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THE BIGGER PICTURE SARS-CoV-2, a novel single-stranded RNA coronavirus causing COVID-19, is
mounting an unprecedented threat against our society and the world. Although tremendous efforts have
been devoted into SARS-CoV-2 research, most of them either focused on a few proteins or only provided
high-level overviews. Deeper andmore comprehensive analyses are needed to shed new light onto themo-
lecular mechanisms underlying the COVID-19 pandemic. Moreover, there is a massive amount of data and
knowledge about highly relevant RNA viruses which have yet to be fully utilized.
In this work, we constructed amulti-layer virus-host interaction network to incorporate these data and knowl-
edge.We developed amachine-learning-basedmethod to predict virus-host interactions at both protein and
organism levels. Our approach revealed five potential infection targets of SARS-CoV-2 and 19 highly possible
interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
COVID-19, caused by Severe Acute Respiratory SyndromeCoronavirus 2 (SARS-CoV-2), has quickly become
a global health crisis since the first report of infection in December of 2019. However, the infection spectrum
of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a
massive amount of underutilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2
and proteins of their hosts. More in-depth and more comprehensive analyses of that knowledge and data
can shed new light on the molecular mechanisms underlying the COVID-19 pandemic and reveal potential
risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data
and knowledge. We developed a machine-learning-based method to predict virus-host interactions at
both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2
and 19 highly possible interactions between SARS-CoV-2 proteins and human proteins in the innate immune
pathway.
INTRODUCTION

Severe Acute Respiratory SyndromeCoronavirus-2 (SARS-CoV-

2), a novel virus causing the COVID-19 disease, was first re-

ported in Wuhan, China, in December of 2019. Since then, it

has quickly become a global health crisis1 with over 50 million

people infected and over 1,250,000 deaths across 200 countries

by November 2020.2 The impact of SARS-CoV-2 has signifi-

cantly surpassed previous outbreaks of coronaviruses, such as

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)
This is an open access article und
in 2003 and the Middle East Respiratory Syndrome Coronavirus

(MERS-CoV) in 2012. Besides humans, SARS-CoV-2 has been

confirmed to infect several other mammals closely related to hu-

man activities, including dogs,3 cats,4 tigers,5 rats,6 and golden

Syrian hamsters.7 Also, there is a high possibility for infected an-

imals to transmit and spread the virus to humans.8 It is important

to identify a comprehensive set of such mammals because they

can potentially serve as covert means to exacerbate the spread

of COVID-19. Moreover, identifying interactions between SARS-

CoV-2 proteins and host proteins can deepen our understanding
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Figure 1. Infection mechanism and spectrum

prediction

(A) The virus-host interaction network. Nodes repre-

sent proteins, viruses, and hosts; edges represent

relationships (i.e., PPI, infection, protein-homolog

similarity, and organism-protein belonging). The color

of a node indicates its organism. The thickness of a

protein-homolog similarity edge indicates its level of

similarity. For the full network, refer to the viral entry

graph (Figure S3), interferon signaling pathway graph

(Figure S4), and infection graph (Figure S5).

(B) IMSP learns a representation for each potential

edge, which contains a structural embedding and a

content embedding. The structural embedding

captures the local structural features of an edge.

The content embedding captures the attributes that

reveal biological aspects of an edge. The repre-

sentation of each edge is derived by concatenating

its structural and content embeddings, where S

stands for a structural embedding element and C

stands for a content embedding element. A Multi-

layer Perceptron (MLP) is trained to take the edge

representations as input and reports negative (non-

connected) edges whose corresponding edge

representations are classified as infection or PPI.

Note that no-interaction is also a potential class for

the classification task. See experimental proced-

ures for calculation of the structural and content

embeddings.

(C) Exemplar predicted edges are highlighted and

colored accordingly to their types. Existing edges

are dimmed.
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of the viral invasion processes and may help design treatments

and vaccines. In general, we want to promptly achieve the above

two goals for new zoonotic viruses, which we believe can be

done by leveraging the knowledge and data about known viruses

highly relevant to the new ones.

The research community has accumulated a great deal of

knowledge about several other human coronaviruses (including

SARS-CoV,9–16 HCoV-HKU1,14 HCoV-OC43,17,18 HCoV-

NL63,19 and MERS-CoV)20–24 and has collected a large amount

of data about them. For example, it was shown that humanangio-

tensin-converting enzyme 2 (ACE2) was the primary host recep-

tor used by the S protein (S-protein) of SARS-CoV-2 for the virus

to gain entry into human cells25 (Figure S1). ACE2 is also the host

receptor used by SARS-CoV13 and HCoV-NL63.19 The S-protein

of SARS-CoV-2 binds significantly tighter to ACE2 than its coun-

terpart in SARS-CoV.26 After the virus enters host cells, inter-

feron-stimulated genes are essential for a host to defend against

viral infection (FigureS2). This knowledgeanddata canbeutilized

to investigate the infection spectrum of SARS-CoV-2 and its in-

teractions with hosts at the protein level. Using this information,

we have built a virus-host interaction network of 7 viruses and

17 hosts that summarizes the existing protein-protein interaction

(PPI) and infection relationships among them (Figure 1A; formore

details, see Figures S3–S5 and Tables S1, S2, S3, and S4).
2 Patterns 2, 100242, May 14, 2021
We have developed a network-based

multi-level virus-host interaction modeling

and prediction, termed infection mecha-

nism and spectrum prediction (IMSP)
(Figure 1B; for details, see experimental procedures), which uses

machine-learning techniques to learn from the constructed virus-

host interaction network and predict novel virus-host interactions

at both the protein (i.e., Mechanism) and organism (i.e., Spectrum)

levels. IMSPpredicts that theSARS-CoV-2S-protein canbindwell

with ACE2 receptors in five mammalian hosts, which have not

been reported. Among those hosts, five are predicted to have

high risksofbeing infectedbySARS-CoV-2.Moreover, IMSP iden-

tifies 19 new interactions between SARS-CoV-2 proteins and

human proteins in the innate immune pathway. To our best knowl-

edge, ourwork is the first to applymachine-learning techniques for

predicting virus-host interactions at both protein and organism

levels. Previous works27,28 only focused on the relationships be-

tween SARS-CoV-2 proteins and human proteins and ignored

other hosts that might be infected by SARS-CoV-2.

RESULTS

Hereweexplain the structureof our virus-host interaction network,

highlight the predicted interactions of SARS-CoV-2, and present

the link prediction performance evaluation of our model IMSP.

We built our network with two layers (an organism layer and a pro-

tein layer). Theorganism layer consistedof 7 humancoronaviruses

and 17 mammalian hosts. Those hosts are either close to human



Figure 2. PPIs prediction for SARS-CoV-2

(A) The known and predicted bindings between the S-protein in SARS-CoV-2 and ACE2 inmammalian hosts. Host names are displayed in their abbreviation form:

Hom.Sap., Homo sapiens; Mus.Mus., Mus musculus; Fel.Cat., Felis catus; Can.Lup., Canis lupus familiaris; Ovi.Ari., Ovis aries; Rat.Nor., Rattus norvegicus;

Mac.Mul., Macaca mulatta; Rhi.Fer., Rhinolophus ferrumequinum; Mes.Aur., Mesocricetus auratus; Bos.Tau., Bos taurus; Ict.Tri., Ictidomys tridecemlineatus;

Cam.Dro., Camelus dromedarius; Sus.Scr., Sus scrofa domesticus.

(B–D) The known and predicted interactions of M protein (B), nsp15 (C), and ORF6 (D) in SARS-CoV-2 with proteins in the human IFN signaling pathway that

contribute to IFN signaling pathway suppression.
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activitiesorproven tobe infectedbysomehumancoronaviruses in

our network. The protein layer contained 10 virus proteins and 13

host proteins. The proteins were selected based on two primary

considerations: proteins involved in viral entry and the interferon

(IFN) signaling pathway, both of which are critical to a successful

virus infection. The virus needs to enter the host cells through the

receptors on the membrane, and the binding ability between the

S-protein of the virus and the host receptor determines the suc-

cessofsuchviral entry.Thesuppressionabilityon the IFNsignaling

pathway of the virus negatively affects the efficiency and the effec-

tiveness of the response of the innate immune system, which

would allow the virus to rapidly replicate and spread among cells.

IMSP performed a network-based representation learning to inte-

grate information about virus-host infections, PPIs, organism-pro-

tein belongings, and similarities between protein homologs. This

produced comprehensive representations and a neural-network-

based classifier for accurately predicting novel viral infection and

interactions between virus proteins and host proteins.

SARS-CoV-2-host multiple-type interaction predictions
We applied IMSP on SARS-CoV-2 and six other human corona-

viruses to obtain high-confidence predictions of PPIs and

infections. Figure S1 shows the mechanism of the binding of

S-proteins and host receptor ACE2. Figure S2 shows the interac-

tions between virus proteins and host proteins involved in the IFN

pathway. Figure S3 shows the S-protein binding subnetwork.

Figure S4 shows the innate immune pathway subnetwork. Fig-

ure S5 shows the organism layer. Tables S1 and S2 show the

complete node and linkage information of the virus-host

network. All infection predictions are shown in Table S3, and

PPI predictions are presented in Table S4.

SARS-CoV-2 S-protein binding predictions
The binding ability of the S-protein of SARS-CoV-2 with the

host ACE2 receptors is a key factor deciding the infection
capability of SARS-CoV-2. IMSP predicted that the S-protein

of SARS-CoV-2 could have a high probability of binding well

with the ACE2 receptors in rats, sheep, camels, and squirrels

(Figure 2A).

Rats were recognized to be susceptible to several other hu-

man coronaviruses, such as SARS-CoV,9 MERS-CoV,29 HCoV-

OC43,18 and HCoV-HKU1.30,31 It is highly possible that rats

could still be the potential host for SARS-CoV-2.

The overall similarity of ACE2 for the squirrel, sheep, and

camel is 91.82%, 90.81%, and 92.42%, respectively compared

with human ACE2. These predictions still require more practical

research to determine the binding affinity between the S-protein

of SARS-CoV-2 with ACE2s on these mammals. It was shown

that ACE2 could tolerate up to seven amino acid changes out

of 20 critical ones that contact with the S-protein without losing

the functionality as the target receptor32 for SARS-CoV-2. This

means that sequence similarity might not be the only factor

that influences the binding affinity between the ACE2 receptor

and the S-protein of SARS-CoV-2.

SARS-CoV-2 and human interferon pathway
interactome prediction
The IFN pathway plays a critical role in the human immune

response. After the virus infection is detected, the innate immune

system will induce IFN signaling, and the expression of IFN

genes will increase the cellular resistance to viral invasion. Vi-

ruses have developed various strategies to inhibit IFN signaling

to facilitate successful viral invasion.33 SARS-CoV and MERS-

CoV were studied quite comprehensively in terms of counteract-

ing the IFN signaling responses compared with SARS-CoV-2.

From IMSP, 19 interactions between SARS-CoV-2 proteins

and human proteins in the innate immune pathway were identi-

fied, shown in Figures 2B–2D. These PPIs had a high probability

of playing crucial roles in the suppression of the innate immune

system response of the host.
Patterns 2, 100242, May 14, 2021 3



Figure 3. Infection prediction for SARS-CoV-

2

This figure shows all 17 mammalian hosts in our

network and their infection relationships with SARS-

CoV-2.
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Membrane (M) protein not only serves as the protein in virus to

bind to all other structural proteins34 but also is found to inhibit

IFN production in SARS-CoV35 and MERS-CoV.24 From IMSP

prediction, it was highly possible that M protein in SARS-CoV-

2 could interact with nuclear factor kappa-light-chain-enhancer

of activated B (NF-kB), interferon regulatory factor 3 (IRF3),

and retinoic acid-inducible gene I (RIG-I).

Open reading frame protein 6 (ORF6) and non-structural pro-

tein 15 (nsp15) in SARS-CoV-2 were discovered to be crucial

viral IFN antagonists of SARS-CoV-2. From previous research,

we knew that these two proteins inhibit the localization of IRF3

by interacting with RIG-I.36 A similar function was found for

ORF6 in SARS-CoV.37 ORF6 and nsp15 in SARS-CoV were

proved to interact with signal transducer and activator of tran-

scription 1 (STAT1) and STAT2.38 From predictions made by

IMSP (shown in Figures 2C and 2D), ORF6 and nsp15 in

SARS-CoV-2 were suggested to have potential interactions

with melanoma differentiation-associated protein 5 (MDA5),

mitochondrial anti-viral-signaling protein (MAVS), STAT1,

STAT2, NF-kB, IRF9, and TANK binding kinase 1 (TBK1). Since

MAVS works as the adaptor molecule for MDA5,39 it is possible

that a viral protein that interacts with either one of these two

would also interact with the other. Besides these, ORF6 was

also predicted to interact with protein kinase interferon-inducible

double-stranded RNA-dependent activator (PRKRA) and IRF7.

As nsp15 andORF6 both function in nuclear transport machinery

after viral entry,27 it is reasonable that, for these two proteins,

similar interactions with innate immune pathways are predicted.

Careful experiments should be conducted to identify the impact

of nsp15 and ORF6 on the innate immune system.

SARS-CoV-2 infection prediction
Based on both the protein-level and organism-level interaction

predictions, we concluded five highly possible infection predic-

tions for SARS-CoV-2. These mammals were predicted to be
4 Patterns 2, 100242, May 14, 2021
susceptible to SARS-CoV-2 in the organ-

ism layer. They were also proved or pre-

dicted to have a successful spike-receptor

binding between the S-protein of SARS-

CoV-2 and their own ACE2 receptors. As

shown in Figure 3, these animals included

rats, sheep, camels, swine, and squirrels.

Rat was identified as a host for all beta-

coronaviruses: SASR-CoV,9MERS-CoV,29

HCoV-OC43,18 and HCoV-HKU1.30,31

SARS-CoV-2 also falls into the category

of beta-coronavirus,40 which has a high

possibility of infecting rats.

Swine’s ACE2 was identified to be able

to bind with the S-protein of SARS-CoV-

2,41 and our model predicted that swine
could be successfully infected after the receptor binding. This

is also supported by recent research on swine.42

Camels are hosts for MERS-CoV.22 This means that camels

can also be hosts for other coronaviruses. Camels, along with

sheep and squirrels, are closely related to the human living envi-

ronment or daily diet. They could be potential mammalian hosts

that again transmit the virus back to human society. The investi-

gation of these highly possible infections could potentially help

identify the transition path of the virus and further control the

transmission of SARS-CoV-2 from and between mammalian

hosts. Further research on these potential hosts might be crucial

to social health and safety.

Interaction prediction performance evaluation
Many machine-learning and graph-embedding methods have

been developed and applied to various applications.43–48 In

this work, we compared IMSP with five other baseline models

on our dataset in a 5-fold stratified cross-validation setting.

The baseline models include two famous random-walk-based

models (DeepWalk43 and Node2vec),45 two neural-network-

based models (Large-scale Information Network Embedding

[LINE]44 and Structural Deep Network Embedding [SDNE]),46

and a classical matrix-based model, Graph Factorization GF.49

For the stratified cross-validation experiment, we created a sam-

pling strategy to ensure that the training subset in each cross-

validation run can form a fully connected network. Such a fully

connected network could ensure that our network structural

embeddingmodel embedded nodes into the same vector space.

To ensure the balance of input data, we gathered negative (non-

connected) edges in addition to positive (connected) edges that

already existed in each fold. We sampled negative edges from

two directions: known negatives (i.e., true negatives) and un-

known negatives. We considered spike-receptor interactions

demonstrated as nonexistent as known negatives, such as the

one between the S-protein of SARS-CoV-2 and the host receptor



Table 1. Link prediction: Overall performance evaluation and comparison

Model Accuracy Weighted precision Weighted recall Weighted F1-score AUC macro AUC weighted

GF49 0.879 ± 0.008 0.852 ± 0.011 0.879 ± 0.008 0.863 ± 0.009 0.913 ± 0.007 0.944 ± 0.006

Deepwalk43 0.894 ± 0.008 0.870 ± 0.010 0.894 ± 0.008 0.879 ± 0.009 0.926 ± 0.010 0.952 ± 0.007

LINE44 0.742 ± 0.026 0.727 ± 0.030 0.742 ± 0.026 0.732 ± 0.029 0.874 ± 0.021 0.881 ± 0.023

Node2vec45 0.902 ± 0.007 0.868 ± 0.007 0.902 ± 0.007 0.883 ± 0.007 0.896 ± 0.011 0.932 ± 0.010

SDNE46 0.820 ± 0.015 0.791 ± 0.019 0.820 ± 0.015 0.799 ± 0.017 0.904 ± 0.012 0.930 ± 0.011

IMSP 0.971 ± 0.005 0.972 ± 0.006 0.971 ± 0.005 0.971 ± 0.006 0.997 ± 0.001 0.996 ± 0.001

AUC, area under the receiver-operating characteristic curve. This table presents six evaluationmetrics regarding the link prediction performance of our

model compared with five other baseline models. While evaluating performance, we followed 5-fold stratified cross-validation setting with shuffle

enabled. This method preserved the percentage of samples for each class (i.e., type of edge) in each fold. We created a sampling strategy to ensure

that the training subset in each cross-validation run can form a fully connected network. To ensure the balance of input data, we gathered negative

(non-connected) edges in addition to positive (connected) edges that already existed in each fold. While sampling negative edges, we randomly

selected some from known negative edges (i.e., true negatives), which consisted of spike-receptor interactions demonstrated as nonexistent. We

randomly selected the remaining negative edges from other non-connected node pairs, which we assumed did not exist. These negative edges

were then added to each fold to match the number of positive edges. We performed this 5-fold stratified cross-validation experiment for 30 runs.

In each run, we would generate a new 5-fold split. We then performed two-sample heteroscedastic t tests for these six overall performance evaluation

metrics to test the significance of IMSP improvement. Lastly, we reported the average with SD for each metric.
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dipeptidyl peptidase 4 (DPP4; the target host receptor of MERS-

CoV). Since we still lacked a comparable amount of negative

edges, we randomly selected non-connected node pairs as

negative edges, which we assumed as not existing. We added

these negative samples into each fold to match the number of

positive samples.We then evaluated IMSP and other models un-

der the 5-fold stratified cross-validation setting as described

above. We repeated the cross-validation experiment for 30 inde-

pendent runs. In each run, we generated a new 5-fold split.

Finally, we performed a two-sample heteroscedastic t test at

the 0.01 significance level to test the significance of our model’s

improvement against other models.

Table 1 shows the performance comparison measured in six

common link prediction evaluation metrics. IMSP achieved an

overall link prediction accuracy of 97.1% with a standard devia-

tion (SD) of 0.005, which demonstrated a 7.7% gain compared

with the second-best model. Our model also excelled in its

weighted F1-score, achieving 0.971 with SD of 0.006, which ex-

ceeded the second-best model by 10.0%. The p values for these

two metrics were all smaller than 0.01, which indicated signifi-

cant improvement for our model. We also presented the perfor-

mance on infection and PPI predictions (Figure 4). IMSP

achieved an F1-score of 0.854 with a 0.090 SD for infection pre-

dictions, a 40.4% increase compared with the second-best

model. The p value was smaller than 0.01, indicating a significant

improvement in our model. For PPI predictions, our model

achieved an F1-score of 0.867 with 0.034 SD, a 1.6% increment

compared with the second-best model. The p value also demon-

strated a significant improvement for IMSP under the 0.01 signif-

icance level. In conclusion, our model showed statistically signif-

icant improvements compared with all existing models in 11 of

12 evaluation metrics.

The high performance of IMSP might result from its ability to

take full advantage of well-studied knowledge and data from

previous biology research with protein-level variations. Thanks

to the novel design of our virus-host interaction network,

cross-organism information and multi-class linkage information

can be well preserved. Another reason behind the performance

improvement of IMSP is that it factors essential biological meta-
data for nodes into the learned representations of edges. This

design substantially helped the classifier output a correct pre-

dicted class when formulating edge representations. However,

around 10% of PPI predictions were unlikely predictions by our

definition, i.e., PPIs between S-protein and non-receptor host

proteins. To minimize unlikely predictions, we also utilized

known negative edges (true negatives) in the protein layer to

constitute part of the negative samples for training and testing.

This finally reduced the unlikely PPI predictions to around 5%.

In conclusion, IMSP exhibited robust and stable performance

in both top-level and detailed evaluationmetrics, which was sub-

stantially improved compared with existing tools. When

analyzing newly emerged viruses with limited available informa-

tion, namely SARS-CoV-2, IMSP could provide reasonable and

reliable predictions.

DISCUSSION

This study assembled 260 nodes and 1,995 known edges. Each

node represented a virus/virus protein/host/host protein, and

each edge represented a virus-host infection/PPI/protein-homo-

log similarity/organism-protein belonging. Based on this

network, we predicted the potential host for viruses and undis-

covered PPIs. Among all currently known seven human corona-

viruses, SARS-CoV and MERS-CoV were relatively well studied

in terms of interactions (i.e., infection and PPI). However, interac-

tions of HCoV-OC43, HCoV-NL63, HCov-HKU1, HCoV-229E,

and the newly emerged SARS-CoV-2 remained relatively less

discovered. Our model predicted 939 PPIs and 24 infections

that were likely to happen. These predictions need further exper-

iments for validation.

Established discoveries about the viral interactions with host

proteins were scarce for SARS-CoV-2. However, SARS-CoV-2

was highly suspected of suppressing the innate immune

response and reducing the production of IFN. Thus, the findings

by IMSP could help discover the protein-level mechanism of

virus invasion and host response to provide clues toward devel-

oping therapeutic strategies for the treatment of this disease.

Some of our prediction results have been revealed as
Patterns 2, 100242, May 14, 2021 5



Figure 4. Performance on PPI and infection predictions

This figure demonstrates the performance of IMSP on PPI and infection predictions in comparison with five other baseline models. The ocean-blue columns

represent the performance of IMSP derived from the average of 30 independent 5-fold stratified cross-validation runs. The error bars for each column mark the

25th and 75th percentile. Our IMSP model achieved 0.854 for the infection F1-score and 0.867 for the PPI F1-score. Compared with other models, our model

outperformed them in all the evaluation metrics except in PPI Precision. Specifically, in terms of infection F1-score, our model outperformed the second-best

model Node2vec45 by 40.4%. In terms of PPI F1-score, our model also surpassed the second-best model Node2vec45 by 1.6%.
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meaningful. It should be noted that, during the review period, two

of our prediction results were validated in wet-lab experiments

by independent labs,42,50 which demonstrated that swine is sus-

ceptible to SARS-CoV-2 and that the M protein of SARS-CoV-2

inhibits IFN production by targeting RIG-I/MDA-5 signaling.

More broadly, IMSP could be applied to any other analysis of

the virus-host interaction network predictions. IMSP would build

the network based on the information of the PPIs, protein-homo-

log similarities, virus-host infection relations, and related protein

function knowledge if available. Based on such a network, IMSP

could predict high-possibility PPIs and infections. We hope to

use this pipeline as a guideline for investigating various similar vi-

ruses and their mechanisms with hosts on both organism level

and protein level.

Limitations of the study
This section discusses the limitation of our work in terms of

prediction validation, quality of data sources, model bias, and

potential improvements. Concerning prediction validation,

ideally wet-lab experiments should be conducted to validate

our predictions, which require special facilities not commonly

available. Thus, we were unable to validate our predictions

through biological experiments. We collected protein se-

quences, infection relationships, and known PPIs from the

best available data sources when carrying out this study. The

quality, errors, and uncertainty of these data sources could

affect the performance of our approach. This may harm the reli-

ability of our predictions, and hence biologists should exercise

extra caution when using our predictions to aid the design of

experiments. Our approach may suffer from sampling bias, rep-

resentation bias, and population bias.51 For example, we only

included the proteins known to play crucial roles in viral entry

and the IFN signaling pathway. It is possible that some related

proteins were ignored, i.e., our model potentially carries sam-

pling bias. Our model might also suffer from representation

bias due to missing protein sequences, which could lead to

non-uniform protein representation in different mammalian

hosts in our network. Additionally, we could not include some
6 Patterns 2, 100242, May 14, 2021
mammals (e.g., rabbits and civets) because most of their pro-

tein sequences are either unavailable or of low quality in the

National Center for Biotechnology Information (NCBI) database,

which led to population bias. As more data become available, a

more comprehensive network could be constructed by our

IMSP model, which would substantially mitigate the model

bias. Lastly, the model can also be improved by incorporating

gene set enrichment and sequence motif analysis.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and

will be fulfilled by the lead contact, Hongfu Liu (hongfuliu@brandeis.edu).

Materials availability

This study did not generate any physical materials.

Data and code availability

All data and codes are available at Github repositories. IMSPmodel, its predic-

tions, and performance evaluations can be found at https://github.com/

hangyu98/IMSP; data and parsing code can be found at https://github.com/

hangyu98/IMSP-Parser. Additional supplemental items are available from

Mendeley Data at doi: 10.17632/3s2dr7y6s2.1.

Virus-host interaction network data selection

The virus-host interaction network consists of two layers (an organism layer

and a protein layer). The organism layer contains a set of viruses (including

SARS-CoV-2, SARS-CoV, HCoV-229E, HCoV-HKU1, HCoV-OC43, HCoV-

NL63, and MERS-CoV) and a set of hosts (including human, mouse, rat,

dog, cat, camel, squirrel, cattle, chimpanzee, red junglefowl, rabbit, horse,

monkey, rat, sheep, swine, and golden Syrian hamster). At the protein layer,

we focus on proteins that are known to be involved in viral invasion or immune

system response and suppression. The network contains 13 host protein-ho-

molog groups obtained from NCBI: ACE2, DPP4, IRF3, IRF7, IRF9, MAVS,

MDA5, NF-kB, PRKRA, TBK1, RIG-I, STAT1, and STAT2. The virus proteins

include homologs of S-protein, M protein, nucleocapsid protein, nsp1,

nsp15, ORF3b, ORF4a, ORF4b, ORF6, and papain-like protease (PLpro).

There are four types of edges in the network: PPI, virus-host infection, organ-

ism-protein belonging, and similarity relation between protein homologs. PPI

and infection relationships are gathered from academic publications.9–24 Or-

ganism-protein belonging and protein-homolog similarity relation are innately

connected. Detailed PPI data resources are presented in Table S5.

mailto:hongfuliu@brandeis.edu
https://github.com/hangyu98/IMSP
https://github.com/hangyu98/IMSP
https://github.com/hangyu98/IMSP-Parser
https://github.com/hangyu98/IMSP-Parser
https://doi.org/10.17632/3s2dr7y6s2.1


Table 2. Notations

Notation Description

Vi node i in the network

V the set of all nodes

Ii;j edge between node i and node j

I the set of all edges in the network

RS
i structure embedding vector for node i

RC
i content embedding vector for node i

CEi;j content embedding vector for edge Ii;j

IEi;j full edge embedding vector for edge Ii;j

wi;j edge weight for edge Ii;j

EDi;j Euclidean distance between node i and

node j

MDðRC
i ;R

C
j Þ magnitude difference between vector RC

i

and RC
j

TS� SSi;j TS-SS similarity between vector RC
i and RC

j
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Infection mechanism and spectrum prediction

Our IMSP model requests three inputs: pairwise similarity matrices (parsed

from percentage of positives from NCBI BLASTp result) for protein homologs,

a set of known PPIs and infections, and protein function data. Given these

three inputs, the model constructs a heterogeneous two-layer virus-host inter-

action network. IMSP then performs graph representation learning and com-

bines the structural embeddings with the content embeddings to form edge

representations. Lastly, in the link prediction phase, IMSP trains a neural-

network-based Multi-layer Perceptron (MLP) classifier on learned representa-

tions to perform multi-class classification task. Along with post-process

procedures, our model outputs high-possibility undiscovered PPIs and infec-

tions. In the following, we elaborate on the two main steps of IMSP in terms of

virus-host interaction network construction and representation learning, and

virus-host interaction prediction. To show the design of our model, we present

the pseudocode sample in Alg. 1 in supplemental information. The time

complexity isOð
���V j2Þ and the space complexity isOð

���V j2Þ. Please refer to Table
2 for notations.

Virus-host interaction network construction and representation

learning

We utilized nodes to represent either organisms or proteins. Edges were used

to represent PPI/infection/similarity/belonging relationships. To model the

network, we constructed an undirected two-layer heterogeneous network us-

ing NetworkX.52 The network carried four groups of nodes: host, host protein,

virus, and virus protein. We organized the virus group and the host group into

the organism layer. Similarly, host protein groups and virus protein groups

were put into the protein layer. By nature, the network held four types of

edges: PPI (between virus protein groups and host protein groups), infection

(between virus group and host group), protein-homolog similarity relation (be-

tween virus/host protein homologs in protein layer), and organism-protein

belonging relation (between organism layer and protein layer). Protein-homo-

log similarity and organism-protein belonging relationships were innately con-

nected. PPIs and infections were connected based on proven molecular level

knowledge or infection data from existing research.3–24,53–55 After building the

network, the virus-host interaction network contained 260 nodes and 1,995

edges. Intuitively, if there is an interaction edge (infection or PPI) between

two nodes Vi and Vj, an edge with the same type (infection or PPI) is more

likely to form between Vi and another node with high biological similarity to

Vj . We therefore designed a method that assigns a weight to each relationship

in the network. A structure embedding model45 was then applied to factor in

such information into the node representations, which is later used in predict-

ing interactions between nodes. To be more specific, if a relationship con-

nects two protein homologs, its weight is equal to the similarity between their

full-length sequences. For other relationships, we calculated its weight as the

similarity between the text content of the connected nodes. The text content

of a node includes the name and molecular functions if a node represents a
protein. The text content is processed by Text2vec, a Word2vec56-based

model, to obtain the node content embedding denoted as RC
i for Vi . We

then utilized the TS-SS similarity metric,57 a robust and reliable similarity mea-

surement in the field of textual mining, to calculate wi;j as the TS-SS similarity

between RC
i and RC

j . The technical details are explained below:

TS� SSi;j =
��RC

i

��,���RC
j

���,sin
�
q
0
�
,q

0
,p,

�
ED

�
RC

i ;R
C
j

�
+MD

�
RC

i ;R
C
j

��2
�

720;

(Equation 1)

whereMDðRC
i ;R

C
j Þ57 is defined as the magnitude difference between RC

i and

RC
j , which is calculated as

MD
�
RC

i ;R
C
j

�
=

�������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XdimRC

i

n=1

RC2

i

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XdimRC

j

n= 1

RC2

j

vuut
�������
; (Equation 2)

and q0 is defined as

q0 = cos�1
�
cos

�
RC

i ;R
C
j

��
+ 10: (Equation 3)

Note that q0 is increased by 10� to overcome the problem of overlapping vec-

tors. wi;j is then calculated as

wi;j = s
�
TS�SSi;j

.
TS� SS

�
; (Equation 4)

where s is the sigmoid function, and TS� SS denotes the average of TS�
SSi;j, for all i; j, if isj and Vi ;Vj3V .

For graph representation learning, we captured the graph heterogeneity by

adding the heterogeneous content information to its structural information.

Specifically, we performed network structural embedding assuming the

network is homogeneous. We then added the content embedding on top of

structural embedding to model the heterogeneity.

First, for network structural embedding, we used a powerful network repre-

sentation learning model, Node2vec,45 to learn the structural embedding for

nodes. Node2vec is a state-of-the-art model for homogeneous network

embedding. We took full advantage of the biased searching algorithm offered

by Node2vec during our application. Precisely, the Node2vec model per-

formed a biased fixed-length random walk for graph sampling, which takes

edge weight into account. Let cm denote themth node in walk with c0 denoting

the starting node of the current random walk. Nodes cm are generated by the

following distribution:

Pðcm =Vi

�� cm�1 =VjÞ=
	
pVj ;Vi



Z if Ii;j3I

0 otherwise
; (Equation 5)

wherems1, Z is the normalizing constant, and pVj ;Vi
is the unnormalized tran-

sition probability between Vj and Vi, which is calculated as pVj ;Vi
= apqðVt ;

ViÞ,wi;j. Note that the edge weight wi;j is taken into consideration. Assume

we have just transitioned from Vt to Vj and are now evaluating the transition

probability leaving Vj. Let Vi represents the set of all neighbors of Vj. apqðVt ;

ViÞ, termed as search bias, is calculated as

apq

0
@Vt ;Vi

1
A=

8<
:

1=p if dVt ;Vi
= 0

1 if dVt ;Vi
= 1

1=q if dVt ;Vi
= 2

; (Equation 6)

where dVt ;Vi
denotes the shortest path between Vt and Vi .

In Equation 6, p (return hyperparameter) and q (in-out hyperparameter) are the

two crucial hyperparameters of Node2vec. They can be adjusted to influence the

probability of going back to Vi after visiting Vj and the probability of exploring

the undiscovered components of the network. In this way, we were able to

tune the hyperparameters of the structural embedding model, Node2vec,

through a grid search algorithm to generate the structural embeddings.

Second, to generate edge content embeddings, i.e., CEi;j for all possible Ii;j,

we combined the textualized node content (including name, group, layer, and

function) of Vi and Vj with expected edge type such as PPI/infection/protein-

homolog similarity/organism-protein belonging. We then input such text into
Patterns 2, 100242, May 14, 2021 7
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Text2vec, a Word2vec56-based model, to generate edge content embed-

dings. The full edge representations that consider both structural and content

information for edge Ii;j are formulated as follows:

IEi;j =
h
RS

i ; RS
j ; CEi;j

i
;

IEj;i =
h
RS

j ; RS
i ; CEj;i

i
:

(Equation 7)

Note that by the nature of Text2vec, the order of input document does not

affect its output, meaning that CEi;j is the same as CEj;i. Upon finishing this

step, we obtained all edge representations, IEi;j , for all Vi and Vj3 V and is j.

Virus-host interaction prediction

In the interaction prediction phase, we utilized a neural-network-based classi-

ficationmodel, MLP classifier, provided by scikit-learn58 to performmulti-class

classification. The classifier would classify edges into infection, PPI, no-inter-

action, organism-protein belongings, and similarity relations between protein

homologs, using the learned edge representations. The predicted interactions

(i.e., infection and PPI) would go through a post-processing step to eliminate

unlikely interaction predictions. The processed result would be the output

of IMSP.

Here we performed 5-fold stratified cross-validation.While splitting data into

folds, we let each fold have roughly the same percentage of interactions in

each interaction type. Besides, each fold has the same number of positive

(i.e., known interactions) and negative (i.e., non-interaction) samples. It should

be noted that the negatives consist of both validated non-interactions (e.g., the

S-protein of SARS-CoV-2 is known not to bind well to the human ACE2 recep-

tor) and other non-interactions that have yet to be validated experimentally. To

mitigate the issue caused by sampling undiscovered true positive links as the

negative training samples, we trained multiple independent MLP classifiers on

different training sets, where the negative links were randomly sampled for

each set. We then aggregated their edge classification results to pass to the

post-processing step. We defined the following rules from both the computa-

tional and biological perspectives to remove unlikely predictions in the post-

processing step. Computationally, since there exist two representations for

Ii;j , i.e., IEi;j and IEj;i , the prediction for Ii;j is defined as a ‘‘strong’’ one if and

only if both IEi;j and IEj;i are classified into the same interaction type (excluding

the non-interaction type). Biologically, we assumed that the virus S-protein

would only bind with its known target receptor.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100242.
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This supplementary material contained visualized demonstrations of viral entry in Figure S1 and IFN pathway mechanisms in
Figure S2. The full network with predictions made by the model was visualized in three figures: Figure S3 for viral entry,
Figure S4 for IFN pathway and Figure S5 for host infection. The full nodes and edges in the network are presented in Table S1
and Table S2. The predicted interactions are presented in Table S3 and Table S4. The PPI data source are shown in Table S5.
The IMSP algorithm is presented in Alg. 1.
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Supplementary Note 1: Virus Entry - Receptor Binding of S Protein

Fig. S1. The Process for Coronavirus Receptor Binding and Virus Entry. The S protein in coronaviruses plays a crucial role in viral entry. It binds with host receptors and
facilitates the fusion between the viral envelope and the host cell membrane.

Patterns H. Du & F. Chen



Supplementary Note 2: Immune Response - IFN Signaling Pathway

Fig. S2. Innate Immune Response to Coronaviruses’ Viral Infection and IFN signaling Mechanism. RIG-I and MDA5 detect the pattern of virus and trigger the production
of Interferons (IFNs) S1 and the activation of the NF-κB. S2 The activated NF-κB induces the Pro-inflammatory cytokines, S3 which play a central role in inflammatory diseases
of infectious. S4 STAT1 and STAT2 associate with IRF9 to induce the expression of interferon-stimulated genes (ISGs) S5 and produce antiviral proteins. S6 In this way, viral
interactions with the host innate immune system to suppress immune responses become the critical determinant of the disease outcome and viral infection.
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Supplementary Note 3: Full Map of Binding Interactions between Coronaviruses’ S Protein
and Mammalian Hosts’ Receptor

Fig. S3. Virus entry: binding relationships between the S-proteins of human coronaviruses and the ACE2 receptors of mammalian hosts. This figure of the network
is visualized by Cytoscape. Virus Protein nodes are represented in green, and Host Protein Layer nodes are represented in blue. The original interactions are represented in
light grey lines, including the known receptor bindings between viruses spike and mammalian hosts ACE2. Predicted receptor bindings are represented in orange lines. As
the infection relations have been checked for likelihood in the IMSP model, all predicted interactions are strong predicted interactions.
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Supplementary Note 4: Full Map of PPIs in IFN Signaling Pathway between Coronaviruses’
Proteins and Mammalian Hosts’ Proteins

Fig. S4. IFN interactions: virus proteins interactions with IFN signaling pathway to suppress the IFN signaling. Same representations for nodes and interactions as
described in Figure 3. The predicted interactions are represented in orange lines: the solid lines stand for strong predictions, and dotted lines stand for weak predictions as
defined in the IMSP model.
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Supplementary Note 5: Full Map of Infection Relationships between Coronaviruses and Mam-
malian Hosts

Fig. S5. Coronaviruses and mammalian hosts infection relationships Virus Layer nodes are represented in green rhombi, and Host Layer nodes are represented in blue.
The original infection interactions are represented in grey lines. Predicted infection relations are represented in orange lines: the solid lines stand for strong predictions and
dotted lines stand for weak predictions as defined in the IMSP model.
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Supplementary Note 6: Network Node
Table S1. Node IDs and Node Full Names.

Node ID Full name representation Node ID Full name representation
0 nsp15 Severe acute respiratory syndrome coronavirus 2 130 IRF7 Mus musculus
1 nsp15 Severe acute respiratory syndrome-related coronavirus 131 IRF7 Bos taurus
2 nsp15 Human coronavirus HKU1 132 IRF7 Canis lupus familiaris
3 STAT1 Homo sapiens 133 IRF7 Gallus gallus
4 STAT1 Pan troglodytes 134 MDA5 Homo sapiens
5 STAT1 Macaca mulatta 135 MDA5 Pan troglodytes
6 STAT1 Felis catus 136 MDA5 Macaca mulatta
7 STAT1 Camelus dromedarius 137 MDA5 Equus caballus
8 STAT1 Equus caballus 138 MDA5 Oryctolagus cuniculus
9 STAT1 Canis lupus familiaris 139 MDA5 Ictidomys tridecemlineatus
10 STAT1 Rhinolophus ferrumequinum 140 MDA5 Felis catus
11 STAT1 Bos taurus 141 MDA5 Camelus dromedarius
12 STAT1 Ovis aries 142 MDA5 Bos taurus
13 STAT1 Ictidomys tridecemlineatus 143 MDA5 Ovis aries
14 STAT1 Oryctolagus cuniculus 144 MDA5 Mus musculus
15 STAT1 Rattus norvegicus 145 MDA5 Rattus norvegicus
16 STAT1 Mus musculus 146 MDA5 Mesocricetus auratus
17 STAT1 Mesocricetus auratus 147 MDA5 Canis lupus familiaris
18 STAT1 Gallus gallus 148 MDA5 Gallus gallus
19 IRF9 Homo sapiens 149 PRKRA Homo sapiens
20 IRF9 Macaca mulatta 150 PRKRA Macaca mulatta
21 IRF9 Pan troglodytes 151 PRKRA Felis catus
22 IRF9 Felis catus 152 PRKRA Equus caballus
23 IRF9 Camelus dromedarius 153 PRKRA Canis lupus familiaris
24 IRF9 Sus scrofa domesticus 154 PRKRA Camelus dromedarius
25 IRF9 Equus caballus 155 PRKRA Mesocricetus auratus
26 IRF9 Rhinolophus ferrumequinum 156 PRKRA Mus musculus
27 IRF9 Ovis aries 157 PRKRA Ictidomys tridecemlineatus
28 IRF9 Canis lupus familiaris 158 PRKRA Ovis aries
29 IRF9 Bos taurus 159 PRKRA Bos taurus
30 IRF9 Ictidomys tridecemlineatus 160 PRKRA Rattus norvegicus
31 IRF9 Oryctolagus cuniculus 161 PRKRA Rhinolophus ferrumequinum
32 IRF9 Mus musculus 162 PRKRA Oryctolagus cuniculus
33 IRF9 Mesocricetus auratus 163 PRKRA Pan troglodytes
34 IRF9 Rattus norvegicus 164 ORF3b Severe acute respiratory syndrome-related coronavirus
35 IRF9 Gallus gallus 165 ORF3b Human coronavirus NL63
36 RIG-I Homo sapiens 166 DPP4 Homo sapiens
37 RIG-I Pan troglodytes 167 DPP4 Pan troglodytes
38 RIG-I Macaca mulatta 168 DPP4 Macaca mulatta
39 RIG-I Canis lupus familiaris 169 DPP4 Oryctolagus cuniculus
40 RIG-I Rattus norvegicus 170 DPP4 Ovis aries
41 RIG-I Mesocricetus auratus 171 DPP4 Ictidomys tridecemlineatus
42 RIG-I Mus musculus 172 DPP4 Bos taurus
43 ORF4b Middle East respiratory syndrome-related coronavirus 173 DPP4 Felis catus
44 ORF4b Human coronavirus 229E 174 DPP4 Equus caballus
45 nsp1 Severe acute respiratory syndrome coronavirus 2 175 DPP4 Canis lupus familiaris
46 nsp1 Severe acute respiratory syndrome-related coronavirus 176 DPP4 Rhinolophus ferrumequinum
47 nsp1 Middle East respiratory syndrome-related coronavirus 177 DPP4 Mesocricetus auratus
48 nsp1 Human coronavirus HKU1 178 DPP4 Rattus norvegicus
49 Spike Human coronavirus OC43 179 DPP4 Mus musculus
50 Spike Human coronavirus HKU1 180 DPP4 Camelus dromedarius
51 Spike Middle East respiratory syndrome-related coronavirus 181 DPP4 Gallus gallus
52 Spike Severe acute respiratory syndrome coronavirus 2 182 ORF6 Severe acute respiratory syndrome-related coronavirus
53 Spike Severe acute respiratory syndrome-related coronavirus 183 ORF6 Severe acute respiratory syndrome coronavirus 2
54 Spike Human coronavirus NL63 184 STAT2 Homo sapiens
55 Spike Human coronavirus 229E 185 STAT2 Pan troglodytes
56 IRF3 Homo sapiens 186 STAT2 Macaca mulatta
57 IRF3 Pan troglodytes 187 STAT2 Felis catus
58 IRF3 Macaca mulatta 188 STAT2 Canis lupus familiaris
59 IRF3 Ictidomys tridecemlineatus 189 STAT2 Camelus dromedarius
60 IRF3 Rhinolophus ferrumequinum 190 STAT2 Rhinolophus ferrumequinum
61 IRF3 Felis catus 191 STAT2 Equus caballus
62 IRF3 Camelus dromedarius 192 STAT2 Ovis aries
63 IRF3 Ovis aries 193 STAT2 Bos taurus
64 IRF3 Bos taurus 194 STAT2 Mesocricetus auratus
65 IRF3 Equus caballus 195 STAT2 Rattus norvegicus
66 IRF3 Oryctolagus cuniculus 196 STAT2 Ictidomys tridecemlineatus
67 IRF3 Rattus norvegicus 197 STAT2 Mus musculus
68 IRF3 Mesocricetus auratus 198 STAT2 Gallus gallus
69 IRF3 Mus musculus 199 PLpro Middle East respiratory syndrome-related coronavirus
70 IRF3 Canis lupus familiaris 200 PLpro Severe acute respiratory syndrome-related coronavirus
71 IRF3 Gallus gallus 201 PLpro Severe acute respiratory syndrome coronavirus 2
72 N protein Middle East respiratory syndrome-related coronavirus 202 PLpro Human coronavirus OC43
73 N protein Severe acute respiratory syndrome coronavirus 2 203 PLpro Human coronavirus HKU1
74 N protein Severe acute respiratory syndrome-related coronavirus 204 Homo sapiens
75 N protein Human coronavirus HKU1 205 Mus musculus
76 N protein Human coronavirus OC43 206 Rattus norvegicus
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Table S1. Node IDs and Node Full Names.

Node ID Full name representation Node ID Full name representation
77 N protein Human coronavirus 229E 207 Canis lupus familiaris
78 N protein Human coronavirus NL63 208 Camelus dromedarius
79 Human coronavirus OC43 209 Felis catus
80 Human coronavirus HKU1 210 Ictidomys tridecemlineatus
81 Middle East respiratory syndrome-related coronavirus 211 Bos taurus
82 Severe acute respiratory syndrome coronavirus 2 212 Pan troglodytes
83 Severe acute respiratory syndrome-related coronavirus 213 Gallus gallus
84 Human coronavirus NL63 214 Oryctolagus cuniculus
85 Human coronavirus 229E 215 Equus caballus
86 ACE2 Homo sapiens 216 Macaca mulatta
87 ACE2 Pan troglodytes 217 Ovis aries
88 ACE2 Macaca mulatta 218 Sus scrofa domesticus
89 ACE2 Ictidomys tridecemlineatus 219 Rhinolophus ferrumequinum
90 ACE2 Oryctolagus cuniculus 220 Mesocricetus auratus
91 ACE2 Equus caballus 221 M protein Middle East respiratory syndrome-related coronavirus
92 ACE2 Felis catus 222 M protein Human coronavirus HKU1
93 ACE2 Camelus dromedarius 223 M protein Severe acute respiratory syndrome-related coronavirus
94 ACE2 Mesocricetus auratus 224 M protein Severe acute respiratory syndrome coronavirus 2
95 ACE2 Sus scrofa domesticus 225 M protein Human coronavirus OC43
96 ACE2 Ovis aries 226 M protein Human coronavirus NL63
97 ACE2 Mus musculus 227 M protein Human coronavirus 229E
98 ACE2 Bos taurus 228 TBK1 Homo sapiens
99 ACE2 Rattus norvegicus 229 TBK1 Pan troglodytes

100 ACE2 Rhinolophus ferrumequinum 230 TBK1 Macaca mulatta
101 ACE2 Canis lupus familiaris 231 TBK1 Oryctolagus cuniculus
102 ACE2 Gallus gallus 232 TBK1 Ictidomys tridecemlineatus
103 ORF4a Middle East respiratory syndrome-related coronavirus 233 TBK1 Felis catus
104 ORF4a Human coronavirus 229E 234 TBK1 Bos taurus
105 NF-κB Homo sapiens 235 TBK1 Rhinolophus ferrumequinum
106 NF-κB Pan troglodytes 236 TBK1 Ovis aries
107 NF-κB Macaca mulatta 237 TBK1 Canis lupus familiaris
108 NF-κB Bos taurus 238 TBK1 Equus caballus
109 NF-κB Rhinolophus ferrumequinum 239 TBK1 Mesocricetus auratus
110 NF-κB Ovis aries 240 TBK1 Mus musculus
111 NF-κB Ictidomys tridecemlineatus 241 TBK1 Camelus dromedarius
112 NF-κB Mus musculus 242 TBK1 Rattus norvegicus
113 NF-κB Mesocricetus auratus 243 TBK1 Gallus gallus
114 NF-κB Rattus norvegicus 244 MAVS Homo sapiens
115 NF-κB Equus caballus 245 MAVS Pan troglodytes
116 NF-κB Gallus gallus 246 MAVS Macaca mulatta
117 NF-κB Camelus dromedarius 247 MAVS Ovis aries
118 IRF7 Homo sapiens 248 MAVS Equus caballus
119 IRF7 Pan troglodytes 249 MAVS Bos taurus
120 IRF7 Macaca mulatta 250 MAVS Oryctolagus cuniculus
121 IRF7 Ictidomys tridecemlineatus 251 MAVS Rhinolophus ferrumequinum
122 IRF7 Equus caballus 252 MAVS Felis catus
123 IRF7 Rhinolophus ferrumequinum 253 MAVS Camelus dromedarius
124 IRF7 Felis catus 254 MAVS Ictidomys tridecemlineatus
125 IRF7 Camelus dromedarius 255 MAVS Canis lupus familiaris
126 IRF7 Rattus norvegicus 256 MAVS Mesocricetus auratus
127 IRF7 Oryctolagus cuniculus 257 MAVS Mus musculus
128 IRF7 Mesocricetus auratus 258 MAVS Rattus norvegicus
129 IRF7 Ovis aries 259 MAVS Gallus gallus
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Supplementary Note 7: Edge Table
Table S2. Edge Table with Edge Types
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Supplementary Note 8: IMSP Predicted Infections
Certainty is the probability score for the predictions made by IMSP, ranging from 0%-100%. Confidence is the computational rule set in IMSP. Strong confidence represents that for a
predicted interactionEi,j , its two edge representationsEEi,j andEEj,i are all classified into the same class other than the no-interaction class. For weak confidence interactions,
only one representation is classified into the class other than the no-interaction class. Likelihood is the biological rule to validate the predictions. Based on pre-defined filters, the
unlikely interactions are predictions that have conflicts with those filters.

Table S3. Predicted Infections Table

Source Name Target Name Certainty Confidence Likelihood
virus Human coronavirus OC43 host Rhinolophus ferrumequinum 96.51% strong likely

virus Severe acute respiratory syndrome-related coronavirus host Macaca mulatta 96.45% strong likely
virus Human coronavirus 229E host Rattus norvegicus 94.14% strong likely

virus Severe acute respiratory syndrome-related coronavirus host Mesocricetus auratus 94.10% strong likely
virus Severe acute respiratory syndrome coronavirus 2 host Rattus norvegicus 91.86% strong likely

virus Human coronavirus NL63 host Rattus norvegicus 91.15% strong likely
virus Severe acute respiratory syndrome-related coronavirus host Camelus dromedarius 90.80% strong likely

virus Human coronavirus 229E host Camelus dromedarius 87.21% strong likely
virus Human coronavirus 229E host Mesocricetus auratus 85.17% strong likely
virus Human coronavirus OC43 host Felis catus 84.30% strong likely

virus Severe acute respiratory syndrome-related coronavirus host Canis lupus familiaris 83.64% strong likely
virus Human coronavirus NL63 host Camelus dromedarius 82.39% strong likely
virus Human coronavirus 229E host Macaca mulatta 79.19% strong likely
virus Human coronavirus NL63 host Mesocricetus auratus 78.32% strong likely

virus Severe acute respiratory syndrome-related coronavirus host Ictidomys tridecemlineatus 74.45% strong likely
virus Human coronavirus 229E host Felis catus 73.59% strong likely

virus Severe acute respiratory syndrome coronavirus 2 host Camelus dromedarius 68.71% strong likely
virus Human coronavirus NL63 host Macaca mulatta 68.07% strong likely

virus Severe acute respiratory syndrome coronavirus 2 host Ovis aries 65.65% strong likely
virus Human coronavirus NL63 host Felis catus 65.62% strong likely

virus Severe acute respiratory syndrome-related coronavirus host Sus scrofa domesticus 62.09% strong likely
virus Human coronavirus 229E host Mus musculus 86.12% weak likely

virus Severe acute respiratory syndrome coronavirus 2 host Ictidomys tridecemlineatus 66.26% weak likely
virus Severe acute respiratory syndrome coronavirus 2 host Sus scrofa domesticus 59.56% weak likely

virus Human coronavirus HKU1 host Mesocricetus auratus 94.84% strong unlikely
virus Human coronavirus HKU1 host Camelus dromedarius 94.42% strong unlikely

virus Middle East respiratory syndrome-related coronavirus host Rhinolophus ferrumequinum 93.21% strong unlikely
virus Human coronavirus OC43 host Camelus dromedarius 92.94% strong unlikely
virus Human coronavirus HKU1 host Macaca mulatta 91.85% strong unlikely
virus Human coronavirus OC43 host Mesocricetus auratus 90.58% strong unlikely
virus Human coronavirus HKU1 host Felis catus 89.32% strong unlikely

virus Middle East respiratory syndrome-related coronavirus host Macaca mulatta 88.46% strong unlikely
virus Severe acute respiratory syndrome-related coronavirus host Ovis aries 87.95% strong unlikely
virus Middle East respiratory syndrome-related coronavirus host Mesocricetus auratus 84.07% strong unlikely

virus Human coronavirus OC43 host Macaca mulatta 83.75% strong unlikely
virus Severe acute respiratory syndrome-related coronavirus host Bos taurus 80.89% strong unlikely

virus Human coronavirus HKU1 host Bos taurus 80.83% strong unlikely
virus Middle East respiratory syndrome-related coronavirus host Ovis aries 79.52% strong unlikely

virus Human coronavirus HKU1 host Ovis aries 76.10% strong unlikely
virus Middle East respiratory syndrome-related coronavirus host Felis catus 74.00% strong unlikely
virus Middle East respiratory syndrome-related coronavirus host Ictidomys tridecemlineatus 69.40% strong unlikely

virus Human coronavirus OC43 host Ovis aries 67.82% strong unlikely
virus Human coronavirus HKU1 host Canis lupus familiaris 63.01% strong unlikely
virus Human coronavirus OC43 host Sus scrofa domesticus 51.93% strong unlikely
virus Human coronavirus 229E host Ovis aries 47.25% strong unlikely

virus Middle East respiratory syndrome-related coronavirus host Bos taurus 92.83% weak unlikely
virus Human coronavirus 229E host Bos taurus 83.89% weak unlikely
virus Human coronavirus NL63 host Mus musculus 82.16% weak unlikely
virus Human coronavirus OC43 host Ictidomys tridecemlineatus 81.23% weak unlikely

virus Severe acute respiratory syndrome-related coronavirus host Equus caballus 80.57% weak unlikely
virus Middle East respiratory syndrome-related coronavirus host Canis lupus familiaris 77.79% weak unlikely
virus Middle East respiratory syndrome-related coronavirus host Pan troglodytes 77.02% weak unlikely
virus Middle East respiratory syndrome-related coronavirus host Sus scrofa domesticus 76.57% weak unlikely

virus Human coronavirus NL63 host Ovis aries 75.21% weak unlikely
virus Human coronavirus NL63 host Bos taurus 74.95% weak unlikely
virus Human coronavirus HKU1 host Ictidomys tridecemlineatus 74.01% weak unlikely

virus Severe acute respiratory syndrome-related coronavirus host Pan troglodytes 73.98% weak unlikely
virus Human coronavirus HKU1 host Equus caballus 73.25% weak unlikely

virus Severe acute respiratory syndrome coronavirus 2 host Bos taurus 69.41% weak unlikely
virus Human coronavirus HKU1 host Pan troglodytes 67.38% weak unlikely
virus Human coronavirus HKU1 host Sus scrofa domesticus 65.95% weak unlikely
virus Human coronavirus OC43 host Gallus gallus 65.57% weak unlikely

virus Severe acute respiratory syndrome coronavirus 2 host Equus caballus 63.82% weak unlikely
virus Human coronavirus 229E host Sus scrofa domesticus 62.90% weak unlikely

virus Severe acute respiratory syndrome-related coronavirus host Gallus gallus 62.54% weak unlikely
virus Human coronavirus OC43 host Pan troglodytes 61.95% weak unlikely
virus Human coronavirus 229E host Equus caballus 61.42% weak unlikely

virus Severe acute respiratory syndrome coronavirus 2 host Pan troglodytes 60.91% weak unlikely
virus Human coronavirus 229E host Canis lupus familiaris 59.83% weak unlikely
virus Human coronavirus OC43 host Canis lupus familiaris 58.86% weak unlikely
virus Human coronavirus NL63 host Equus caballus 57.11% weak unlikely
virus Human coronavirus HKU1 host Gallus gallus 56.75% weak unlikely
virus Human coronavirus NL63 host Canis lupus familiaris 56.03% weak unlikely
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Table S3. Predicted Infections Table

Source Name Target Name Certainty Confidence Likelihood
virus Human coronavirus 229E host Ictidomys tridecemlineatus 54.27% weak unlikely
virus Human coronavirus OC43 host Equus caballus 53.57% weak unlikely
virus Human coronavirus NL63 host Ictidomys tridecemlineatus 52.83% weak unlikely

virus Middle East respiratory syndrome-related coronavirus host Equus caballus 52.31% weak unlikely
virus Human coronavirus NL63 host Sus scrofa domesticus 50.30% weak unlikely

virus Severe acute respiratory syndrome coronavirus 2 host Gallus gallus 49.51% weak unlikely
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Supplementary Note 9: IMSP Predicted PPIs
Table S4. Predicted Protein-Protein Interactions Table
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Supplementary Note 10: PPIs Data Source
Table S5. PPIs Data Source Table

Virus Protein Host Protein Source

SARS-CoV-2 nsp15 IRF3 Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent
interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953

SARS-CoV-2 nsp15 RIG-I Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent
interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953

SARS-CoV nsp15 IRF3 Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent
interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953

SARS-CoV-2 ORF6 IRF3 Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent
interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953

SARS-CoV-2 ORF6 RIG-I Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent
interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. doi:10.1080/22221751.2020.1780953

SARS-CoV nsp15 MAVS Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its
inhibition by viral proteins. PLoS One. 2009;4(5):e5466. doi:10.1371/journal.pone.0005466

HCoV-HKU1 nsp15 MAVS Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its
inhibition by viral proteins. PLoS One. 2009;4(5):e5466. doi:10.1371/journal.pone.0005466

SARS-CoV PLpro TBK1

Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome
coronavirus M protein inhibits type I interferon production by impeding the

formation of TRAF3.TANK.TBK1/IKKepsilon complex.
J Biol Chem. 2009;284(24):16202-16209. doi:10.1074/jbc.M109.008227

MERS-CoV ORF4b TBK1
Yang, Y., Ye, F., Zhu, N. et al. Middle East respiratory syndrome
coronavirus ORF4b protein inhibits type I interferon production

through both cytoplasmic and nuclear targets. Sci Rep 5, 17554 (2015). https://doi.org/10.1038/srep17554

MERS-CoV M protein TBK1

Lui, P. L., Wong, L. Y. R., Fung, C. L., Siu, K. L., Yeung, M. L., Yuen, K. S., et al. (2016).
Middle East respiratory syndrome coronavirus M protein

suppresses type I interferon expression through the inhibition of TBK1-dependent
phosphorylation of IRF3. Emerg. Microbes Infect. 5:e39. doi: 10.1038/emi.2016.33

MERS-CoV M protein IRF3

Lui, P. L., Wong, L. Y. R., Fung, C. L., Siu, K. L., Yeung, M. L., Yuen, K. S., et al. (2016).
Middle East respiratory syndrome coronavirus M protein

suppresses type I interferon expression through the inhibition of TBK1-dependent
phosphorylation of IRF3. Emerg. Microbes Infect. 5:e39. doi: 10.1038/emi.2016.33

MERS-CoV PLpro TBK1
Sun L, Xing Y, Chen X, et al. Coronavirus papain-like proteases negatively regulate antiviral

innate immune response through disruption of STING-mediated signaling.
PLoS One. 2012;7(2):e30802. doi:10.1371/journal.pone.0030802

MERS-CoV S protein DPP4 Zhao, J. et al. Rapid generation of a mouse model for Middle
East respiratory syndrome. Proc. Natl Acad. Sci. USA 111, 4970–4975 (2014).

MERS-CoV ORF4a NF-κB Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory
syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).

MERS-CoV ORF4a IRF3 Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory
syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).

MERS-CoV ORF4b NF-κB Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory
syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).

MERS-CoV ORF4b IRF3 Yang, Y. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory
syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4, 951–961 (2013).

MERS-CoV PLpro NF-κB

Bailey-Elkin, B. A. et al. Crystal structure of the Middle East respiratory
syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin

facilitates targeted disruption of deubiquitinating activity to demonstrate
its role in innate immune suppression. J. Biol. Chem. 289, 34667–34682 (2014).

MERS-CoV PLpro IRF3

Bailey-Elkin, B. A. et al. Crystal structure of the Middle East respiratory
syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin

facilitates targeted disruption of deubiquitinating activity to demonstrate
its role in innate immune suppression. J. Biol. Chem. 289, 34667–34682 (2014).

SARS-CoV PLpro NK-κB
Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D. & Baric, R. S.

Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain
and catalytic domain regulate antagonism of IRF3 and NF-κB signaling. J. Virol. 83, 6689–6705 (2009).

SARS-CoV PLpro IRF3
Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D. & Baric, R. S.

Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain
and catalytic domain regulate antagonism of IRF3 and NF-κB signaling. J. Virol. 83, 6689–6705 (2009).

SARS-CoV ORF6 IRF3
Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P.

Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and
nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).

SARS-CoV ORF6 IRF9 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV ORF6 STAT1
Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P.

Severe acute respiratory syndrome coronavirus open reading frame
(ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).

SARS-CoV ORF6 STAT2 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV ORF3b STAT2 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV ORF3b STAT1
Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P.

Severe acute respiratory syndrome coronavirus open reading frame
(ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).

SARS-CoV ORF3b IRF3
Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P.

Severe acute respiratory syndrome coronavirus open reading frame
(ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).

SARS-CoV ORF3b IRF9 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

HCoV-NL63 S proten ACE2
Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S.

Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus
receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988-7993. doi:10.1073/pnas.0409465102
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Table S5. PPIs Data Source Table

Virus Protein Host Protein Source

MERS-CoV M protein TBK1

Pak-Yin Lui, Lok-Yin Roy Wong, Cheuk-Lai Fung, Kam-Leung Siu, Man-Lung Yeung,
Kit-San Yuen, Chi-Ping Chan, Patrick Chiu-Yat Woo, Kwok-Yung Yuen, and Dong-Yan Jin.

Mid-dle east respiratory syndrome coronavirus m protein suppresses type i interferon expressionthrough
the inhibition of tbk1-dependent phosphorylation of irf3.Emerging microbes & in-fections, 5(1):1–9, 2016

MERS-CoV M protein STAT1 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

MERS-CoV M protein STAT2 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

MERS-CoV M protein IRF9 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

MERS-CoV ORF4a MDA5 Niemeyer, Daniela et al. “Middle East respiratory syndrome coronavirus accessory protein 4a
is a type I interferon antagonist.” Journal of virology vol. 87,22 (2013): 12489-95. doi:10.1128/JVI.01845-13

MERS-CoV ORF4a STAT1 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

MERS-CoV ORF4a IRF9 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

MERS-CoV ORF4a STAT2 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

MERS-CoV ORF4b TBK1 Yang, Y. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I
interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5, 17554 (2015).

MERS-CoV ORF4b IRF3 Yang, Y. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I
interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5, 17554 (2015).

MERS-CoV ORF4b IRF7 Yang, Y. et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I
interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5, 17554 (2015).

MERS-CoV ORF4b IRF9 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV nsp1 STAT1 Wathelet, M. G., Orr, M., Frieman, M. B. & Baric, R. S. Severe acute respiratory syndrome coronavirus evades
antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 81, 11620–11633 (2007).

SARS-CoV nsp1 STAT2 Wathelet, M. G., Orr, M., Frieman, M. B. & Baric, R. S. Severe acute respiratory syndrome coronavirus evades
antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 81, 11620–11633 (2007).

SARS-CoV ORF3b MAVS Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV ORF3b MDA5 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV ORF3b RIG-I Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV M protein NF-κB Fang, Xiaonan et al. “The membrane protein of SARS-CoV suppresses NF-κB
activation.” Journal of medical virology vol. 79,10 (2007): 1431-9. doi:10.1002/jmv.20953

SARS-CoV M protein IRF3
Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome coronavirus M protein

inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon
complex. J Biol Chem. 2009;284(24):16202-16209. doi:10.1074/jbc.M109.008227

SARS-CoV N protein MAVS Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
recentinsights into emerging coronaviruses.Nature reviews. Microbiology, 14(8):523—534, August 2016

SARS-CoV N protein MDA5 Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers:
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Supplementary Note 11: IMSP algorithm

Algorithm 1 IMSP algorithm
Input : Pairwise similarity matrices M , interaction relationships R, relevant biological metadata D
Output: Type for each Edge (Interaction) Ii,j
// Stage 1: network construction and representation learning

G = constructNetwork(M , R, D) // construct the unweighted network G

// Text2vec is a Word2vec-based sentence embedding model

Text2vec(V ) = Text2vec.train(G.nodes) // Pre-train node content embedding

Text2vec(I) = Text2vec.train(G.pos_and_neg_edges) // Pre-train edge content embedding

for Vi in V do
RCi = Text2vec(V ).get(Vi) // Get the content embedding for Node Vi

end
for Ii,j in I do

if Vi and Vj are protein homologs then
wi,j = getSequenceSimilarity(Vi, Vj) // assign sequence similarity by BLASTp as edge weight

else
wi,j = σ(TS-SSi,j/TS-SS) // assign T S-SSi,j similarity, which takes input RCi and RCj , as edge

weight. Refer to Eq.(1)-(4)

end
end

Node2vec(V ) = Node2vec.train(G) // Pre-train structural embeddings on weighted graph G

IE = combine(Node2vec(V ), Text2vec(I)) // Generate final edge embeddings. Refer to Eq.(7)

// Stage 2: edge classification

IE train = getTrainingIE(G) // Get representations for training edges

Label train = getTrainingLabels(G) // Get labels for training edges

clf = MLP.train(IE train, Label train)
return clf .predict() // Return predictions
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