217 Ovis arise 88 ACE2 Macca mulata 218 Sus sorida connecticus 89 ACE2 Ictionnys tridecemlineatus 219 Rhinolophus ferrumequinum 90 ACE2 Oryctolagus caniculus 220 Mesoricetus auratus 91 ACE2 Equis caballus 221 M protein Human coronavirus IKU1 92 ACE2 Canelus dromedarius 223 M protein Human coronavirus IKU1 93 ACE2 Canelus dromedarius 224 M protein Human coronavirus OC43 94 ACE2 Vis aries 225 M protein Human coronavirus OC43 95 ACE2 Cis survis 228 M protein Human coronavirus VL63 96 ACE2 Ovis aries 228 TBK1 Hono sapiens 97 ACE2 Rus torolge familiaris 231 TBK1 Phono sapiens 98 ACE2 Bos tarus 229 TBK1 Hono sapiens 100 ACE2 Callus gallus 231 TBK1 Mono sapiens 102 ACE2 Callus gallus 232 TBK1 Relia catus 103 ORF4a Middle East respiratory syndrome-related coronavirus 230 TBK1 Relia catus 104 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Relia catus 104 ACE2 Bos tarus 235	86	ACE2 Homo sapiens	216	Macaca mulatta
88 ACE2 Macac nulata 218 Sus scofa domesticus 89 ACE2 Leidonys thidecemlineatus 219 Rhinolophus ferrumequinum 90 ACE2 Depus caballus 220 Mesocricetts auratus 91 ACE2 Felis catus 221 M protein Middle East respiratory syndrome-related coronavirus 92 ACE2 Felis catus 222 M protein funnan coronavirus Ri KU1 93 ACE2 Camelus dromedarius 224 M protein funnan coronavirus KL63 94 ACE2 Moscricetus auratus 225 M protein fluman coronavirus VL63 96 ACE2 Moscricetus auratus 226 M protein fluman coronavirus VL63 97 ACE2 Mus forume catus 227 M protein fluman coronavirus VL63 98 ACE2 Bots tarus 228 TBK1 Plan torglogites 99 ACE2 Carlius norvegicus 229 TBK1 Plan torglogites 100 ACE2 Carlis lapus familiaris 231 TBK1 Plan torglogites 101 ACE2 Carlis lapus familiaris 231 TBK1 Norus spres 102 ACE2 Carlis lapus familiaris 231 TBK1 Norus spres <	87	ACE2 Pan troglodytes	217	Ovis aries
89 ACE2 Intidomys tridecemlineatus 219 Rhinolophus ferrumequinum 90 ACE2 Orystolagus cuniculus 220 Mesoricetts auratus 91 ACE2 Equas caballus 221 M protein Middle East respiratory syndrome-related coronavirus 92 ACE2 Felis catus 223 M protein Human coronavirus IKU1 93 ACE2 Canelias dromedarius 224 M protein Human coronavirus OC43 94 ACE2 Mesoricetus auratus 224 M protein Human coronavirus OC43 95 ACE2 Dis sarcis do mesticus 225 M protein Human coronavirus OC43 96 ACE2 Dis arcis do muscitus 226 M protein Human coronavirus 2026 97 ACE2 Bas scrola domesticus 227 M protein Human coronavirus 2029 98 ACE2 Rus noroegicus 229 TBK1 Hono sapiens 99 ACE2 Rus tarus 230 TBK1 Macaa mulata 101 ACE2 Alsinalophus ferrumequinum 230 TBK1 Macaa mulata 102 ACE4 Minolophus ferrumequinum 233 TBK1 Ictionays tricecomineatus 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Rotis auras 104 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Rotis auras 105 NF-rAB Hom topologies	88	ACE2 Macaca mulatta	218	Sus scrofa domesticus
90 ACE2 Onyclolagus cuniculus 220 Mesoricetus auratus 91 ACE2 Eptis catus 221 M protein Middle East respiratory syndrome-related coronavirus 92 ACE2 Felis catus 223 M protein Middle East respiratory syndrome-related coronavirus 93 ACE2 Canclus dromedarius 223 M protein Severe acute respiratory syndrome-related coronavirus 94 ACE2 New constructus 224 M protein Human coronavirus NC43 95 ACE2 Sus scrofa domesticus 225 M protein Human coronavirus NL63 96 ACE2 Nois aries 226 M protein Human coronavirus NL63 97 ACE2 Mus musculus 227 M protein Human coronavirus NL63 98 ACE2 Ruitus norregicus 229 TBK1 Homo sapiens 99 ACE2 Callus plus familiaris 231 TBK1 Pati roglodytes 100 ACE2 Callus gallus 232 TBK1 Hitomy tradecentineatus 103 ORF4a Middle East respiratory syndrome-related coronavirus 236 TBK1 Filitos catus 104 ORF4a Middle East respiratory syndrome-related coronavirus 235 TBK1 Filitos catus	89	ACE2 Ictidomys tridecemlineatus	219	Rhinolophus ferrumequinum
91 ACE2 Equis caballus 221 M protein Hidale East respiratory syndrome-related coronavirus 92 ACE2 Canclus dromedarius 223 M protein Fluman coronavirus HU11 93 ACE2 Mesocrectus auratus 224 M protein Severe acute respiratory syndrome-cromavirus L 94 ACE2 Mesocrectus auratus 224 M protein Human coronavirus C/43 96 ACE2 Ous raises 226 M protein Human coronavirus NL63 97 ACE2 Mus musculus 227 M protein Human coronavirus NL63 98 ACE2 Dos taurus 228 TBK1 Homo sapiens 99 ACE2 Canis kunsveulus 221 TBK1 Pan tropkodytes 100 ACE2 Canis kupus familiaris 231 TBK1 Macaca nulata 101 ACE2 Canis kupus familiaris 233 TBK1 Netropkodytis (reuncepting) 102 ACE2 Canis kupus familiaris 233 TBK1 Netropkodytis returnequinum 103 ORF4a Middle East respiratory syndrome-related coronavirus 229E 234 TBK1 Oxis aris 103 MF-4b Buno sopiens 235 TBK1 K Ninolophus ferumequinum 104 ORF4a Huma corona	90	ACE2 Oryctolagus cuniculus	220	Mesocricetus auratus
92 ACE2 Felis catus 222 M protein Human coronavirus HKU1 93 ACE2 Canclus dromedarius 223 M protein Severe acute respiratory syndrome-related coronavirus 94 ACE2 Msocricettus auratus 224 M protein Severe acute respiratory syndrome-coronavirus 2 95 ACE2 Sus scrofa domesticus 225 M protein Human coronavirus OC43 96 ACE2 Ovis aries 226 M protein Human coronavirus NL63 97 ACE2 Rots usus 227 M protein Human coronavirus NL63 98 ACE2 Rots usus 228 TBK1 Homo sapiens 99 ACE2 Ratus norvegicus 229 TBK1 Pan troglodytes 100 ACE2 Callus gallus 230 TBK1 More andulate 101 ACE2 Callus gallus 232 TBK1 Homo sapiens 102 ACE2 Callus gallus 232 TBK1 Homo sapiens 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Edis catus 104 ORF4a Middle East respiratory syndrome-related coronavirus 235 TBK1 Nonobus ferrumequinum 105 NF-κB Pan troglodytes 236 TBK1 Nonobus ferrumequinum 106 NF-κB So tarrus 238 TBK1 Edis catus 107 NF-κB Macaca mulata 237 TBK1 Klosocricetus auratus	91	ACE2 Equus caballus	221	M protein Middle East respiratory syndrome-related coronavirus
93ACE2 Camelus dromedarius223M protein Severa acute respiratory syndrome-related coronavirus94ACE2 Mesocricetus auratus224M protein Human coronavirus OC4395ACE2 Sus serofa domesticus225M protein Human coronavirus OC4396ACE2 Ovis aries226M protein Human coronavirus OC4397ACE2 Mus musculus227M protein Human coronavirus NL6399ACE2 Bos taurus228TBK1 Homo sapiens99ACE2 Ratus norvegicus229TBK1 Pan troglodytes100ACE2 Canis Iupus familiaris231TBK1 Macaca mulata101ACE2 Canis Iupus familiaris231TBK1 Icdomys ridecemlineatus102ACE2 Canis Iupus familiaris233TBK1 Icdionys ridecemlineatus103ORF4a Middle East respiratory syndrome-related coronavirus233TBK1 Rhi Toolpohus ferrumequinum104ORF4a Human coronavirus 229E234TBK1 Bos taurus105NF- κB Han troglodytes236TBK1 Rhi nolophus ferrumequinum106NF- κB Bacca mulata237TBK1 Canis Iupus familiaris108NF- κB Boacca mulata237TBK1 Mus musculus109NF- κB Bacca mulata237TBK1 Mus musculus110NF- κB Boi aurus238TBK1 Mus musculus111NF- κB Rhinolophus ferrumequinum239TBK1 Mus musculus112NF- κB Rhinolophus ferrumequinum240TBK1 Mus musculus113NF- κB Cancelia uaratus241TBK1 Mus musculus<	92	ACE2 Felis catus	222	M protein Human coronavirus HKU1
94 ACE2 Mesocricetts auratus 224 M protein Severe acute respiratory syndrome coronavirus 2 95 ACE2 Sus scrofa domesticus 225 M protein Human coronavirus QC43 96 ACE2 Ovis aries 226 M protein Human coronavirus NL63 97 ACE2 Bos taurus 228 TBK1 Homo sapiens 98 ACE2 Ros taurus 228 TBK1 Homo sapiens 99 ACE2 Ratus norvegicus 229 TBK1 Pan troglodytes 100 ACE2 Canis lupus familiaris 231 TBK1 Ony stroke communication 102 ACE2 Callus gallus 232 TBK1 Fan troglodytes 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Felis catus 104 ORF4a Human coronavirus 229E 234 TBK1 Ros taurus 105 NF-κB Homo sapiens 235 TBK1 Nohos ferrumequinum 106 NF-κB Pan troglodytes 236 TBK1 Canis lupus familiaris 107 NF-κB Ban torglodytes 236 TBK1 Kaus novegicus 108 NF-κB Net Suraturus 238 TBK1 Canis lupus familiaris 109 NF-κB Mascar mulata 237 TBK1 Kaus novegicus 100 NF-κB Kaus movegicus 244 TBK1 Kaus novegicus 111 NF-κB Kaus movegicus	93	ACE2 Camelus dromedarius	223	M protein Severe acute respiratory syndrome-related coronavirus
95ACE2 Sus scroft domesticus225M protein Human coronavirus OC4396ACE2 Ovis aries226M protein Human coronavirus VL6397ACE2 Mus musculus227M protein Human coronavirus 22898ACE2 Elos tarus228TBK1 Homo sapiens99ACE2 Rattus norvegicus229TBK1 Pan troglodytes100ACE2 Calitus norvegicus229TBK1 Pan troglodytes101ACE2 Calitus and the provide t	94	ACE2 Mesocricetus auratus	224	M protein Severe acute respiratory syndrome coronavirus 2
96ACE2 Ovis aries226M protein Human coronavirus NL6397ACE2 Mus musculus227M protein Human coronavirus 229E98ACE2 Bos taurus228TBKI Homo sapiens99ACE2 Rattus norvegicus229TBKI Pan troglodytes100ACE2 Canis lupus familiaris230TBKI Nacaca mulata101ACE2 Canis lupus familiaris231TBKI Oryctolagus cuniculus102ACE2 Calitus gallus232TBKI I Citomys tridecemlineatus103ORF4a Midle East respiratory syndrome-related coronavirus233TBKI Pelis catus104ORF4a Human coronavirus 229E234TBKI Orystafees105NF- κ B Homo sapiens235TBKI Oris aries106NF- κ B Pan troglodytes236TBKI Ovis aries107NF- κ B Bos taurus238TBKI Oris aries108NF- κ B Bos taurus238TBKI Ovis aries109NF- κ B Bos taurus238TBKI Mus usculus110NF- κ B Mus musculus241TBKI Mus musculus111NF- κ B Mus musculus242TBKI Mus moregicus112NF- κ B Mus musculus242TBKI Mus moregicus113NF- κ B Rattus norvegicus244MAVS Homo sapiens115NF- κ B Ratus norvegicus244MAVS Na norvegicus116NF- κ B Callus gallus246MAVS Macaca mulata117NF- κ B Callus gallus246MAVS Macaca mulata118IRF7 Pan troglodytes249MAVS Gois aries <t< td=""><td>95</td><td>ACE2 Sus scrofa domesticus</td><td>225</td><td>M protein Human coronavirus OC43</td></t<>	95	ACE2 Sus scrofa domesticus	225	M protein Human coronavirus OC43
97 ACE2 Mus musculus 227 M protein Human coronavirus 229E 98 ACE2 Bost aurus 228 TBK1 Homo sapiens 99 ACE2 Rattus norvegicus 229 TBK1 Pan troglodytes 100 ACE2 Canis lupus familiaris 230 TBK1 Macaca mulatta 101 ACE2 Callus gallus 232 TBK1 Inducaca mulatta 102 ACE2 Callus gallus 232 TBK1 Inducaca mulatta 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Citodomys tridecemlineatus 104 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Callos tarus 105 NF-κB Homo sapiens 235 TBK1 Nei Nos tarus 106 NF-κB Macaca mulatta 237 TBK1 Canis lupus familiaris 108 NF-κB Macaca mulatta 237 TBK1 Mus musculus 109 NF-κB Neinolophus ferrumequinum 239 TBK1 Mus musculus 110 NF-κB Ovis aries 240 TBK1 Mus musculus 111 NF-κB Mus musculus 241 TBK1 Calmeus dromedarius 112 NF-κB Mesocricetus auratus 243 TBK1 Gallus gallus 114 NF-κB Mesocricetus auratus 244 MAVS Pan troglodytes 115 NF-κB Gallus gallus 245 <td>96</td> <td>ACE2 Ovis aries</td> <td>226</td> <td>M protein Human coronavirus NL63</td>	96	ACE2 Ovis aries	226	M protein Human coronavirus NL63
98 ACE2 Bos taurus 228 TBK1 Panno sapiens 99 ACE2 Rhinolophus ferrumequinum 230 TBK1 Panno sapiens 100 ACE2 Canis lupus familiaris 231 TBK1 Maccac mulatta 101 ACE2 Canis lupus familiaris 231 TBK1 Oryctolagus cuniculus 102 ACE2 Gallus gallus 232 TBK1 Ictitodomys tridecemlineatus 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Felis caus 104 ORF4a Human coronavirus 229E 234 TBK1 Pelis caus 105 NF-κ-B Homo sapiens 235 TBK1 Rhinolophus ferrumequinum 106 NF-κ-B Bos taurus 238 TBK1 Equis caballus 108 NF-κ-B Bos taurus 238 TBK1 Mus musculus 110 NF-κ-B Macca mulatta 237 TBK1 Mus musculus 110 NF-κ-B Bos taurus 238 TBK1 Mus musculus 111 NF-κ-B Musculus 241 TBK1 Mus musculus 111 NF-κ-B Musculus 242 TBK1 Gallus gallus 112 NF-κ-B Muscoricetus auratus <t< td=""><td>97</td><td>ACE2 Mus musculus</td><td>227</td><td>M protein Human coronavirus 229E</td></t<>	97	ACE2 Mus musculus	227	M protein Human coronavirus 229E
99ACE2 Ratus norvegicus229TBK1 Pan troglodytes100ACE2 Rhinolophus ferrumequinum230TBK1 Macaca mulatta101ACE2 Canils hups familiaris231TBK1 Oryctolagus cuniculus102ACE2 Gallus gallus232TBK1 Ictiomys tridecemlineatus103ORF4a Middle East respiratory syndrome-related coronavirus233TBK1 Felis catus104ORF4a Mindle East respiratory syndrome-related coronavirus234TBK1 Bos taurus105NF- κ B Homo sapiens235TBK1 Rhinolophus ferrumequinum106NF- κ B Ana troglodytes236TBK1 Oxis aries107NF- κ B Macaca mulatta237TBK1 Canis hupus familiaris108NF- κ B Nacaca mulatta239TBK1 Mus musculus109NF- κ B No staurus238TBK1 Mus musculus110NF- κ B No vis arices240TBK1 Mus musculus111NF- κ B No susculus242TBK1 Mus musculus112NF- κ B Mus musculus243TBK1 Gallus gallus113NF- κ B Mus musculus244MAVS Homo sapiens114NF- κ B Rattus norvegicus245MAVS Macaca mulatta115NF- κ B Gallus gallus246MAVS Pan troglodytes116NF- κ B Ganeus dromedarius247MAVS Macaca mulatta117NF- κ B Camelus dromedarius248MAVS Sacaca mulatta118IRF7 Homo sapiens248MAVS Sacaca mulatta119IRF7 Pan troglodytes249MAVS So taurus120IRF	98	ACE2 Bos taurus	228	TBK1 Homo sapiens
100ACE2 Rhinolophus ferrumequinum230TBK1 Macaca mulatta101ACE2 Canis lupus familiaris231TBK1 Oryctolagus cuniculus102ACE2 Callus gallus232TBK1 Icidomys tridecemlineatus103ORF4a Middle East respiratory syndrome-related coronavirus233TBK1 Icidomys tridecemlineatus104ORF4a Human coronavirus 229E234TBK1 Bots taurus105NF- κ B Horo sapiens235TBK1 Rhinolophus ferrumequinum106NF- κ B Bot noglotytes236TBK1 Covis aries107NF- κ B Bot noglotytes238TBK1 Covis aries108NF- κ B Bot nurus238TBK1 Eque caballus109NF- κ B Rhinolophus ferrumequinum239TBK1 Mus caballus110NF- κ B Rhinolophus ferrumequinum239TBK1 Mus caballus111NF- κ B Rhinolophus ferrumequinum239TBK1 Mus musculus112NF- κ B Naturus241TBK1 Camlus dromedarius113NF- κ B Butus norvegicus244MAVS Hom sapiens114NF- κ B Battus norvegicus244MAVS Macaca mulata115NF- κ B Gallus gallus245MAVS Macaca mulata116NF- κ B Canelus dromedarius247MAVS Macaca mulata117NF- κ B Canelus dromedarius248MAVS Baot aurus118IRF7 Homo sapiens248MAVS Gauca mulata119IRF7 Rainolophus ferrumequinum250MAVS Gus causulus120IRF7 Rainolophus tridecemlineatus251MAVS Gus canclus<	99	ACE2 Rattus norvegicus	229	TBK1 Pan troglodytes
101 ACE2 Canis lupus familiaris 231 TBK1 Oryctolagus cuniculus 102 ACE2 Gallus gallus 232 TBK1 letidomys tridecemlineatus 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Felix catus 104 ORF4a Human coronavirus 229E 234 TBK1 Rhinolophus ferrumequinum 105 NF-κB Pan troglodytes 236 TBK1 Ninolophus ferrumequinum 106 NF-κB Pan troglodytes 236 TBK1 Canis lupus familiaris 107 NF-κB Bos taurus 238 TBK1 Canis lupus familiaris 108 NF-κB Bos taurus 239 TBK1 Mus musculus 109 NF-κB KM Komolophus ferrumequinum 239 TBK1 Mus musculus 110 NF-κB Rus musculus 241 TBK1 Mus musculus 111 NF-κB Butidomys tridecemlineatus 241 TBK1 Canlus gallus 112 NF-κB Mus musculus 242 TBK1 Rus norvegicus 113 NF-κB Gallus gallus 244 MAVS Homo sapiens 114 NF-κB Gaulus gallus 244 MAVS Homo sapiens 115 NF-κB Gauca saballus 244 MAVS Momo sapiens	100	ACE2 Rhinolophus ferrumequinum	230	TBK1 Macaca mulatta
102 ACE2 Gallus gallus 232 TBK1 Ictidomys tridecemlineatus 103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Felis catus 104 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Rhinolophus ferrumequinum 105 NF-κB Homo sapiens 235 TBK1 Rhinolophus ferrumequinum 106 NF-κB Macaca mulatta 237 TBK1 Cvis aries 107 NF-κB Macaca mulatta 237 TBK1 Leguus caballus 108 NF-κB Nacaca mulatta 239 TBK1 Mus musculus 109 NF-κB Rhinolophus ferrumequinum 239 TBK1 Mus musculus 110 NF-κB Rhinolophus ferrumequinum 239 TBK1 Mus musculus 111 NF-κB Nescricetus auratus 241 TBK1 Mus musculus 112 NF-κB Macocricetus auratus 243 TBK1 Rattus norvegicus 113 NF-κB Rattus norvegicus 244 MAVS Homo sapiens 114 NF-κB Gallus gallus 246 MAVS Pan troglodytes 115 NF-κB Gallus gallus 246 MAVS Pan troglodytes 116 NF-κB Gallus gallus 247 MAVS Bost aurus 117 NF-κB Ganlus gallus 248 MAVS Bost aurus 118 IRF7 Pan troglodytes 24	101	ACE2 Canis lupus familiaris	231	TBK1 Oryctolagus cuniculus
103ORF4a Middle East respiratory syndrome-related coronavirus233TBK1 Felis catus104ORF4a Human coronavirus 229E234TBK1 Bos taurus105NF-κB Homo sapiens235TBK1 Ninolophus ferrumequinum106NF-κB Pan troglodytes236TBK1 Ovis aries107NF-κB Bos taurus238TBK1 Canis lupus familiaris108NF-κB Bos taurus238TBK1 Resorricetus auratus109NF-κB Molophus ferrumequinum239TBK1 Mesorricetus auratus110NF-κB Mois musculus240TBK1 Mus musculus111NF-κB Mus musculus241TBK1 Canelus dromedarius112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Bac unavas243TBK1 Gallus gallus114NF-κB Bac unavas244MAVS Homo sapiens115NF-κB Baguus caballus245MAVS Pan troglodytes116NF-κB Gallus gallus246MAVS Macaca mulata117NF-κB Gallus gallus247MAVS Bos taurus118IRF7 Homo sapiens248MAVS Bos taurus120IRF7 Pan troglodytes249MAVS Bos taurus121IRF7 Ictidomys tridecernlineatus251MAVS Bos taurus122IRF7 Res analus251MAVS Bos taurus123IRF7 Res analus251MAVS Bos taurus124IRF7 Feguus caballus251MAVS Bos taurus125IRF7 Res analus251MAVS Restaus126IRF7 Resorricetus auratus	102	ACE2 Gallus gallus	232	TBK1 Ictidomys tridecemlineatus
104ORF4a Human coronavirus 229E234TBK1 Bos taurus105NF- κ B Homo sapiens235TBK1 Rhinolophus ferrumequinum106NF- κ B Macaca mulatta237TBK1 Oxis aries107NF- κ B Macaca mulatta237TBK1 Canis lupus familiaris108NF- κ B Bos taurus238TBK1 Equus caballus109NF- κ B Bos taurus239TBK1 Equus caballus100NF- κ B Rhinolophus ferrumequinum239TBK1 Mesocricetus auratus110NF- κ B Mus musculus240TBK1 Mus musculus111NF- κ B Mus musculus241TBK1 Canelus dromedarius112NF- κ B Mus musculus242TBK1 Ratus norvegicus113NF- κ B Ratus norvegicus244MAVS Homo sapiens114NF- κ B Ratus norvegicus244MAVS Homo sapiens115NF- κ B Gallus gallus245MAVS Macaca mulatta117NF- κ B Camelus dromedarius247MAVS Macaca mulatta118IRF7 Pan troglodytes249MAVS Macaca mulatta119IRF7 Ratura norderius251MAVS Oryctolagus cuniculus121IRF7 Equus caballus252MAVS Canelus dromedarius122IRF7 Rhinolophus ferrumequinum253MAVS Canelus dromedarius123IRF7 Rhinolophus ferrumequinum253MAVS Canelus dromedarius124IRF7 FEquus caballus251MAVS Canelus dromedarius125IRF7 Rhinolophus ferrumequinum253MAVS Canelus dromedarius126IRF7 Rhino	103	ORF4a Middle East respiratory syndrome-related coronavirus	233	TBK1 Felis catus
105NF-κB Homo sapiens235TBK1 Rhinolophus ferrumequinum106NF-κB Pan troglodytes236TBK1 Ovis aries107NF-κB Ban troglodytes237TBK1 Canis lupus familiaris108NF-κB ost taurus238TBK1 Canis lupus caballus109NF-κB Rots taurus239TBK1 Mesocricetus auratus101NF-κB No's aries240TBK1 Mus musculus111NF-κB Mus musculus241TBK1 Camelus dromedarius112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Rattus norvegicus244MAVS Homo sapiens114NF-κB Battus norvegicus244MAVS Homo sapiens115NF-κB Gallus gallus245MAVS Pan troglodytes116NF-κB Gallus gallus244MAVS Mus caballus117NF-κB Gallus gallus244MAVS Mus caballus118IRF7 Homo sapiens248MAVS Govis aries119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Roincolphus ferrumequinum121IRF7 Ictidomys tridecemlineatus251MAVS Reinolophus ferrumequinum122IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Mascaca mulata125IRF7 Rhinolophus ferrumequinum255MAVS Camelus dromedarius126IRF7 Rattus norvegicus256MAVS Ma	104	ORF4a Human coronavirus 229E	234	TBK1 Bos taurus
106NF- κ B Pan troglodytes236TBK1 Ovis aries107NF- κ B Macaca mulatta237TBK1 Canis lupus familiaris108NF- κ B Bos taurus238TBK1 Equus caballus109NF- κ B Binolophus ferrumequinum239TBK1 Mus musculus110NF- κ B Ovis aries240TBK1 Mus musculus111NF- κ B Ictidomys tridecemlineatus241TBK1 Camelus dromedarius112NF- κ B Mus musculus242TBK1 Ratus norvegicus113NF- κ B Mus musculus243TBKI Gallus gallus114NF- κ B Rattus norvegicus244MAVS Homo sapiens115NF- κ B Gallus gallus245MAVS Pan troglodytes116NF- κ B Camelus dromedarius247MAVS Macaca mulatta117NF- κ B Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Rhomolophus ferrumequinum121IRF7 Equus caballus251MAVS Camelus dromedarius122IRF7 Equus caballus252MAVS Camelus dromedarius123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Equus caballus254MAVS Camelus dromedarius125IRF7 Camelus dromedarius255MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Camelus dromedarius125IRF7 Camelus dromedarius255MAVS Camelus dromedarius124IRF7 Felis catus254 </td <td>105</td> <td>NF-κB Homo sapiens</td> <td>235</td> <td>TBK1 Rhinolophus ferrumequinum</td>	105	NF- κ B Homo sapiens	235	TBK1 Rhinolophus ferrumequinum
107NF- κ B Macaca mulatta237TBK1 Canis lupus familiaris108NF- κ B Bos taurus238TBK1 Equus caballus109NF- κ B Rhinolophus ferrumequinum239TBK1 Mesocricetus auratus110NF- κ B Ovis aries240TBK1 Mus musculus111NF- κ B Citidomys tridecemlineatus241TBK1 Camelus dromedarius112NF- κ B Mus musculus242TBK1 Rattus norvegicus113NF- κ B Mesocricetus auratus243TBK1 Gallus gallus114NF- κ B B desocricetus auratus243TBK1 Gallus gallus115NF- κ B Gallus gallus244MAVS Homo sapiens116NF- κ B Gallus gallus245MAVS Pan troglodytes117NF- κ B Gallus gallus247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Rhinolophus ferrumequinum121IRF7 Equus caballus251MAVS Canelus dromedarius122IRF7 Equus caballus252MAVS Camelus dromedarius123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Camelus dromedarius125IRF7 Camelus dromedarius255MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Mesocricetus auratus125IRF7 Camelus dromedarius255MAVS Camelus dromedarius124IRF7 Felis catus <td>106</td> <td>NF-κB Pan troglodytes</td> <td>236</td> <td>TBK1 Ovis aries</td>	106	NF- κ B Pan troglodytes	236	TBK1 Ovis aries
108NF-κB Bos taurus238TBK1 Equis caballus109NF-κB Rhinolophus ferrumequinum239TBK1 Mesocricetus auratus110NF-κB Ovis aries240TBK1 Mus musculus111NF-κB Cidomys tridecemlineatus241TBK1 Camelus dromedarius112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Mus musculus242TBK1 Gallus gallus114NF-κB Rattus norvegicus244MAVS Homo sapiens115NF-κB Ballus caballus245MAVS Pan troglodytes116NF-κB Gallus gallus246MAVS Macaca mulatta117NF-κB Camelus dromedarius247MAVS Dovis aries118IRF7 Homo sapiens248MAVS Equus caballus120IRF7 Pan troglodytes249MAVS Bos taurus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Ictidomys tridecemlineatus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Canelus dromedarius124IRF7 Felis catus254MAVS Canis lupus familiaris125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Ratus norvegicus256MAVS Mus musculus127IRF7 Mesocricetus auratus257MAVS Mus norvegicus128IRF7 Mesocricetus auratus258MAVS Gallus gallus	107	NF- <i>k</i> B Macaca mulatta	237	TBK1 Canis lupus familiaris
109NF-κB Rhinolophus ferrumequinum239TBK1 Mesocricetus auratus110NF-κB Ovis aries240TBK1 Mus musculus111NF-κB Dvis aries241TBK1 Camelus dromedarius112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Mus musculus242TBK1 Gallus gallus114NF-κB Rattus norvegicus244MAVS Homo sapiens115NF-κB Galus gallus245MAVS Pan troglodytes116NF-κB Galus gallus246MAVS Pan troglodytes117NF-κB Galus gallus247MAVS Macca mulatta118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Rhinolophus ferrumequinum121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Requus caballus252MAVS Camelus dromedarius123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Feis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mus musculus127IRF7 Mesocricetus auratus257MAVS Mus musculus128IRF7 Mesocricetus auratus257MAVS Rattus norvegicus126IRF7 Mesocricetus auratus257MAVS Rattus norvegicus127IRF7 Mesocricetus auratus257	108	NF- κ B Bos taurus	238	TBK1 Equus caballus
110NF-κB Ovis aries240TBK1 Mus musculus111NF-κB Ictidomys tridecemlineatus241TBK1 Camelus dromedarius112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Mesocricetus auratus243TBK1 Gallus gallus114NF-κB Rattus norvegicus244MAVS Homo sapiens115NF-κB Rattus norvegicus244MAVS Homo sapiens116NF-κB Gallus gallus245MAVS Macaca mulatta117NF-κB Canelus dromedarius247MAVS Macaca mulatta118IRF7 Homo sapiens248MAVS Box taurus119NFF γ Pan troglodytes249MAVS Box taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Elguus caballus252MAVS Rhinolophus ferrumequinum123IIRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mascoricetus auratus127IRF7 Mesocricetus auratus257MAVS Mus musculus128IRF7 Mosocricetus auratus257MAVS Mus musculus129IRF7 Ovis aries259MAVS Mus gallus	109	NF- κ B Rhinolophus ferrumequinum	239	TBK1 Mesocricetus auratus
111NF-κB Ictidomys tridecemlineatus241TBK1 Camelus dromedarius112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Mesocricetus auratus243TBK1 Gallus gallus114NF-κB Mesocricetus auratus243TBK1 Gallus gallus115NF-κB B dattus norvegicus244MAVS Homo sapiens116NF-κB Gallus gallus245MAVS Macaca mulatta117NF-κB Gallus gallus246MAVS Macaca mulatta118IRF7 Homo sapiens248MAVS Boy triages119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Norcotagus cuniculus121IRF7 feduce annulatta251MAVS Pelis catus122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Mesocricetus auratus126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mesocricetus auratus128IRF7 Morcia auratus258MAVS Gallus gallus	110	NF- κ B Ovis aries	240	TBK1 Mus musculus
112NF-κB Mus musculus242TBK1 Rattus norvegicus113NF-κB Mesocricetus auratus243TBK1 Gallus gallus114NF-κB Rattus norvegicus244MAVS Homo sapiens115NF-κB Rattus norvegicus244MAVS Homo sapiens116NF-κB Gallus gallus245MAVS Pan troglodytes116NF-κB Camelus dromedarius247MAVS Macaca mulatta117NF-κB Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Relix catus122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mesocricetus auratus128IRF7 Morcica suratus258MAVS Gallus gallus	111	NF- κ B Ictidomys tridecemlineatus	241	TBK1 Camelus dromedarius
113NF- κ B Mesocricetus auratus243TBK1 Gallus gallus114NF- κ B Rattus norvegicus244MAVS Homo sapiens115NF- κ B Equus caballus245MAVS Pan troglodytes116NF- κ B Gallus gallus246MAVS Macaca mulatta117NF- κ B Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Itdidecemlineatus251MAVS Relinolophus ferrumequinum122IRF7 Equus caballus252MAVS Relis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mus musculus128IRF7 Mesocricetus auratus258MAVS Gallus gallus	112	NF-κB Mus musculus	242	TBK1 Rattus norvegicus
114NF-κB Rattus norvegicus244MAVS Homo Sapiens115NF-κB Equus caballus245MAVS Pan troglodytes116NF-κB Gallus gallus246MAVS Macaca mulatta117NF-κB Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Ratus aballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Ratus norvegicus128IRF7 Mesocricetus auratus258MAVS Ratus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	113	NF- κ B Mesocricetus auratus	243	TBK1 Gallus gallus
115NF-κB Equus cabilus245MAVS Pan troglodytes116NF-κB Gallus gallus246MAVS Macaca mulatta117NF-κB Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Introglodytes251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Camelus dromedarius125IRF7 Rhinolophus ferrumequinum253MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesonicetus auratus127IRF7 Rattus norvegicus257MAVS Mus musculus128IRF7 Moryctolagus cuniculus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	114	NF- κ B Rattus norvegicus	244	MAVS Homo sapiens
116NF-κB Gallus gallus246MAVS Macaca mulatta117NF-κB Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mas musculus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	115	NF- κ B Equus caballus	245	MAVS Pan troglodytes
117NF-kB Camelus dromedarius247MAVS Ovis aries118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mas musculus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	116	NF- <i>k</i> B Gallus gallus	246	MAVS Macaca mulatta
118IRF7 Homo sapiens248MAVS Equus caballus119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Ratus norvegicus128IRF7 Mesocricetus auratus258MAVS Gallus gallus	117	NF-κB Camelus dromedarius	247	MAVS Ovis aries
119IRF7 Pan troglodytes249MAVS Bos taurus120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Relis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Rattus norvegicus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	118	IRF7 Homo sapiens	248	MAVS Equus caballus
120IRF7 Macaca mulatta250MAVS Oryctolagus cuniculus121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesorcicetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mus musculus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	119	IRF7 Pan troglodytes	249	MAVS Bos taurus
121IRF7 Ictidomys tridecemlineatus251MAVS Rhinolophus ferrumequinum122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesoricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mus musculus128IRF7 Mesoricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	120	IRF7 Macaca mulatta	250	MAVS Oryctolagus cuniculus
122IRF7 Equus caballus252MAVS Felis catus123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesoricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mus musculus128IRF7 Mesoricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	121	IRF7 Ictidomys tridecemlineatus	251	MAVS Rhinolophus ferrumequinum
123IRF7 Rhinolophus ferrumequinum253MAVS Camelus dromedarius124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mesocricetus auratus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	122	IRF7 Equus caballus	252	MAVS Felis catus
124IRF7 Felis catus254MAVS Ictidomys tridecemlineatus125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Musculus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	123	IRF7 Rhinolophus ferrumequinum	253	MAVS Camelus dromedarius
125IRF7 Camelus dromedarius255MAVS Canis lupus familiaris126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mus musculus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	124	IRF7 Felis catus	254	MAVS Ictidomys tridecemlineatus
126IRF7 Rattus norvegicus256MAVS Mesocricetus auratus127IRF7 Oryctolagus cuniculus257MAVS Mus musculus128IRF7 Mesocricetus auratus258MAVS Rattus norvegicus129IRF7 Ovis aries259MAVS Gallus gallus	125	IRF7 Camelus dromedarius	255	MAVS Canis lupus familiaris
127 IRF7 Oryctolagus cuniculus 257 MAVS Mus musculus 128 IRF7 Mesocricetus auratus 258 MAVS Rattus norvegicus 129 IRF7 Ovis aries 259 MAVS Gallus gallus	126	IRF7 Rattus norvegicus	256	MAVS Mesocricetus auratus
128 IRF7 Mesocricetus auratus 258 MAVS Rattus norvegicus 129 IRF7 Ovis aries 259 MAVS Gallus gallus	127	IRF7 Oryctolagus cuniculus	257	MAVS Mus musculus
129 IRF7 Ovis aries 259 MAVS Gallus gallus	128	IRF7 Mesocricetus auratus	258	MAVS Rattus norvegicus
	129	IRF7 Ovis aries	259	MAVS Gallus gallus

Supplementary Note 7: Edge Table

Table S2. Edge Table with Edge Types

Supplementary Note 8: IMSP Predicted Infections

Certainty is the probability score for the predictions made by IMSP, ranging from 0%-100%. Confidence is the computational rule set in IMSP. Strong confidence represents that for a predicted interaction $E_{i,j}$, its two edge representations $EE_{i,j}$ and $EE_{j,i}$ are all classified into the same class other than the no-interaction class. For weak confidence interactions, only one representation is classified into the class other than the no-interaction class. Likelihood is the biological rule to validate the predictions. Based on pre-defined filters, the only one representation is classified into the class outer than the in-unlikely interactions are predictions that have conflicts with those filters. Table S3. Predicted Infections Table

Source Name	Target Name	Certainty	Confidence	Likelihood
virus Human coronavirus OC43	host Rhinolophus ferrumequinum	96.51%	strong	likely
virus Severe acute respiratory syndrome-related coronavirus	host Macaca mulatta	96.45%	strong	likely
virus Human coronavirus 229E	host Rattus norvegicus	94.14%	strong	likely
virus Severe acute respiratory syndrome-related coronavirus	host Mesocricetus auratus	94.10%	strong	likely
virus Severe acute respiratory syndrome coronavirus 2	host Rattus norvegicus	91.86%	strong	likely
virus Human coronavirus NL63	host Rattus norvegicus	91.15%	strong	likely
virus Severe acute respiratory syndrome-related coronavirus	host Camelus dromedarius	90.80%	strong	likely
virus Human coronavirus 229E	host Camelus dromedarius	87.21%	strong	likely
virus Human coronavirus 229E	host Mesocricetus auratus	85.17%	strong	likely
virus Human coronavirus OC43	host Felis catus	84.30%	strong	likely
virus Severe acute respiratory syndrome-related coronavirus	host Canis lupus familiaris	83.64%	strong	likely
virus Human coronavirus NL63	host Camelus dromedarius	82.39%	strong	likely
virus Human coronavirus 229E	host Macaca mulatta	79.19%	strong	likely
virus Human coronavirus NL63	host Mesocricetus auratus	78.32%	strong	likely
virus Severe acute respiratory syndrome-related coronavirus	host Ictidomys tridecemlineatus	74.45%	strong	likely
virus Human coronavirus 229E	host Felis catus	73.59%	strong	likely
virus Severe acute respiratory syndrome coronavirus 2	host Camelus dromedarius	68.71%	strong	likely
virus Human coronavirus NL63	host Macaca mulatta	68.07%	strong	likely
virus Severe acute respiratory syndrome coronavirus 2	host Ovis aries	65.65%	strong	likely
virus Human coronavirus NL63	host Felis catus	65.62%	strong	likely
virus Severe acute respiratory syndrome-related coronavirus	host Sus scrofa domesticus	62.09%	strong	likely
virus Human coronavirus 229E	host Mus musculus	86.12%	weak	likely
virus Severe acute respiratory syndrome coronavirus 2	host Ictidomys tridecemlineatus	66.26%	weak	likely
virus Severe acute respiratory syndrome coronavirus 2	host Sus scrofa domesticus	59.56%	weak	likely
virus Human coronavirus HKU1	host Mesocricetus auratus	94.84%	strong	unlikelv
virus Human coronavirus HKU1	host Camelus dromedarius	94.42%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Rhinolophus ferrumequinum	93.21%	strong	unlikely
virus Human coronavirus OC43	host Camelus dromedarius	92.94%	strong	unlikely
virus Human coronavirus HKU1	host Macaca mulatta	91.85%	strong	unlikely
virus Human coronavirus OC43	host Mesocricetus auratus	90.58%	strong	unlikely
virus Human coronavirus HKU1	host Felis catus	89.32%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Macaca mulatta	88.46%	strong	unlikely
virus Severe acute respiratory syndrome-related coronavirus	host Ovis aries	87.95%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Mesocricetus auratus	84.07%	strong	unlikely
virus Human coronavirus OC43	host Macaca mulatta	83 75%	strong	unlikely
virus Severe acute respiratory syndrome-related coronavirus	host Bos taurus	80.89%	strong	unlikely
virus Human coronavirus HKU1	host Bos taurus	80.83%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Ovis aries	79 52%	strong	unlikely
virus Human coronavirus HKU1	host Ovis aries	76.10%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Felis catus	74.00%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Ictidomys tridecemlineatus	69.40%	strong	unlikely
virus Human coronavirus OC43	host Ovis aries	67.82%	strong	unlikely
virus Human coronavirus HKU1	host Canis lunus familiaris	63.01%	strong	unlikely
virus Human coronavirus OC43	host Sus scrofa domesticus	51.93%	strong	unlikely
virus Human coronavirus OC45	host Ovis aries	47.25%	strong	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Bos taurus	92.83%	weak	unlikely
virus Human coronavirus 220E	host Bos taurus	83.80%	weak	unlikely
virus Human coronavirus NI 63	host Mus musculus	82.16%	weak	unlikely
virus Human coronavirus AC05	host Ictidomys tridecemlineatus	81.23%	weak	unlikely
virus Severe acute respiratory syndrome related coronavirus	host Equus caballus	80.57%	weak	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Canis lupus familiarie	77 79%	weak	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Pan troolodytes	77.02%	weak	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Sus scrofa domesticus	76 57%	weak	unlikely
virus Human coronavirus NI 63	host Ovis aries	75.21%	weak	unlikely
virus Human coronavirus NI 63	host Bos taurus	74 95%	weak	unlikely
virus Human coronavirus HKU1	host Ictidomys tridecemlineatus	74.01%	weak	unlikely
virus Severe acute respiratory syndrome-related coronavirus	host Pan troglodytes	73 98%	weak	unlikely
virus Human coronavirus HKII1	host Fame caballus	73 25%	weak	unlikely
virus Severe acute respiratory syndrome coronavirus ?	host Bos taurus	69.41%	weak	unlikely
virus Human coronavirus HKII1	host Pan troglodytes	67 38%	weak	unlikely
virus Human coronavirus HKU1	host Sus scrofa domesticus	65.95%	weak	unlikely
virus Human coronavirus OC43	host Gallus gallus	65 57%	weak	unlikely
virus Severe acute respiratory syndrome coronavirus ?	host Equus caballus	63.82%	weak	unlikely
virus Severe acute respiratory syndrome coronavirus 2 virus Human coronavirus 220F	host Sus scrofa domesticus	62.90%	weak	unlikely
virus Severe acute respiratory syndrome-related coronavirus	host Gallus gallus	62.54%	weak	unlikely
virus Human coronavirus OC43	host Pan troglodytes	61.95%	weak	unlikely
virus Human coronavirus 220E	host Fame caballus	61 42%	weak	unlikely
virus Severe acute respiratory syndrome coronavirus 2	host Pan troglodytes	60.91%	weak	unlikely
virus Human coronavirus 220F	host Canis lunus familiarie	59.83%	weak	unlikely
virus Human coronavirus OC/3	host Canis lupus familiaris	58.86%	weak	unlikely
virus Human coronavirus NI 63	host Fame caballus	57 11%	weak	unlikely
virus Human coronavirus HKIII	host Gallus gallue	56 75%	weak	unlikely
virus Human coronavirus NI 63	host Canie lupue familiario	56.03%	weak	unlibely
virus riuman corollavirus NL05	nost Cams rupus fammans	50.0570	weak	uninkery

Table S3. Predicted Infections Table

Source Name	Target Name	Certainty	Confidence	Likelihood
virus Human coronavirus 229E	host Ictidomys tridecemlineatus	54.27%	weak	unlikely
virus Human coronavirus OC43	host Equus caballus	53.57%	weak	unlikely
virus Human coronavirus NL63	host Ictidomys tridecemlineatus	52.83%	weak	unlikely
virus Middle East respiratory syndrome-related coronavirus	host Equus caballus	52.31%	weak	unlikely
virus Human coronavirus NL63	host Sus scrofa domesticus	50.30%	weak	unlikely
virus Severe acute respiratory syndrome coronavirus 2	host Gallus gallus	49.51%	weak	unlikely

Supplementary Note 9: IMSP Predicted PPIs

Table S4. Predicted Protein-Protein Interactions Table

Supplementary Note 10: PPIs Data Source

Table S5. PPIs Data Source Table

Virus Protein	Host Protein	Source
SARS-CoV-2 nsp15	IRF3	Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953
SARS-CoV-2 nsp15	RIG-I	Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953
SARS-CoV nsp15	IRF3	Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953
SARS-CoV-2 ORF6	IRF3	Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953
SARS-CoV-2 ORF6	RIG-I	Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953
SARS-CoV nsp15	MAVS	Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One. 2009;4(5):e5466. doi:10.1371/journal.pone.0005466
HCoV-HKU1 nsp15	MAVS	Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One. 2009;4(5):e5466. doi:10.1371/journal.pone.0005466
SARS-CoV PLpro	TBK1	Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem. 2009;284(24):16202-16209. doi:10.1074/jbc.M109.008227
MERS-CoV ORF4b	TBK1	Yang, Y., Ye, F., Zhu, N. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep 5, 17554 (2015). https://doi.org/10.1038/srep17554
MERS-CoV M protein	TBK1	Lui, P. L., Wong, L. Y. R., Fung, C. L., Siu, K. L., Yeung, M. L., Yuen, K. S., et al. (2016). Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg. Microbes Infect. 5:e39. doi: 10.1038/emi.2016.33
MERS-CoV M protein	IRF3	Lui, P. L., Wong, L. Y. R., Fung, C. L., Siu, K. L., Yeung, M. L., Yuen, K. S., et al. (2016). Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg. Microbes Infect. 5:e39. doi: 10.1038/emi.2016.33
MERS-CoV PLpro	TBK1	Sun L, Xing Y, Chen X, et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7(2):e30802. doi:10.1371/journal.pone.0030802
MERS-CoV S protein	DPP4	Zhao, J. et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc. Natl Acad. Sci. USA 111, 4970–4975 (2014).
MERS-CoV ORF4a	NF-ĸB	Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).
MERS-CoV ORF4a	IRF3	Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).
MERS-CoV ORF4b	NF-ĸB	Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).
MERS-CoV ORF4b	IRF3	Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).
MERS-CoV PLpro	NF-κB	Baney-Eikin, B. A. et al. Crystal structure of the Mildle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J. Biol. Chem. 289, 34667–34682 (2014).
MERS-CoV PLpro	IRF3	Bailey-Elkin, B. A. et al. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J. Biol. Chem. 289, 34667–34682 (2014).
SARS-CoV PLpro	NK-ĸB	Frieman, M., Ratia, K., Johnston, K. E., Mesecar, A. D. & Baric, R. S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-xB signaling. J. Virol. 83, 6689–6705 (2009).
SARS-CoV PLpro	IRF3	Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D. & Baric, R. S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-xB signaling. J. Virol. 83, 6689–6705 (2009).
SARS-CoV ORF6	IRF3	Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).
SARS-CoV ORF6	IRF9	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers: recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016
SARS-CoV ORF6	STAT1	Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).
SARS-CoV ORF6	STAT2	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers: recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016
SARS-CoV ORF3b	STAT2	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers: recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016
SARS-CoV ORF3b	STAT1	Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).
SARS-CoV ORF3b	IRF3	Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).
SARS-CoV ORF3b	IRF9	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers: recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016
HCoV-NL63 S proten	ACE2	Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988-7993. doi:10.1073/pnas.0409465102

Table S5. PPIs Data Source Table

Virus Protein	Host Protein	Source
		Pak-Yin Lui, Lok-Yin Roy Wong, Cheuk-Lai Fung, Kam-Leung Siu, Man-Lung Yeung,
MEDS CoV M motoin	TDV1	Kit-San Yuen, Chi-Ping Chan, Patrick Chiu-Yat Woo, Kwok-Yung Yuen, and Dong-Yan Jin.
MERS-Cov M protein	IBKI	Mid-dle east respiratory syndrome coronavirus m protein suppresses type i interferon expressionthrough
		the inhibition of tbk1-dependent phosphorylation of irf3.Emerging microbes & in-fections, 5(1):1–9, 2016
		Emmie de Wit, Neeltie van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
MERS-CoV M protein	STAT1	recentinsights into emerging coronaviruses. Nature reviews, Microbiology, 14(8):523-534, August 2016
		Emmie de Wit Neeltie van Doremalen Darryl Falzarano, and Vincent I Munster. Sars and mers:
MERS-CoV M protein	STAT2	recentingights into emerging coronaviruses Nature reviews. Microbiology, 14(8):523-534. August 2016
		Empire de Wit Neeltje van Doremalen Darry Falzarano and Vincent I Munster Sars and mers
MERS-CoV M protein	IRF9	recenting the into amerging coronavirus Natura raviaus Microbiology 14(8):523 524 August 2016
		Niomatan Daniala et al "Middla East rachinter autorno apropatitica agagera prataja de
MERS-CoV ORF4a	MDA5	is a time Linterform antegonist." Lournal of visiology vol. 87 22 (2012), 12400 05, doi:10.1129/IVJ.01845.12
		is a type 1 metreton antagonist. Journal of vitology vol. 67,22 (2013), 12469-73, 00.10.1120/J VI.01645-13
MERS-CoV ORF4a	STAT1	Eminie de wit, Neerge van Doremaien, Darry Parzarano, and Vincent J Munister. Sans and mets:
		recentinsights into emerging coronaviruses. Nature reviews. Microbiology, 14(8):523—534, August 2016
MERS-CoV ORF4a	IRF9	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
	-	recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523-534, August 2016
MERS-CoV ORF4a	STAT2	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
	02	recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523–534, August 2016
MERS-CoV ORF4b	TBK1	Yang, Y. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I
	IBRI	interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5, 17554 (2015).
MERS CoV ORE4b	IDE2	Yang, Y. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I
WIEKS-COV OKI40	IKI'5	interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5, 17554 (2015).
MERS CoV ORE4h	IDE7	Yang, Y. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I
MERS-COV ORF40	IKF/	interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5, 17554 (2015).
MEDG C-V ODE41	IDE0	Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
MERS-COV ORF40	IKF9	recentinsights into emerging coronaviruses. Nature reviews. Microbiology, 14(8):523-534, August 2016
CADO C M 1	0774771	Wathelet, M. G., Orr, M., Frieman, M. B. & Baric, R. S. Severe acute respiratory syndrome coronavirus evades
SARS-Cov nsp1	SIAII	antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 81, 11620–11633 (2007).
	GTUTO	Wathelet, M. G., Orr, M., Frieman, M. B. & Baric, R. S. Severe acute respiratory syndrome coronavirus evades
SARS-Cov nsp1	SIAI2	antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 81, 11620–11633 (2007).
		Emmie de Wit, Neeltie van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
SARS-CoV ORF3b	MAVS	recentinsights into emerging coronaviruses. Nature reviews, Microbiology, 14(8):523-534, August 2016
		Emmie de Wit, Neeltie van Doremalen, Darryl Falzarano, and Vincent I Munster. Sars and mers:
SARS-CoV ORF3b	MDA5	recenting of the emerging coronaviruses Nature reviews. Microbiology 14(8):523-534 August 2016
		Emmie de Wit Neeltie van Doremalen, Darry Falzarano, and Vincent I Munster. Sars and mers:
SARS-CoV ORF3b	RIG-I	recenting due to the remerging coronaviruses Nature reviews. Microbiology 14(8):523-534. August 2016
		Early Viagnan et al. "The membrane protein of SARS-CoV supresses NE-s'B
SARS-CoV M protein	NF- <i>k</i> B	activation." Lournal of medical viralogy vol. 79 10 (2007): 1/31 9. doi:10.1002/imv.20053
		activation, Journal of Incurcat Monogy vol. 75,10 (2007), 1451-5, doi:10.1002/jitv.20955
SARS CoV M protoin	IDE2	shi KL, KOK KH, Ng MH, et al. Severe acute respiratory syndrome containing with protein inhibits true Linterform production by impacting the formation of TD A E2 TA NK TDK 1/(KAppilan
SAKS-COV M protein	IKI'5	aminors type 1 meterion production by infecting the formation of TRAFS, TAIKE, TBK (TRKEPS) of a complex L Piol Cham, 2000;284(24):16202 16200, doi:10.1074/fbb.M100.008227
		Complex. J Biol Chem. 2009;264(24):1020-10209; doi:10.10/4/jbC.W109:00227
SARS-CoV N protein	MAVS	Emine de wit, Neetje van Dorematen, Darry Fraizarano, and vincent J Munster. Sars and mers:
-		recentinsignts into emerging coronaviruses. Nature reviews. Microbiology, 14(8):325–334, August 2016
SARS-CoV N protein	MDA5	Emmie de wit, Neettje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
1		recenunsignis into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523–534, August 2016
SARS-CoV N protein	IRF3	Emme de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
rotom		recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016
SARS-CoV N protein	RIG-I	Emme de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
		recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523-534, August 2016

Supplementary Note 11: IMSP algorithm

Algorithm 1 IMSP algorithm

Input: Pairwise similarity matrices M, interaction relationships R, relevant biological metadata D **Output:** Type for each Edge (Interaction) $I_{i,j}$ // Stage 1: network construction and representation learning G = constructNetwork(M, R, D) // construct the unweighted network G // Text2vec is a Word2vec-based sentence embedding model Text2vec(V) = Text2vec.train(G.nodes) // Pre-train node content embedding $Text2vec(I) = Text2vec.train(G.pos_and_neg_edges) // Pre-train edge content embedding$ for V_i in V do $R_i^C = Text2vec(V)$.get (V_i) // Get the content embedding for Node V_i end for $I_{i,j}$ in I do if V_i and V_j are protein homologs then $| w_{i,j} = getSequenceSimilarity(V_i, V_j) // assign sequence similarity by BLASTp as edge weight$ else $w_{i,j} = \sigma(TS-SS_{i,j}/\overline{TS-SS})$ // assign $TS-SS_{i,j}$ similarity, which takes input R_i^C and R_i^C , as edge weight. Refer to Eq.(1) - (4)end end Node2vec(V) = Node2vec.train(G) // Pre-train structural embeddings on weighted graph G IE = combine(Node2vec(V), Text2vec(I)) // Generate final edge embeddings. Refer to Eq.(7) // Stage 2: edge classification

 $IE_{train} = getTrainingIE(G)$ // Get representations for training edges

 $Label_{train} = getTrainingLabels(G)$ // Get labels for training edges

clf = MLP.train(*IE train*, *Label train*)

return clf.predict() // Return predictions

References

- [S1] Tomoh Matsumiya and Diana M Stafforini. Function and regulation of retinoic acid-inducible gene-i. Critical Reviews TM in Immunology, 30(6), 2010.
- [S2] Hilario J Ramos and Michael Gale Jr. Rig-i like receptors and their signaling crosstalk in the regulation of antiviral immunity. Current opinion in virology, 1(3):167–176, 2011.
- [S3] Ting Liu, Lingyun Zhang, Donghyun Joo, and Shao-Cong Sun. Nf- κ b signaling in inflammation. Signal transduction and targeted therapy, 2(1):1–9, 2017.
- [S4] Laurie Kilpatrick and Mary Catherine Harris. Cytokines and inflammatory response in the fetus and neonate. In Fetal and neonatal physiology, pages 1555–1572. Elsevier, 2004.
- [S5] Agata Michalska, Katarzyna Blaszczyk, Joanna Wesoly, and Hans AR Bluyssen. A positive feedback amplifier circuit that regulates interferon (ifn)-stimulated gene expression and controls type i and type ii ifn responses. Frontiers in immunology, 9:1135, 2018.
- [S6] Lionel B Ivashkiv and Laura T Donlin. Regulation of type i interferon responses. Nature reviews Immunology, 14(1):36–49, 2014.