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Figure S1: Flow diagram of AutoStepfinder
Overall layout of AutoStepfinder algorithm. After loading data, the AutoStepfinder core executes a 
series of partition events in which the variance between the fit and the data is minimized.  This 
iterative process of partitioning existing plateaus continues until AutoStepfinder executes the 
maximum number of iterations. After this first round of fitting, AutoStepfinder determines the 
optimal for the data by determining the global maximum of the S-curve (SP1

max) and saves the 
indices of all plateaus in the optimal fit. Subsequently, AutoStepfinder subtracts the fit from the 
data and repeats this step-fitting procedure on the residual data (Round 2).  After “Round two”, 
AutoStepfinder enters the “Split Log” stage of the fitting process. In the split log stage 
AutoStepfinder determines if the Smax of the first and second round of fitting are above the 
acceptance threshold and generates a final iteration list. This final iteration list is then used to build 
the final fit, resulting in multiple output files. 
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Figure S2: Step-detection in trajectories without steps
(A) Example of a step-fit on a trajectory that does not display step-like behavior. The fit is 
highlighted in orange line, whereas the additional counter fit is highlighted in blue. Because the 
data does not display step-like behavior, both the existing fit and counter fit have similar variance. 
(B) A representative example of an S-curve for data that does not exhibit steps. The S value can 
be calculated by taking the variance of the fit and dividing it by the variance of the counter fit. When 
the data does not display a step-like behavior, both the existing fit and counter fit have similar  
variance values, resulting in an S-value close to 1.
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Figure S3: AutoStepfinder for step detection in large datasets
(A) An example of the iterative nature of the step fit procedure. The existing plateau (NW, orange 
line) is partitioned into two new plateaus (NL and NR, dark red dashed line) at a point that yields the 
largest reduction in the variance. To determine this partition point, the algorithm recalculates the 
variance for each data point, starting at i until all data points of NW have been calculated (e.g. i+50, 
faded red dashed lines). (B) Variance landscapes for iterative step-fitting by AutoStepfinder. 
Horizontal and vertical grey shaded areas indicate the bootstrapped step error and time error, 
respectively. (C) Comparison between Stepfinder43 and the AutoStepfinder algorithm. The 
algorithms were tested by measuring the computing time of various datasets on a desktop 
computer, with default settings of the algorithms. The red dashed line indicates the limit (10,000 
sec) that was set for the computing time. 
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Figure S4: Step-detection with information criteria-based algorithms
(A-D) Step detection on idealized trajectories (see Figure 6a) using the variance (Var), Akaike 
information criterion (AIC) and Schwarz information criterion (SIC). The idealized trajectories were 
exposed to distinct noise types: Gaussian noise [a], Poissonian noise [b], correlated noise [c] and 
humming noise [d].  Each of these trajectories were exposed to noise with a  SD=2.0. The dashed 
grey line indicates the optimal number of steps in the data, normalized at 1.0. The circles indicate 
the minimum of the respective information criterion.
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Figure S5: Robustness of AutoStepfinder and a SIC based algorithm
(A) Number of steps detected by AutoStepfinder and a SIC based algorithm on idealized 
trajectories (see Figure 6a) exposed to Gaussian noise (inset) with a standard deviation of SD. (B) 
SIC curves of idealized trajectories with Gaussian noise. The dashed grey line indicates the 
optimal number of steps in the data, normalized at 1.0. The circles indicate the minimum of the SIC 
curve. (C) S-curves of idealized trajectories with Gaussian noise. The dashed grey line indicates 
the optimal number of steps in the data, normalized at 1.0. The circles indicate the maximum of the 
S-curve. (D) Number of correctly identified steps by the SIC and AutoStepfinder algorithm 
trajectories with Gaussian noise (inset) with a standard deviation of SD. (E) Number of steps 
detected by AutoStepfinder and a SIC based algorithm on idealized trajectories (see Figure 2a) 
exposed to Poissonian noise (inset) with a standard deviation of SD. (F) SIC curves of idealized 

trajectories exposed Poissonian noise. The dashed grey line indicates the optimal number of steps 
in the data, normalized at 1.0. The circles indicate the minimum of the SIC curve. (G) S-curves of 
idealized trajectories exposed to Poissonian noise. The dashed grey line indicates the optimal 
number of steps in the data, normalized at 1.0. The circles indicate the maximum of the S-curve. 
(H) Number of correctly identified steps by the SIC and AutoStepfinder algorithm trajectories 
exposed to Poissonian noise (inset) with a standard deviation of SD. (I) Number of steps detected 
by AutoStepfinder and a SIC based algorithm on idealized trajectories (see Figure 4a) exposed to 
correlated noise (inset) with a standard deviation of SD. (J) SIC curves of idealized trajectories 
with correlated noise. The dashed grey line indicates the optimal number of steps in the data, 
normalized at 1.0. The circles indicate the minimum of the SIC curve. (K) S-curves of idealized 
trajectories with correlated noise. The dashed grey line indicates the optimal number of steps in 
the data, normalized at 1.0. The circles indicate the maximum of the S-curve. (L) Number of 
correctly identified steps by the SIC and AutoStepfinder algorithm trajectories exposed to 
correlated noise (inset) with a standard deviation of SD. (M) Number of steps detected by 
AutoStepfinder and a SIC based algorithm on idealized trajectories (see Figure 2a) exposed to 
humming noise (inset) with a standard deviation of SD. (N) SIC curves of idealized trajectories with 
humming noise. The dashed grey line indicates the optimal number of steps in the data, 
normalized at 1.0. The circles indicate the minimum of the SIC curve. (O) S-curves of idealized 
trajectories with Humming noise. The dashed grey line indicates the optimal number of steps in the 
data, normalized at 1.0. The circles indicate the maximum of the S-curve. (P) Number of correctly 
identified steps by the SIC and AutoStepfinder algorithm trajectories exposed to humming noise 
(inset) with a standard deviation of SD.
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Figure S6: Step detection in magnetic tweezer and nanopore data
(A) Schematic representation of a magnetic tweezer experiment to visualize DNA compaction by 
condensin (SMC) proteins. A DNA molecule is tethered between a glass slide and a magnetic 
bead. When condensin and ATP are added, the end‐to‐end length of the DNA decreases. For a 
detailed description of these experiments see Eeftens et al.51. (B) Representative time trajectory 
displaying step-wise compaction by condensin (black), fitted with the AutoStepfinder algorithm 
over two rounds, single-pass (cyan) dual-pass (orange). (C) Distribution of step-sizes in condensin 
compaction experiments, obtained through the AutoStepfinder algorithm. (D) Schematic of a 
biological nanopore translocating a labelled peptide59. (E) Representative time trajectory 
displaying dynamics of a labelled peptide translocating through a biological nanopore (black), 
ffitted with the AutoStepfinder algorithm over two rounds, single-pass (cyan) dual-pass (orange). 
(F) Distribution of blockade levels (I) obtained through the AutoStepfinder algorithm. Black lines 
represent a Gaussian fit.
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Figure S7: Graphical user interface of DataDuster
(A) Schematic of the graphical user interface of DataDuster. Red numbers correspond to the steps 
in the user manual that describe the function of each parameter. (B) Workflow of DataDuster. 
When a multi-column .txt file is loaded into DataDuster, DataDuster will clear each column from 
NaN and Inf values. Moreover, DataDuster will detect and remove the columns that increase 
uniformly (e.g. time and index access). DataDuster will export each column as a separate .txt file 
that is compatible with AutoStepfinder.
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Figure S8: Graphical user interface of AutoStepfinder
Schematic of the graphical user interface of AutoStepfinder. The red numbers correspond to the 
steps in the user manual that describe the function of each parameter.  
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Figure S9: Inspecting the fit of AutoStepfinder
(A) Section of an idealized trajectory that is underfitted by AutoStepfinder. (B) Section of an 
idealized trajectory that is overfitted by AutoStepfinder. (C) Section of an idealized trajectory that 
is correctly fitted by AutoStepfinder. (D) Schematic of the S-curve window. The data cursor tool 
can be used to select a feature in the S-curve. The X value represents the step number that can 
be used in Manual Mode of AutoStepfinder. The red number Red numbers correspond to the steps 
in the user manual that describe the function of each parameter.  
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Figure S10: Using the output of AutoStepfinder to generate informative plots
(A) Schematic of the main window of OriginPro. Red numbers correspond to the steps in the user 
manual that describe the function of each parameter. (B) Schematic of the histogram binning 
window in OriginPro. The red numbers correspond to the steps in the user manual that describe 
the function of each parameter. (C) Schematic of the histogram 2D binning window in OriginPro. 
The red numbers correspond to the steps in the user manual that describe the function of each 
parameter. (D) Schematic of the contour plotting window in OriginPro. The red numbers 
correspond to the steps in the user manual that describe the function of each parameter.
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Figure S11: Examples of post-processed AutoStepfinder results
(A) Section of an idealized trajectory (black) that is fitted by AutoStepfinder (orange). (B) 
Distribution of levels obtained through the AutoStepfinder algorithm. Histogram was obtained by 
binning and plotting the ‘Levels After’ column of the properties.txt output file. (C) Distribution of 
step-sizes obtained through the AutoStepfinder algorithm. Histogram was obtained by binning and 
plotting the Step Size column of the properties.txt output file. (D) Distribution of dwell times 
obtained through the AutoStepfinder algorithm. Histogram was obtained by binning and plotting 
the Dwell Time after column of the properties.txt output file. (E) Transition density plot obtained 
through the AutoStepfinder algorithm. The Transition Density plot was obtained by 2D binning the 
Level Before and Level After columns in the properties.txt output file, followed by the generation of 
a contour plot.
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Figure S12: Auxiliary tools in the AutoStepfinder package
(A) Schematic of the graphical user interface of StepMaker. The red numbers correspond to the 
steps in the user manual that describe the function of each parameter. (B) Schematic of the 
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Supplemental Experimental Procedures 

Step by step user guide for AutoStepfinder 

Materials 

• A standard PC or Mac suitable for MATLAB with minimum requirements: 

o PC: Windows XP and higher operating system, Processor: any Intel or AMD 

x86 processor supporting SSE2, Disk space: 2-4 GB, RAM: 2 GB, Graphics: 

No specific graphics card is recommended.   

o Mac: Mac OS X 10.9.5 or higher operating system, Processor: all Intel-based 

Macs with an Intel core 2 or later, Disk space: 2-4 GB, RAM: 1 GB, Graphics: 

No specific graphics card is recommended.   

• MathWorks MATLAB version 2015a or above (http://www.mathworks.com) 

o MathWorks MATLAB Database Toolbox 

• The AutoStepfinder package (the most up-to-date version is available at: 

http://www.ceesdekkerlab.nl and http://www.chirlmin.org. 

• Optional: Data analysis and graphing software to post-process data (e.g. OriginLab 

Origin (http://www.originlab.com/), Graphpad Prism (http://www.graphpad.com/) or 

Microsoft Office Exel (http://www.microsoft.com/). 

Procedure 

General notes on experimental data for optimal step fitting 

AutoStepfinder is capable of detecting steps in trajectories of various techniques, including 

single-molecule fluorescence, nanopores, and magnetic and optical tweezers. While the details 

of these experimental approaches differ, we provide a set of general guidelines that will 

maximize the performance of AutoStepfinder. 

I. Sampling rate: AutoStepfinder determines the significance of steps based on the number 

of data points in the plateau (Ni) and the size of the step (D) (Figure 2). Thereby, the 

sampling rate which the single-molecule measurement is performed, i.e. the number of 

data points per time-unit, is an important factor in step fitting. To facilitate step fitting by 

AutoStepfinder, it is recommended to maximize the number of independent data points 

per plateau by acquiring data at high sampling rates. Important: Increasing the sampling 

rate in single-molecule measurements may come at a cost. For example, an increased 



sampling rate in single-molecule fluorescence measurements will require higher laser 

powers to collect a large number of photons per frame. These high laser powers will 

induce fast photobleaching and thereby limit the observation time of the experiment. In 

addition, a similar upper sampling limit exists for response time-limited systems, such as 

in magnetic/ optical tweezer and nanopore experiments.  

II. Drift: A commonly found artefact in single-molecule trajectories is drift or other types 

of movement in the x-, y- or z-direction. These movements result in trajectories with a 

gradually decreasing or oscillating signal, which may interfere with the performance of 

AutoStepfinder. Therefore, it is recommended to limit drift during the measurements as 

much as possible and discard traces from the analysis that show an excessive amount of 

drift.  

III. Filtering of data: In single-molecule data analysis, it is a common practice to reduce the 

noise in the trajectories by smoothing the data with moving averages and filters. 

However, the use of these filters may also smooth the state-to-state transitions. Given that 

AutoStepfinder works best on instant state-to-state transitions, care should be taken when 

applying such filters. Therefore, it is advised to run AutoStepfinder on raw data or 

otherwise consider using a step preserving filter, such as a median or Chung-Kennedy 

filter. 

Initializing the AutoStepfinder algorithm and auxiliary tools  

1. Start MATLAB as described by Mathworks. 

2. Copy all the files enclosed in AutoStepfinder folder to the working directory of 

MATLAB. Alternatively, change the initial working directory of MATLAB by going 

Home tab then Preferences > General > "Initial working folder" and specify the full 

path to the AutoStepfinder folder. 

 

Formatting data for step detection by AutoStepfinder  

3. AutoStepfinder runs on a single-column text file (.txt) that encompasses numeric single-

molecule data. Alternatively, AutoStepfinder can run two-column text files (.txt) with 

the time axis in the first column and data in the second column. In the latter case, the 

time axis will be ignored during the step-fitting procedure.  

4. To ensure AutoStepfinder runs properly, the input files for AutoStepfinder should be 

free of non-numeric values, including: ‘infinity values’ (Inf) and ‘not a number’ (NaN). 



To remove these values, one could use the DataDuster auxiliary tool, which is located 

in the AutoStepfinder package. 

5. Start the DataDuster auxiliary tool by opening DataDuster.m and running the code in 

the editor tab or the command window of MATLAB. 

6. After pressing “Run”, a graphical user interface (GUI) will appear, in which the user 

can adjust the run settings for DataDuster (Figure S7). 

For troubleshooting, see table S2 

6A. Data Path: The Data Path box allows one to specify the directory of the input 

data. Important: By default, the directory is set to the current directory of 

MATLAB. The default location of Data Path can be changed at line 47 of the 

DataDuster.m file.  

6B. Run Mode: Run mode specifies whether one runs DataDuster on a single file or 

run all files in a selected folder. To run a single .txt file, check single and run the 

algorithm to select a file. For batch style processing, check batch and DataDuster 

will analyze all .txt files in the specified directory.  

6C. Columns to clean and save: The columns to clean and save box allows one to 

specify on which column to run DataDuster. By default, it runs through all 

columns in the loaded .txt file(s). To specify a specific column, uncheck the “all 

columns” box and specify the number of the column to analyze.  

6D. Replace non-numeric values with: The replace non-numeric values with box 

allows one to specify what to do with the non-numeric values.  

6.D1. Neighbor: Replaces non-numeric values with the mean value of the    

neighboring two data points. 

6.D2. Mean: Replaces non-numeric values with the mean value of the dataset. 

6.D3. Median: Replaces non-numeric values with the median value of the dataset. 

6.D4. Remove: Removes non-numeric values from the dataset. 

6E. Clean data: The clean data button initiates DataDuster data cleaning procedure. 

7. To start the data cleaning procedure, press the “Clean data” button, located on the 

bottom of the GUI (Figure S7A).   

8. Browse to the directory of interest and select the file (single run) or the folder (batch 

run) that encompasses the single-molecule data for data cleaning.  



9. The output of the DataDuster is saved in a new folder called “cleaned_data_method”, 

where method refers to the input of the “replace non-numeric values with” box. This 

folder is generated in the directory of the input file. If a multi-column .txt file was 

loaded, DataDuster will output each column as a separate .txt file named: 

filename_col_0x.txt, which can be directly loaded into the AutoStepfinder algorithm. 

Notably, the MATLAB console will display the number of replaced values in each 

column. Important: DataDuster does not export trajectories that exhibit equidistant 

increase in signal, e.g. the time axis of trajectories or indices, as these trajectories are 

featureless and will not result in step detection by the AutoStepfinder algorithm. 

 

Startup and Graphical user interface of AutoStepfinder  

10. Start AutoStepfinder by opening AutoStepfinder.m and running the code in the editor 

tab or the command window of MATLAB. 

11. After pressing “Run”, a GUI will appear, in which the fitting procedure will be executed 

and fitting parameters can be adjusted (Figure S8).  

11A. Fitting Window: The top half of the GUI comprises a fitting window.  This 

window allows one to visually inspect the fit after executing the AutoStepfinder 

algorithm. The data is displayed in blue and the corresponding fit in orange.  

11B. Data Path: The Data Path box allows one to specify the directory of the input 

data. Important: By default, the directory is set to the current directory of 

MATLAB. The default location of Data Path can be changed at line 38 of the 

AutoStepfinder.m file.  

11C. Run Mode: Run mode specifies whether one runs AutoStepfinder on a single 

file or run all files in a selected folder. To run a single .txt file, check single and 

run the algorithm to select a file. For batch style processing, check batch and 

AutoStepfinder will analyze all .txt files in the specified directory.  

11D. Run Settings: The Run Settings box provides a minimal set fitting of 

parameters that allows one to tune the fitting procedure (Figure S8).  

11.D1. Iteration range: The iteration range parameter determines to what extent 

AutoStepfinder continues the fitting procedure. Once the number defined by the 



iteration range is found, the algorithm stops partitioning plateaus to minimize c2 

and determines the optimal fit. For datasets with limited step numbers, the 

iteration range parameter can be decreased to reduce the computing time of the 

fitting procedure. Typically, the initial iteration range is set to ¼ of the number of 

data points of the input data. 

11.D2. Time resolution: The time resolution parameter corresponds to the 

temporal resolution (e.g. the time interval between each data point) of the 

measurement. This parameter will be used for the time data in the output files of 

AutoStepfinder. Important: If a file with two columns is provided, time and data, 

the time column (first column) is ignored by the AutoStepfinder algorithm.  

11.D3. Accept(ance) thresh(old): The acceptance threshold sets a threshold for 

each fitting round and is compared to Smax-1. If the S-curve of the first or second 

fitting round provides a Smax that lays below the threshold, this fitting round will 

not be executed.  Typically, the acceptance threshold ranges between: 0.1 – 1. 

Important: Care should be taken when adjusting the acceptance threshold. If the 

acceptance threshold is set above the Smax of the first round of fitting, 

AutoStepfinder will not execute the step-finding procedure.  

11E. S-Curves: When S-Curves are turned on, the AutoStepfinder will display the S-

curves of the first and second round in a separate window.  

11F. User plot: The user plot box allows one to quickly assess the fitting result of the 

AutoStepfinder algorithm. By turning the User plot function on, AutoStepfinder 

will plot the step size, step levels and dwell-time histograms in a separate window. 

11G. Adv(anced) Options: Enabling the advanced option box displays the advanced 

setting of AutoStepfinder (Figure S8). Important: It is noted that these settings are 

intended for advanced users that have full understanding on the step fitting 

procedure. 

11.G1. Output files: The output files box allows one to select which output files 

AutoStepfinder saves. By saving a subset of output parameters, additional speed 

can be gained, which may be preferred for large datasets or when optimizing 

fitting settings.  



11.G2. File ext(ension): The file extension box allows one to select the file type 

AutoStepfinder outputs. When .txt is checked, AutoStepfinder outputs text files. 

If .mat is checked, AutoStepfinder outputs matlab files, which can be used to 

further post-process the output of AutoStepfinder in Matlab. 

11.G3. Fitting: The fitting box allows one to choose how the position of the 

plateaus of the final fit is determined. By default, AutoStepfinder uses the 

averages of each plateau to determine its position for each iteration and the final 

fit. However, in some cases (e.g. when data exhibits spikes), one may choose to 

build the final fit using the median of each plateau, by checking the median 

parameter.  

11.G4. Manual mode: Manual mode allows one to define the number of steps that 

have to be found by the algorithm. Typically, the number of manually fitted steps 

does not exceed the iteration range. Important: Manual mode overrides the 

quality assessment of AutoStepfinder and should only be used in an informed 

manner. 

11.G5. Post proc(essing): The post processing box allows one to discard the 

baseline plateaus from the fit. All fitted plateaus that have a value below the 

provided threshold in units of the input data are removed from the 

“filename_properties” output file. 

11.G6. Noise estimation: The noise estimation box allows the user to perform 

pairwise distance noise estimation on the residual noise in the data (data with the 

fit substracted). By default, the range over which the noise estimation is 

performed is set to 100 data points.  By enabling the Noise estimation function, 

AutoStepfinder opens a new window with curves that correspond to the Residual 

noise (blue line), the median (red line) and the pairwise distance noise (red circle). 

Important: For low pass filtered data the pairwise distance error may be under 

estimated, in this case it is advised the median value as noise estimate.  

11.G7. Error estimation: The error estimation box allows the user to perform 

bootstrap analysis that provides the 95% confidence intervals of both the step-

sizes and the plateaus. When error estimation is enabled, the AutoStepfinder 

output includes two additional columns with the respective 95% confidence 

intervals. 



 

11H. Run and Re-run: The run button initiates AutoStepfinder step fitting procedure. 

The Re-run button enables after a single run has been executed and allows the user 

to re-analyze the data without having to load the data.   

 

Running AutoStepfinder   

12. To start the step-finding procedure press the “Run” button, located on the right side of 

the GUI (Figure S8).   

13. Browse to the directory of interest and select the file (single run) or the folder (batch 

run) that encompasses the single-molecule data for AutoStepfinder.  

14. Press open to start the step-finding procedure. The progress of the AutoStepfinder 

analysis is displayed in the console of MATLAB. Once the console indicates “done!” 

the fitting procedure has been completed and output files have been saved.  

15. The output of the AutoStepfinder analysis is saved in a new folder (StepFit_Result), 

which is generated in the directory that is provided in the datapath box of the GUI. By 

default, the output of AutoStepfinder consists of four files: “filename_fits”, 

“filename_properties” and “filename_s_curve” and “filename_config”. The 

“filename_fits” file consists of three columns (Table S1) and can be used to plot the 

data with corresponding fit. The “filename_properties” file consists of 8 columns 

(Table S1) and encompasses the information required to generate histograms of the step 

size, step levels and dwell-times. The “filename_s_curve” file encompasses the 

information required to plot the S-curves of the first and second round (Table S1).  

Lastly, AutoStepfinder generates a “filename_config” file that encompasses all the 

parameters that were used to generate the fit (Table S1). Notably, when batch mode is 

selected, AutoStepfinder generates additional .JPEG files of the fit window, user plots 

and S-curves (Table S1). 

 

Fine tuning the fit parameters for optimal results  

16. Important: AutoStepfinder is a robust approach for automated step detection that 

determines the optimal fit based on statistical arguments. However, despite the 

automated detection of steps, it is advised to always carefully inspect the quality of the 



fitting result before proceeding with post-processing of the data. The quality of the fit 

can be assessed by using the fitting window and the built-in controls of the GUI (e.g. 

zoom in/out and pan) (Figure S8, Step 11.A). Below we provide guidelines on how to 

interpret and fine-tune fitting parameters to obtain optimal fitting results. As a rule of 

thumb, it is recommended to maintain a conservative attitude towards step fitting in 

which it is better to miss small events rather than to introduce spurious steps by 

overfitting.   

16A. Underfitted data: Data is considered underfitted when the number of detected steps by 

AutoStepfinder is significantly lower than the number of steps that are present in the 

data. Therefore, a hallmark for underfitted data is a fit in which a significant number of 

steps are missed. At the location where steps are obviously missed, the plateau of the 

fit deviates from the data (Figure S9A) and thereby these plateaus are generally 

associated with in large step errors (properties output file, column 8). Underfitting of 

data is typically associated with irregular features in the S-curve; therefore, it is 

recommended to inspect the corresponding S-curve (11.E). While the S-curve normally 

shows a sharp peak at the optimal step number, for some datasets the S-curve may have 

a non-canonical shape. For example, it might have a secondary peak or shoulder that 

represents a more realistic step number to fit.  

Typically, underfitting can be prevented by adjusting the parameterization of 

the AutoStepfinder algorithm. Underfitting may occur when the final number of steps 

in the data is too close to the user provided iteration range (Step 11.D1) or when the 

Smax of the second round of fitting lies below the acceptance threshold (Step 11.D1). 

Thereby, underfitting can be prevented by increasing the iteration range or by lowering 

the acceptance threshold. Alternatively, one can determine the position of a specific 

feature in the S-curve (e.g. a shoulder or secondary peak) as follows: 

16.A1. Select the data cursor tool from the build in controls of the S-curve plotting 

window (Figure S9D) 

16.A2. Use the data cursor tool to determine the step number (X value) at which the 

shoulder or secondary peak in the S-curve occurs (Figure S9D). 

16.A3. Enable to advanced settings and engage manual mode (Step 11.G4) under the 

advanced settings (Step 11.G).   

16.A4. Insert step number that was determined with the data cursor tool in the manual 

mode box (Figure S9D). 

16.A5. Run AutoStepfinder with manual mode engaged.  



Important: By engaging manual mode AutoStepfinder fits the user-defined number of 

steps to the data, bypassing the quality assessment of the AutoStepfinder algorithm. 

Therefore, the use of manual mode should always be guided by specific features of 

the S-curve. It is strongly discouraged to use manual mode without a compelling 

rationale. 

16B. Overfitted data: Data is considered overfitted when the number of detected steps by 

AutoStepfinder is significantly higher than the number of steps that are present in the 

data. Therefore, a hallmark for overfitted data is a fit in which plateaus are fitted with 

a significant number of small steps that follow the noise of the data (Figure S9B). By 

fitting the noise of the data, plateaus are divided into smaller ones, which can 

detrimental for the outcome of the step analysis (e.g. dwell-times can be significantly 

shorter when data is overfitted). In most experimental contexts, it is better to miss small 

events than to introduce spurious small steps by overfitting. 

Overfitting of data is typically associated with wrong parameterization of the 

AutoStepfinder algorithm. Overfitting of data by AutoStepfinder typically occurs when 

the user-defined acceptance threshold is set too low. As a result of the low acceptance 

threshold, AutoStepfinder will consider noise as small steps and overfit the data (Step 

11.D3). In some cases, overfitting may occur when the user provides an iteration range 

that is approximately more than an order of magnitude larger than the number of steps 

in the data, which can be prevented by lowering the iteration range (Step 11.D1).  

16C. Correctly fitted data: A fit describes the data well when the majority of the plateaus are 

fitted, while noise and other artefacts in the data are not included in the fit (Figure S9C). 

If one is satisfied with the fitting results proceed to step 17 of this protocol. 

 

Post-processing of AutoStepfinder output   

The output of AutoStepfinder can be post-processed to generate informative plots using any 

kind of spreadsheet or graphing software (e.g. OriginPro, Prism, SigmaPlot, MATLAB, Python 

and Excel). Below we provide a description on how the data can be processed using OriginPro.  

 

Step-size, level and dwell-time histograms 

17. Open OriginPro and load the filename_properties.txt file by going to File > Import and 

select Single ASCII (Figure S10A). 



18. Select the filename_properties.txt in the StepFit_Result folder and click “Open”. 

19. Select a column of interest (e.g. column 5, StepSize) by clicking on the column header 

(E(Y)). The column should now be highlighted in black (Figure S10A). 

20. To generate a histogram, go to Plot > Statistics and select “Histogram” (Figure S10A). 

21. Double clicking on the bars of the histogram will open the Plot Details window (Figure 

S10B) that allows one to tune the bin size. Alternatively, right click on the bars of the 

histograms and select “Plot Details”. 

22. Uncheck “Automatic Binning”, and define a bin size or a number of bins by selecting 

“Bin Size” or “Number of Bins”, respectively (Figure S10B). As a rule of thumb, one 

can estimate the appropriate number of bins for a dataset by taking the square root of 

the number of data points in the dataset (round off if necessary).  

23. Once the appropriate number of bins has been determined press “Apply” and “OK” 

(Figure S10B). This will generate a histogram of the selected column, for example with 

Levels (Figure S11B), Step size (Figure S11C) or Dwell-times (Figure S11D). Notably, 

for step size histograms a peak at a negative step size indicates a step from a higher 

level to a lower level, whereas a peak at a positive step size indicates a step from a 

lower to a higher level (Figure S11C). 

24. To fit the histograms, the histograms need to be converted to a bar plot. To convert 

the histogram to a bar plot, right click on the histogram and select “Go to bin 

worksheet”.  

25. Select the “Bin Centers (X)” and “Counts (Y)” columns. 

26. With the columns selected go to Plot > Column/ Bar/ Pie and select “Column” (Figure 

S10A). 

27. This bar plot can be fitted with different functions, depending on the distribution of the 

data. For example, normally distributed data can be fitted with a Gauss function by 

going to Analysis > Peaks and Baseline > Multiple Peak Fit and selecting: “Open 

Dialog”, whereas data that follows an exponential decay can be fitted by going to 

Analysis > Fitting > Exponential Fit and selecting: “Open Dialog” (Figure S10A). 

 

Transition density plots 

28. Open OriginPro and load the filename_properties.txt file by going to File > Import and 

select Single ASCII (Figure S10A). 

29. Select the level before (C(Y)) column. 



30. Right click on the selected column and click on: Set As > X, the column header should 

change from C(Y) to C(X2) (Figure S10A). 

31. Select the level before (C(X2)) and level after (D(Y2)) column by clicking on the 

column header. The column should now be highlighted in black. 

32. Bin the data in 2D by going to Statistics > Descriptive Statistics > 2D Frequency 

Count/ Binning and select “Open Dialog” (Figure S10A).  

33. Adjust “Specify Binning Range by” to “Bin Centers” (Figure S10C). 

34. Uncheck “Automatic Binning”, and define a bin size or a number of bins by selecting 

“Bin Size” or “Number of Bins” (Figure S10C). As a rule of thumb, one can estimate 

the appropriate number of bins for a dataset by taking the square root of the number of 

data points in the dataset, round off if necessary.  

35. Repeat step 33-34 for the Y data, selecting the same parameters, such as bin size/ bin 

numbers (Figure S10C). 

36. Press “OK” to generate a new workbook with 2D binned data (Figure S10C). 

37. Select all columns of the newly generated workbook with 2D binned data. 

38. With the columns selected go to Plot > Contour and select “Color Fill” (Figure 

S10A). 

39. In the pop-up window select “Y across columns” for “Data Format” (Figure S10D). 

40. Change “Y Values in” to “Column Label” (Figure S10D).  

41. Make sure that in the “Bin Centers”, “LevelAfter” is selected under “Column Label” 

(Figure S10D).  

42. Select “1st column in selection” for “X values in” (Figure S10D). 

43. Press “OK”  (Figure S10D) and the transition density plot will be generated (Figure 

S11E).  

44. The contour plot can be formatted by right clicking on the center of the graph window 

and going to “Plot Details”.  

 

 

  



Generating trajectories with StepMaker 

StepMaker is a tool that allows a user to generate trajectories of various techniques, including 

single-molecule fluorescence, nanopores, and magnetic and optical tweezers. Below we 

provide a set of general guidelines that demonstrate how StepMaker can be tuned to obtain 

specific trajectories. 

Startup and Graphical user interface of StepMaker  

45. Start StepMaker by opening StepMaker.m and running the code in the editor tab or the 

command window of MATLAB. 

46. After pressing “Run”, a GUI will appear, in which the simulation procedure will be 

executed and parameters can be adjusted (Figure S12A).  

46A. The step distribution box allows one to select how steps are distributed in the 

simulated trajectory (Figure S12A). The user has the choice between:  

46A.1 Flat distribution: When the step distribution is flat all step sizes between the 

indicated minimum and maximum step size have an equal chance of occurring. 

46A.2 Gaussian distribution: When the step distribution is gaussian step sizes are 

randomly picked from a gaussian distribution with the indicated mean and sigma.  

46A.3 Exponential distribution: When the step distribution is exponential, steps are 

randomly picked from an exponential distribution with the indicated decay constant.  

46B. The dwell time distribution box allows one to select how steps are distributed in 

the simulated trajectory. The user has the choice between: 

46B.1 Flat distribution: When the dwell time distribution is flat all dwell times between 

the indicated minimum and maximum dwell times have an equal chance of occurring. 

46B.2 Gaussian distribution: When the dwell time distribution is gaussian dwell times 

are randomly picked from a gaussian distribution with the indicated mean and sigma. 

46B.3 Exponential distribution: When the dwell time distribution is exponential, dwell 

times are randomly picked from an exponential distribution with the indicated decay 

constant. 



46C. The trace properties box (Figure S11A) allows the user to select the properties of 

the simulated trajectory: 

46C.1 # of steps: Number of steps in the generated trajectory. Naturally, the number of 

dwells is one unit higher. 

46C.2 Noise: Standard deviation of the Gaussian noise in the signal. 

46D.2 # of Traces: Number of trajectories that are generated by StepMaker. 

46D. Additional options (Figure S12A): 

46D.1 Add baseline: Number of data points to be added before or after the trajectory. 

When the value of the baseline is negative the baseline is added to the beginning to the 

trajectory. When the value of the baseline is positive the baseline is added to the 

beginning to the trajectory. 

46D.2 # of cycles: Number of repeats within the trajectories that are generated by 

StepMaker. For example, this option can be used to make two-state transition 

trajectories. 

Postprocessing trajectories with StepMerger 

StepMerger is a tool that allows a user to remove statistically significant features that may not 

of interest, such as blinking and spikes from the output of AutoStepfinder. Below we provide a 

set of general guidelines that demonstrate how StepMerger can be tuned to remove these 

features. 

Startup and Graphical user interface of StepMerger.  

47.  Start StepMerger by opening StepMerger.m and running the code in the editor tab or 

the command window of MATLAB. 

48. After pressing “Run”, a GUI will appear, in which the merging procedure will be 

executed and parameters can be adjusted (Figure S12B).  

48A Input directory: The Input directory box (Figure S12B) allows one to specify the 

directory of the input data. Important: By default, the directory is set to the current 

directory of MATLAB. 

 

48B. Action: The action box allows the user to choose how the data is processed. 



 

48B.1 Despiking: Despiking allows to the user to remove blinks and spikes that return 

to the same level from the AutoStepfinder output. Spikes and blinks that are within the 

indicated maximum width will be removed. Moreover, the margin option determines 

the maximum relative difference between the up and down steps that comprises the 

spike. 

 

48B.2 Merging: Merging allows the user to merge small spurious steps that are within 

the indicated max width and that move after another in the same direction. These 

small spurious steps are typically associated with non-instantaneous steps. 

 

48B.3 Error estimation: The error estimation box allows the user to perform bootstrap 

analysis that provides the 95% confidence intervals of both the step-sizes and the 

plateaus. When error estimation is enabled, the StepMerger output includes two 

additional columns with the respective 95% confidence intervals. 

 

49. The output of the StepMerger has the same format as AutoStepfinder (the fit and 

properties), which are generated in the directory that is provided in the input directory 

box of the GUI. 

 

 

 

 

 

 

 

 

 

 

 



Table S1| Output of the AutoStepfinder algorithm 

File Column Name Description 

filename_fits 1 Time Time axis of the dataset. Important: If the time 

resolution was not provided in the Run Settings box, 

the time axis is converted to indices. 

 2 Data Data that has been loaded into AutoStepfinder. 

 3 Fit The corresponding fit of the data that was generated 

by AutoStepfinder.  

filename_properties 1 Index Step Index based location of the step between two plateaus. 

The location of the step is defined by the last data point 

of the plateau that is located on the left. 

 2 Time Step Time based location of the step between two plateaus.   
Important: Notably, if the time resolution was not 

provided in the Run Settings box, the time is converted 

to indices. 

 3 Level Before Level of the plateau before the step occurred.  

 4 Level After Level of the plateau after the step occurred. 

 5 Step Size Signal difference between the two plateaus. Notably, a 

negative step size indicates a step from a higher level 

to a lower level, whereas a positive step size indicates 

a step from a lower to a higher level. 

 6 Dwell Time Step 

Before 

Dwell time of the plateau before the step occurred. 

 7 Dwell Time Step 

After 

Dwell time of the plateau after the step occurred. 



 

  

 8 Error Predicted error of the step size, which is based on the 

plateau length and step size.  

 9 Bootstrap error  

of the step size 

The 95% confidence interval of the step size 

determined by bootstrap analysis 

 10 Bootstrap error  

of the time 

The 95% confidence interval of the time determined 

by bootstrap analysis 

filename_SCurve 1 Step Number The number of steps that have been fitted to the data. 

 2 SCurve Round 1 S-values of the first round of fitting.  

 3 SCurve Round 2 S-values of the second round of fitting. 

filename_config - - A list of all the fitting parameters that were used by 

AutoStepfinder.  

filename_fitfig 

(exclusive for batch 

analysis)  

- - An .JPEG image of the fitting window (11.A), 

showing the raw data and fit. 

filename_s_curve 

(exclusive for batch 

analysis)  

- - An .JPEG image of the s-curve window (11.E3), 

showing S-curves of round 1 and 2. 

filename_user_plot 

(exclusive for batch 

analysis) 

- - An .JPEG image of the userplot window (11.G), 

showing the plots of step-size and step-levels. 



Table S2: Troubleshooting AutoStepfinder 

Step Problem Possible reason Solution 

6A Pop-up with Error: The 
provided directory is not valid. 

The provided directory 
does not exist. 

Provide an existing data path. 

  The provided directory 
is not a folder. 

Provide a data path to the file directory. 

6C Popup with Error: The input for 
the number of columns is NaN.  

The input for the 
number of columns is 
not a number (NaN). 

Provide a number as input for the 
number of columns. 

7 Popup with Error: The provided 
input folder is empty. 

The provided input 
folder is empty. 

Select a folder that contains .txt files 
with your data. 

 Pop-up with Error: ‘FileName’ 
contains is not formatted 

properly. 

The data may be the 
wrong filetype.  

Check the file extension of the input 
data. The file extension should be .txt. 

  The data may contain 
characters 

Alternatively, check if the input data 
contains characters. 

10 The AutoStepfinder GUI does is 
not displayed as in Figure 8. 

Screen resolution is too 
low. 

Increase screen resolution. Alternatively, 
resize GUI window. 

  Monitor size is smaller 
than 17”. 

Connect a larger monitor to your 
computer. Alternatively, resize GUI 

window. 

11.B Pop-up with Error: The 
provided directory is not valid. 

The provided directory 
does not exist. 

Provide an existing data path. 

  The provided directory 
is not a folder. 

Provide a data path to the file directory. 

11.C Popup with Error: Empty 
folder. 

The provided input 
folder is empty. 

Select a folder that contains .txt files 
with your data. 

11D.1 Popup with Error: The iteration 
range parameter is NaN. 

The input for the 
iteration range 

parameter is not a 
number (NaN). 

Provide a number as input for iteration 
range parameter. 

11D.2 Popup with Error: The time 
resolution parameter is NaN. 

The input for the time 
resolution parameter is 
not a number (NaN). 

Provide a number as input for the time 
resolution parameter. 

11D.3 Popup with Error: The 
acceptance threshold is NaN. 

The input for the 
acceptance threshold is 
not a number (NaN). 

Provide a number as input for the 
acceptance threshold parameter. 

11.G4 Popup with Error: The input for 
manual mode is NaN. 

The input for the 
manual mode parameter 
is not a number (NaN). 

Provide a number as input for the manual 
mode parameter. 

 Popup with Error: The input for 
manual mode is smaller than 1. 

The input for manual 
mode parameter is 

smaller than 1. 

Provide a parameter value for manual 
mode that is larger than 1. 

11.G5 Popup with Error: The mean 
baseline parameter is NaN. 

The input for the mean 
baseline parameter is 
not a number (NaN). 

Provide a number as input for the 
baseline parameter. 

11.G6 Popup with Error: The time 
range for noise estimation is 

NaN. 

The input for the time 
range for noise 

estimation is not a 
number (NaN). 

Provide a number as input for the time 
range parameter. 

 Pop-up with Error: ‘FileName’ 
contains more than two 

columns. 

The input data is 
containing more than 2 

columns. 

Provide a .txt file with a single or double 
column. Multi-column files can be split 



into single columns using DataDuster. 
see step 3 to 9. 

14 Pop-up with Error: ‘FileName’ 
contains NaN values. 

Data contains values 
that are not a number 

(NaN). 

Remove or replace NaN data point(s) by 
using DataDuster see step 3 to 9. 

 Pop-up with Error: ‘FileName’ 
contains infinite values. 

Data contains values 
that are infinite (Inf). 

Remove or replace Inf data point(s) by 
using the DataDuster see step 3 to 9. 

 Pop-up with Error: ‘FileName’ 
contains is not formatted 

properly. 

The data may be the 
wrong filetype.  

Check the file extension of the input 
data, which should be .txt. 

  The data may contain 
characters 

Alternatively, check if the input data 
contains characters. 

 Pop-up: No significant steps 
detected. 

Detected Smax of round 
1 is below the 

acceptance threshold. 

Decrease the acceptance threshold 
parameter in advanced settings (Step 

11.D3). 

15  Data does not contain 
significant steps. 

An inherent feature of the input data, e.g. 
linear data, that cannot be solved. 

 AutoStepfinder does not detect 
a significant portion of my 

events. 

Base line type events: 
The baseline between 

events is too long.  

Decrease the baseline between events. A 
typical range for effective step detection 

are baselines that have an equal or 
smaller dwell time than the events.  

  Data exhibits big 
features (large-step 

sizes or long plateaus) 
that are not of interest.  

Remove or decrease size of these 
features from dataset. 

  Events are too short or 
too small to fulfill the 

S-criteria. 

Inspect S-curve and if necessary tune 
fitting with sensitivity or manual mode. 

 AutoStepfinder splits big steps 
into smaller unwanted steps. 

Steps in the data are not 
instantaneous. 

An inherent feature of the input data, no 
obvious solution. 

  Data was low pass 
filtered or smoothened.  

AutoStepfinder works best on instant 
steps, remove smoothing of data. 

Alternatively, consider step preserving 
filtering, such as median or Chung-

Kennedy filtering. 

 AutoStepfinder fits high 
frequency features that are not 

of interest.  

Data contains high 
frequency features. 

Consider step preserving filtering, such 
as median or Chung-Kennedy filtering. 
Alternatively, consider removing the 

features corresponding to the high 
frequency features from the fit. For 
example, by using the StepMerger 

auxiliary tool. 
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