Supplementary Information

An AND-gated drug and photoactivatable Cre-loxP system for spatiotemporal control in cell-based therapeutics

Molly E. Allen^{1,2}, Wei Zhou³, Jeyan Thangaraj^{1,2}, Phillip Kyriakakis¹, Yiqian Wu^{1,2}, Ziliang Huang^{1,2}, Phuong Ho^{1,2}, Yijia Pan^{1,2}, Praopim Limsakul^{1,2}, Xiangdong Xu^{4*}, and Yingxiao Wang^{1,2*}

¹Department of Bioengineering, ²Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States, ³Chongqing Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing 400030, China, ⁴Department of Pathology, Veterans Affairs San Diego Healthcare System, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States

Corresponding Authors: Yingxiao Wang, Ph.D., Email: yiw015@ucsd.edu, Tel: 858-534-5256 Xiangdong Xu, M.D., Ph.D., Email: xxu@ucsd.edu, Tel: 858-642-1415

Table of Contents

Table S1. Truth table highlighting potential on-target off-tumor toxicity risks for severalengineered CAR T cell system

Figure S1. Schematic representations of genetic constructs

Figure S2. Design and characterization of the blue light stimulation apparatus

Figure S3. Additional characterization of the PA-Cre-M system

Figure S4. Diversification of the pMag CDS

Figure S5. Optimizing TamPA-Cre recombination efficiency through different tamoxifen- and blue light stimulation protocols

Figure S6. CAR-mediated T cell activation is antigen specific at low CAR expression levels

Figure S7. Testing different Cre-loxP CAR Reporter designs.

Figure S8. Pulsatile blue light stimulation protocols improve Cre-*loxP* recombination efficiency due to slow nMag-pMag dissociation kinetics

Figure S9. Cre-*loxP* recombination in TamPA-Cre CAR Reporter Jurkat T cells plateaus between 6h and 24h of blue light stimulation

 Table S2.
 Non-linear Fit Trendline Information

Figure S10. Expanded lower range of plots in Fig. 5B-E.

SI References

Supplementary Table S1. Truth table highlighting potential on-target off-tumor toxicity risks for several engineered CAR T cell system. CAR T cell systems target localized cancerous cells that express Antigen1 and/or Antigen2. Expected CAR-mediated T cell activation is given as an output for each unique combination of inputs, noting incidents of on-target on-tumor (blue) and on-target off-tumor toxicities (red). Blue light stimulation is only applied locally at the tumor site. T cells expressing the basic α-Antigen1 CAR will trigger on-target off-tumor toxicity against any Antigen1⁺ healthy cells along with cancer cells. The ON-Switch α -Antigen1 CAR system¹ relies on a diffusible small molecule to restore CAR function. Small molecules, however, are at risk of diffusing throughout the body, leaving Antigen1⁺ healthy cells susceptible to on-target off-tumor toxicity. The cytosolic costimulatory and activating domains of CAR can be split into 2 proteins, each with a unique antigen recognition domain. CAR function is restored upon binding to Antigen1⁺ Antigen2⁺ targeted cancer cells.² However, the split CAR will also trigger on-target off-tumor toxicity against any Antigen 1⁺ Antigen 2⁺ healthy cells. The synNotch receptor localizes T cells to all Antigen 1⁺ cells, after which α -Antigen2 CAR is automatically expressed,³ similarly risking on-target off-tumor toxicity against Antigen1+ Antigen2⁺ healthy cells. The TamPA-Cre system localizes T cells to all Antigen1⁺ cells, but α-Antigen2 CAR is only expressed after global tamoxifen administration and localized blue light stimulation. As long as Antigen1+ Antigen2⁺ healthy cells are not colocalized with cancer cells, they are not at risk for on-target off-tumor toxicity.

		In	put(s)		Output: CAR-Mediated T Cell Activation On-target On-tumor or On-target Off-tumor									
	Antigen1 ⁺ Target	Antigen2 ⁺ Target	Small Molecule Stimulation	Blue Light Stimulation	α-Antigen1 CAR	ON-Switch α-Antigen1- CAR	α-Antigen1, α-Antigen2 Split CAR	α-Antigen1 synNotch α-Antigen2 CAR	TamPA-Cre α-Antigen1 Receptor α-Antigen2 CAR					
	0	0	0	0	0	0	0	0	0					
	0	0	1	0	0	0	0	0	0					
ells	0	1	0	0	0	0	0	0	0					
Ŭ	0	1	1	0	0	0	0	0	0					
alth	1	0	0	0	1	0	0	0	0					
He	1	0	1	0	1	1	0	0	0					
	1	1	0	0	1	0	1	1	0					
	1	1	1	0	1	1	1	1	0					
ells	1	1	0	0	1	0	1	1	0					
ŭ	1	1	0	1	1	0	1	1	0					
nce	1	1	1	0	1	1	1	1	0					
Ca	1	1	1	1	1	1	1	1	1					

Figure S1. Schematic representations of genetic constructs. The following constructs were assembled as detailed in the "Supplementary-Constructs-Spreadsheet" file: (A, pMA002) PA-Cre-Ci⁴ *pSin-mPGK-mCherry-P2A-CIB1CreC(106-343)-IRES-CRY2(L348F)CreN(19-104);* (B, pMA005) PA-Cre-M⁵ in one vector: *pSin-hEF1a-CreN(19-59)-NLS-P2A-NLS-dpMag-CreC(60-343);* or (C) in two vectors: (C1, pMA003) *pSin-hEF1a-CreN(19-59)-nMag-NLS-P2A-mCherry-IRES-PuroR* and (C2, pMA004) *pSin-hEF1a-tBFP-P2A-NLS-pMag-CreC(60-343)-IRES-PuroR;* (D, pMA001) Cre: *pSin-hEF1a-Cre-2xP2A-mCherry;* (E, pMA006) ERT2-Cre-ERT2: *pSin-hEF1a-ERT2-Cre-ERT2;* (F, pMA007) ERT2-mCh: *pSin-hEF1a-ERT2-mCherry;* (G, pMA013) TamPA-Cre in one vector: *pSin-hEF1a-ERT2-CreN(2-59)-nMag-P2A-NLS-dpMag-CreC(60-343)-P2A-mCherry;* or (H) in two vectors: (H1, pMA011) *pSin-hEF1a-ERT2-CreN(2-59)-nMag-P2A-mCherry-IRES-PuroR* and (C2, pMA004); (I) TamPA-Cre-nH1 in two vectors: (I1, pMA012) *pSin-hEF1a-ERT2-CreN(2-59)-nMagHigh1-IRES-PuroR* and (C2, pMA004); (J, pMA014) EGFP Reporter: *pSin-hEF1a-ERT2-CreN(2-59)-nMagHigh1-IRES-PuroR;* (K, pMA022) CAR Reporter *pSin-hEF1a-loxp-mCherry-2stop-loxP-EGFP-IRES-PuroR.* dpMag = codon diversified pMag (see Fig. S4).

Figure S2. Design and characterization of the blue light stimulation apparatus. (A) To distribute light from a single LED evenly across a standard 24-well plate of cells, we built the blue light stimulation apparatus with an LED placed at a defined distance from a polypropylene light-diffusion film. (I) Close up of the mounted blue LED covered in a protective layer of transparent epoxy. (II) Dual Lock Reclosable Fasteners (3M, yellow) were adhered to the back of the LED (not shown) and in the center bottom of a deep, polyester white-walled container with a clear PET plastic lid and synthetic rubber gasket. Small plastic Decorating Clips (Command, white) were used to hold the LED wire along the inner walls of the container, out of the light path. A small notch was cut into the white container to minimize strain on the wire when the lid was fastened. (III) A polypropylene

Figure S2. Design and characterization of the blue light stimulation apparatus Continued. static-cling frosted window film was cut to size and placed on the inside of the lid to work as a light-diffusion film. (IV) The LED was mounted in the bottom center of the container and the wires secured with clips. In the background, the wire connects to the intensity-adjustable blue LED control system (Phillip Kyriakakis). (V) The lid was fastened onto the blue light box and the blue light is turned on to demonstrate function. The cell culture place was centered inside a lidless black plastic box, which was fitted to the beveled lid of the blue light box (VI) After blue light intensity was measured and adjusted using a power meter, the blue light box was flipped upside down and centered on top of the cell culture plate in the lidless black plastic box. During experiments, this configuration is assembled inside of a humidified 37° C, 5% CO₂ cell culture incubator. Finally, blue light exposure times and patterns are entered into the LED control system's LabVIEW-based software outside of the incubator. (B) Spectral evaluation of the blue LED used to stimulate photoactivatable Cre-loxP recombination. The LED was measured by mounting it onto a cell culture plate, then using a microplate reader (Infinite M1000 Pro, Tecan) to measure the intensity of the LED at different wavelengths (1 nm intervals). Peak intensity wavelength occurred at 473 nm (bandwidth = 29 nm). (C) Characterization of light distribution showing more even distribution with greater distance from the LED light and with scattering from the diffusion film lid. The blue light box was set up shown in A-VI, such that light intensity could be measured at the approximate location experience by cells in each well of a 24-well plate. The shortest distance between the light source and center of the 24-well plate cell culture plane was approximately 15.5 cm. The lid with the diffusion filter was located a minimum of 10.1 cm from the light source. Future designs will include an array of multiple LEDs to further improve light distribution.

Figure S3. Additional characterization of the PA-Cre-M system. (A) Excessive expression of PA-Cre-M drives high levels of spontaneous recombination. CAR Reporter Jurkat T cells were transiently transfected via electroporation with PA-Cre-M (Fig. S1C). 24-hours post-transfection, cells were (Light) or were not (Dark) subjected to pulsatile blue light stimulation for 24h (50 W/m², 1s per min). Trend lines fitted to Dark (black) and Light (green) groups were created using a two-phase exponential association model (See Table S2). At low PA-Cre-M expression levels (as measured by the intensity of the mCherry marker), the difference between the Light and Dark groups is small. With increasing expression level, light-induced PA-Cre-M drives increasing levels of recombination while cells kept in the dark remain relatively low. However, at higher expression levels, the difference between Recombination in Dark and Light groups begins to narrow as cells in the Dark groups become more susceptible to spontaneous background recombination. Data is from the analysis of one experiment, but represents a common trend seen across several different experiments in which PA-Cre-M was variably expressed. (B) Cre-loxP recombination cannot be driven by CreN-nMag-NLS or NLS-pMag-CreC alone. EGFP Reporter HEK293T cells transiently transfected with CreN-nMag-NLS-P2A-mCherry (CreN-nMag-NLS), or tBFP-P2A-NLS-pMag-CreC (NLS-pMag-CreC) constructs either were (Light) or were not (Dark, Ambient) exposed to blue light stimulation (5 W/m², 7.5s per min, 24h) (n=5). Across Reporter, CreN-nMag-NLS, and NLS-pMag-CreC groups, there is no significant difference seen in any light condition (Dark, Ambient, Light). Blue light stimulation started and flow cytometry measurements taken 24h and 72h post-transfection, respectively. Percentage of recombined HEK293T cells (normalized to maximal recombination) = 100%*(% of EGFP⁺ cells) / (mean % of EGFP⁺ cells in corresponding Cre groups).

Alignme	ent of	nMa	gС	DS	wit	hр	Mag	l CI)S													
Simila	rity :	446	/45	0 (99.	11	응)															
		Н	Т	L	Y	A	Ρ	G	G	Y	D	I	М	G	Y	L	D	Q	I	G	Ν	
nMag	1	CAT	ACT	CTT	TAT	GCC	CCC	GGI	GGA	TAT	GAC	AT	(TAT	GGGI	ATA	CT(G-GA	CCA	GAT	CGG	CAA	59
								111	111	111		11					# #	#		#	#	
pMag	1	CAT	ACT	CTT	TAT	GCC	CCC	GGI	GGA	TAT	GAC	TAT	TAT	GGGZ	ATA	гсто	GAGG	-CA	GAT	CAG	GAA	59
		Н	Т	L	Y	A	Ρ	G	G	Y	D	Ι	М	G	Y	L	R	Q	I	R	Ν	
		R	Ρ	Ν	Ρ	Q	V	Е	L	G	Ρ	V	D	Т	S	С	A	L	I	L	С	
nMag (60	CCG	GCC	AAA	.ccc	GCA	GGT	'GGA	ACT	'GGG	CCC	CGI	rgg <i>i</i>	ATA	CAT	ссто	GCGC	CTT	GAT	TCT	TTG	119
			111	111	111	111	111	111	111	111								111	111	111		
pMag (60	CCG	GCC		ccc	GCA	GGT	GGA	ACT	GGG	acco	CG	rggz		сато	ссто	GCGC	СТТ	GAT	тст	TTG	119
[j		R	P	N	p	0	v	E	т.	G	P	v	D	т	S	C	Δ	т.	т	т.	С	
		D	т.	ĸ	0	ĸ	D	т	P	т	v	v	Δ	s	E	Δ	F	T.	Y	м	т	
nMag -	120	TGA	ССТ		ACA	GAA	AGA		- 	ימסי	יממי	יייייייי גיייייייי		CAC	TCI		- سست	CCT	- СТД	CAT	CAC	179
iniag .	120								111									111				112
nMag	120	TCA	CCT	יייי ממסי	707	CDD	707			יייי רגיטי	יייי ריס מי	ון ירףיקףי		2020	CTC7		ነ ነ ነ ነ ግርግጥጥ	CCT	יייי רייס	יייי מאדי	GAC	179
phag .	120	TGA	T	URA		V	AGA D	UCAC m	-CCC	T AD	. HGI	v	1000	CGAC	т. ЭТ.Ст	70.04		T	v	M	m	тıр
		C	Ц V	r c	×	7	D F	1	E T	L C	v D	L	A	э Б	E	A	г О	Ц	T	P	T C	
	100	G	I	3	IN	A	E	V	Ц	G	R	IN		R	r	ц	2 V	3	P		G	220
nmag .	180	AGG	TTA	CAG		CGC	AGA	IGG.I	GC1	666		GAP	4T.L(3000	-G.L.	FTC:	rgca	AAG	CCC	TGA	CGG	239
	100			111		111		111	111									111	111			0.00
pmag .	180	AGG	TTA	CAG	CAA	CGC	AGA	GGI	'GC'I	GGG	;CCC	GA	4T.L(3000	GT.	PTC.	I'GCA	AAG	CCC	TGA	CGG	239
		G	Y	S	Ν	A	Ε	V	L	G	R	Ν	С	R	F	L	Q	S	Ρ	D	G	
		М	V	K	Ρ	K	S	Т	R	Κ	Y	V	D	S	Ν	Т	I	Ν	Т	М	R	
nMag 2	240	CAT	GGT	'GAA	GCC	CAA	GAG	CAC	CCG	GAA	AGTZ	ACG.	rgg/	ATA	STA2	ACA	CAAT	CAA	TAC	TAT	GCG	299
pMag 2	240	CAT	GGT	'GAA	GCC	CAA	GAG	CAC	CCC	GAA	GTZ	ACG.	rgg/	ATA	STA/	ACA	CAAT	CAA	TAC	TAT	GCG	299
		М	V	Κ	Ρ	Κ	S	Т	R	Κ	Y	V	D	S	Ν	Т	I	Ν	Т	М	R	
		Κ	Α	I	D	R	Ν	Α	Е	V	Q	V	Ε	V	V	Ν	F	Κ	Κ	Ν	G	
nMag 🕻	300	CAA	GGC	AAT	'CGA	CAG	GAA	TGC	CGA	GGI	GCI	\GG!	rtg2	AAG1	['AG'	[CA]	ATTT	TAA	AAA	GAA	TGG	359
																		$ \mid $				
pMag 3	300	CAA	GGC	AAT	'CGA	CAG	GAA	TGC	CGA	GGI	GCZ	AGG?	[TG]	AAGI	[AG]	rca/	ATTT	TAA	AAA	GAA	TGG	359
		Κ	Α	I	D	R	Ν	A	Е	v	Q	V	Ε	V	V	Ν	F	Κ	Κ	Ν	G	
		Q	R	F	V	Ν	F	L	Т	М	I	Ρ	V	R	D	Ε	Т	G	Е	Y	R	
nMag 3	360	ACA	GCG	ATT	TGT	TAA	TTT	'CCI	'GAC	TAT	'GA'I	AC	CTG	TAC	GGG	ACGI	AAAC	AGG	CGA	GTA	TCG	419
-		111		111	111	111	111		111	111									111	111		
pMag 3	360	ACA	GCG	ATT	TGT	TAA	TTT	CC1	GAC	TAT	'GA'I	AC	CTG	TAC	GGGZ	ACGI	AAAC	AGG	CGA	GTA	TCG	419
1 5		0	R	F	v	Ν	F	L	Т	М	Ι	Ρ	v	R	D	Е	Т	G	Е	Y	R	
		Ŷ	S	м	G	F	0	C	E	Т	E											
nMag	420	АТА	СТС	тат	'GGG	- АТТ	CCA	GTG	- CGA		Agz	A	450)								
			111									1		-								
pMag	420	<u> </u>	СТС	: " ם יי		: አጥጥ	CCA	GTG		ייי		Δ	450	2								
Prind		Y	S	М	G	F	0	C	E	Т	E		101	-								
		-			_	-	×.	<u> </u>	_	-	_											

Figure S4. Diversification of the pMag CDS. (A) DNA sequence alignment of nMag and pMag (Serial Cloner 2.6.1) from PA-Cre-M⁵ showing that the CDS for each are nearly identical and are thus susceptible potential recombination introduced by lentiviral gene transfer.⁶ (B) DNA sequence alignment of pMag with codon-diversified dpMag (Serial Cloner 2.6.1). Reduced sequence similarity helps prevent potential recombination introduced by lentiviral gene transfer.⁶ Codon diversification of the pMag CDS was done by hand and synthesized dpMag dsDNA (Integrated DNA Technologies) was used for subsequent molecular cloning.

Alignme	ent of	pMa	ag (3749	CDS	wit (68	th (Mqb (چ	ag	CDS	(co	don	-di	ver	sif	ied)						
DIMITU	• 101	н	л, т. Т	т.	v	Δ	p,	G	G	Y	D	т	м	G	Y	т.	R	0	т	R	N	
pMag	1	CAI	TACI	rCT:	TTA	IGC	ccc	CGG	TGG	ATA	TGA	CAT	TAT	GGG.	ATA	TCT	GAG	GCA	GAT	CAG	GAAC	60
		#	ŧ ŧ	¥ :	# :	# :	#	#	#		#	#	#	111	#	##	111		#	#	#	
dpMag	1	CAC	CAC	ACT	GTA	CGC	TCC	AGG	CGG	ATA	CGA	TAT	AAT	GGG	CTA	CTT	GAG	GCA	AAT	AAG	GAAT	60
		Н	т	L	Y	A	Ρ	G	G	Υ	D	Ι	М	G	Y	L	R	Q	I	R	Ν	
		R	Ρ	Ν	Ρ	Q	V	Е	L	G	Ρ	V	D	Т	S	С	A	L	I	L	С	
pMag	61	CGG	SCCI	AAA	ccc	GCA	GGT	GGA	ACT	GGG	ccc	CGT	GGA	TAC	ATC	CTG	CGC	CTT	GAT	TCT	TTGT	120
		#	ŧ ŧ	# :	# ;	#		#	# :	#	#	#	#	#	##		#	#		#	# #	
dpMag	61	CGA	ACCI	'AA'	TCC	TCA(GGT.	AGA	GCT	ГGG	GCC	TGT	TGA	CAC	AAG	CTG	TGC	CCT	GAT	CCT	GTGC	120
		R	Ρ	Ν	Ρ	Q	V	Е	L	G	Ρ	V	D	Т	S	С	A	L	Ι	L	С	
		D	L	Κ	Q	Κ	D	Т	Ρ	I	V	Υ	Α	S	Е	Α	F	L	Υ	М	Т	
pMag	121	GAC	CCTO	GAA	ACA	GAA	AGA	CAC	CCC	GAT.	AGT	TTA	CGC	GAG	TGA	AGC	CTT	CCT	CTA	CAT	GACA	180
		#	ŧ ŧ	# :	# ;	# :	#	#	# :	#	#	#	#	#	#	#	#	#	#	#	#	
dpMag	121	GAT	CTC	CAA	GCA	AAA	GGA	TAC.	ACC	AAT	CGT	GTA	TGC	AAG	CGA	GGC	GTT	TCT	GTA	TAT	GACC	180
		D	L	Κ	Q	Κ	D	Т	Ρ	Ι	V	Y	Α	S	Е	Α	F	L	Υ	М	Т	
		G	Y	S	Ν	Α	Е	V	L	G	R	Ν	С	R	F	L	Q	S	Ρ	D	G	
pMag	181	GGI	TAC	CAG	CAA	CGCI	AGA	GGT	GCT	GGG	CCG	GAA	TTG	CCG	GTT	тст	GCA	AAG	CCC	TGA	CGGC	240
		#	ŧ ŧ	# :	# :	# :	#	#	##		##		#	#	#	##		###	#	#	# #	
dpMag	181	GGA	ATA	FA G'	TAA	rgc'	FGA	AGT.	ATT	GGG.	AAG	GAA	CTG	TCG	CTT	CTT	GCA	GTC	TCC	CGA	TGGT	240
		G	Y	S	Ν	А	Е	V	L	G	R	Ν	С	R	F	L	Q	S	Ρ	D	G	
		М	V	Κ	Ρ	Κ	S	Т	R	Κ	Y	V	D	S	Ν	Т	Ι	Ν	Т	М	R	
pMag	241	ATG	GT	GAA(GCC	CAA	GAG	CAC	CCG	GAA	GTA	CGT	GGA	TAG	TAA	CAC	AAT	CAA	TAC	TAT	GCGC	300
			#	# 	# :	# :	###		# :	#		#	#	#	#	#	#	#	#	#	# #	
dpMag	241	ATG	GT	[AA]	ACCI	AAA	ATC	CAC	ACG	AAA	GTA	TGT	TGA	CAG	CAA	TAC	TAT	TAA	CAC	CAT	GAGA	300
		М	V	Κ	Ρ	Κ	S	Т	R	Κ	Y	V	D	S	Ν	Т	Ι	Ν	Т	М	R	
		K	Α	Ι	D	R	Ν	Α	Е	V	Q	V	Е	V	V	Ν	F	K	Κ	Ν	G	
pMag	301	AAG	GCI	AAT(CGA	CAG	GAA	TGC	CGA	GGT	GCA	GGT	TGA	AGT.	AGT	CAA	TTT	TAA	AAA	GAA'	TGGA	360
		#	ŧ ŧ	# :	# ;	##		#	# :	#	#	#	#	#	#	#	#	#	#	#	# #	
dpMag	301	AAA	AGCI	'TAT	TGA'	rcg(GAA	CGC	GGA	AGT	CCA	AGT	GGA	GGT	CGT	GAA	CTT	CAA	GAA	AAA	CGGC	360
		K	A	Ι	D	R	Ν	А	Ε	V	Q	V	Е	V	V	Ν	F	K	K	Ν	G	
		Q	R	F	V	Ν	F	L	Т	М	Ι	Ρ	V	R	D	E	Т	G	Е	Y	R	
pMag	361	CAG	GCGI	ATT	TGT	TAA'	TTT	CCT	GAC'	TAT	GAT.	ACC	TGT	TAG	GGA	CGA	AAC	AGG	CGA	GTA'	TCGA	420
		#	##		# ;	# :	#	#	# :	#		#	#	#	#	#	#	#	#	#	# #	
dpMag	361	CAA	AGI	ATT(CGT	CAA	CTT	TCT	TAC	CAT	GAT	ccc	AGT	GAG	AGA	TGA	GAC	CGG	AGA	ATA	CCGG	420
		Q	R	F	V	Ν	F	L	Т	М	Ι	Ρ	V	R	D	Ε	Т	G	Ε	Y	R	
		Y	S	М	G	F	Q	С	Е	Т	Ε											
pMag	421	TAC	CTCI	rat(GGGI	ATT	CCA	GTG	CGA	AAC.	AGA	A	450									
		#	ŧ ŧ	#	;	# :	#	#	# :	#	#	#										
dpMag	421	TAT.	"TCI	AAT(GGG	CTT	I'CA	ATG	TGA	GAC	CGA	G	450									
		Y	S	M	G	F.	Q	C	E	Т,	E											

Figure S4. Diversification of the pMag CDS Continued.

Figure S5. Optimizing TamPA-Cre recombination efficiency through different tamoxifen and blue light stimulation protocols. (A,B) Schematic illustrating the tamoxifen and blue light stimulation protocols and the normalized percentage of recombined EGFP Reporter HEK293T cells transiently transfected with TamPA-Cre or Cre constructs that were (Light) or were not (Dark) exposed to blue light stimulation outlined in (A) Protocol C: (5 W/m², 3h) started 8h after 4-OHT addition (n=4), or (B) Protocol D: (15 W/m², 7.5s per min, 24h) started with 4-OHT addition. Delaying blue light stimulation after 4-OHT addition and changing to a pulsatile blue light pattern improved TamPA-Cre performance. (C) For comparison, EGFP Reporter HEK293T cells transiently transfected with PA-Cre-M or Cre constructs were (Light) or were not (Dark, Ambient) exposed to Protocol B: (5 W/m², 7.5s per min, 24h) started 3h after 4-OHT addition (n=3). Reporter = untransfected EGFP Reporter HEK293T cell line. Blue light stimulation started and flow cytometry measurements taken 24h and 72h post-transfection, respectively. Percentage of recombined HEK293T cells (normalized to maximal recombination) = 100%*(% of EGFP⁺ cells) / (mean % of EGFP⁺ cells in corresponding Cre groups).

Figure S6. CAR-mediated T cell activation is antigen specific at low CAR expression levels. (A) Schematic representation of the α -CD19CAR-EGFP (pMA017) and the myc- α -CD38Receptor-EGFP (pMA020) genetic constructs. The hEF1 α promoter drives constitutive expression of α -CD19CAR or myc- α -CD38Receptor (pSin-

 $hEF1\alpha-\alpha-CD19-CAR-ggsggt-EGFP-IRES-PuroR$, or $pSin-hEF1\alpha-myc-\alpha-CD38Receptor-ggsggt-EGFP-IRES-PuroR$, respectively). (B) Jurkat T cells and α-CD19-CAR-EGFP+ Jurkat T cells were co-incubated with an equal number of either CD19- K562 Target cells, CD19+ Toledo Target cells, or no Target cells for 24h after which the normalized percentage of activated (% CD69⁺) Jurkat T cells was measured via flow cytometry (n=3). Only α -CD19CAR⁺ Jurkat T cells co-incubated with CD19⁺ Toledo Target cells were significantly activated (81.1 ± 0.35 %). Co-incubation with either no Target cells or CD19⁻ K562 Target cells yielded similar results, indicating that CAR-mediated T cell activation is not affected by the presence or absence of TAA- Target cells. (C) Representative histograms from flow cytometry showing that a greater portion of Jurkat T cells expressing high levels of α -CD19-CAR-EGFP undergo non-specific T cell activation in culture (CD69⁺, green) compared to those expressing low levels of α -CD19-CAR-EGFP (blue). (D) Representative histograms from flow cytometry showing that α -CD19-CAR-EGFP⁺ Jurkat T cells both (I) bind to and (II) are activated by CD19⁺ Toledo Target cells, while myc- α -CD38-Receptor⁺ Jurkat T cells (III) bind to but (IV) are not activated by CD38⁺ Toledo Target cells. (E) Representative histograms from flow cytometry measurement of CAR Reporter Jurkat cell line (red) transduced with either CreN-nMag-NLS-P2A-mCh (yellow), ERT2-CreN-nMag-P2A-mCh (green), or tBFP-P2A-NLS-pMag-CreC (blue) constructs. All CAR Reporter Jurkat T cells express myc-α-CD38Receptor (left) and do not express α -CD19-CAR-EGFP (right). Non-transduced Jurkat T cells (black) are shown for reference. (F) PA-Cre-M⁺ and TamPA-Cre⁺ CAR Reporter Jurkat cell lines were exposed to the Ambient light condition. The percentage of recombined cells (% CAR-EGFP⁺) was measured before and after via flow cytometry (n=3). After 48h, PA-Cre-M had driven a significant increase in recombination while no such change was seen in TamPA-Cre groups. This increase in PA-Cre-M groups is likely due to a combination of spontaneous and ambient lightdriven recombination. Reporter = CAR Reporter Jurkat T cell line. Recombination = % CAR-EGFP⁺ cells, and Activation = % CD69⁺ cells, where 100% represents maximal recombination efficiency. Percentage of recombined Jurkat T cells (normalized to maximal recombination) = 100%*(% of CAR-EGFP⁺ cells) / (initial % of CAR Reporter⁺ cells, measured via myc).

Α.

1. Deletion-Based Cre-loxP Recombination Reporter

Figure S7. Testing different Cre-*loxP* **CAR Reporter designs.** (A) Three different Cre-*loxP* CAR Reporter constructs were evaluated: (1) deletion-based (irreversible), (2) inversion-based (reversible), and (3) inversion based with *loxP* mutant sites lox66 and lox71 (mostly irreversible). (B) Qualitative summary of Cre-, PA-Cre-, and TamPA-Cre-mediated recombination experiments that were conducted in both HEK293T and Jurkat T cells expressing high (high copy) or low (low copy) levels of each CAR Reporter construct. While inversion-based CAR Reporters had the advantage of preventing all background CAR-EGFP expression before recombination, the deletion-based CAR Reporter functioned similarly at low copy number while providing more robust expression levels of CAR-EGFP after recombination. In the ideal CAR Reporter design, the receptor would continue to be expressed after recombination. However, due to lentiviral packaging size constraints and a desire to minimize the number of individually introduced components, only one promoter could be used. As efficiency improves, other gene insertion methods (e.g. CRISPR-Cas9) will undoubtedly allow for larger, more complex designs.

Figure S8. Pulsatile blue light stimulation protocols improve Cre-loxP recombination efficiency due to slow nMag-pMag dissociation kinetics. (A) Blue light-induced heterodimerization between nMag and pMag proteins occurs rapidly, but nMag-pMag heterodimers dissociate exponentially with a half-life of \sim 1.8h upon the removal of light.⁷ From an initial heterodimer concentration of A₀, the remaining heterodimer concentration after the blue light stimulus is removed can be calculated as a function of time using the exponential decay equation, where the half-life k is equal to 1.8h (6,480s). Such slow degradation kinetics maintain the percentage of active TamPA-Cre above 99.0% up to 93s after blue light is removed. (B) The plots track the theoretical percentage of active TamPA-Cre in tamoxifen-induced cells given (I) 50s of continuous blue light stimulation or given (II) ten 5-second pulses of (equivalent intensity) blue light stimulation, each pulse separated by 55s of darkness (a shortened version of Protocol E, Fig. 4C). 700s after the beginning of each blue light stimulation protocol, only 93.28% of maximal active TamPA-Cre levels remain given 10s of continuous light, while 98.36% of maximal active TamPA-Cre is still present to drive recombination given the pulsatile protocol. The area under the % Active TamPA-Cre curve (shaded red) is proportional to the probability that a given cell will undergo Cre-loxP recombination over a given time interval. From these graphs, it is obvious that the area under to curve for the pulsatile blue light stimulation (II) is greater than for continuous blue light stimulation (I), thus increasing the chances that these cells will undergo TamPA-Cremediated Cre-loxP recombination.

Figure S9. Cre*-loxP* **recombination in TamPA-Cre**⁺ **CAR Reporter Jurkat T cells plateaus between 6h and 24h of blue light stimulation.** Alternate graphical representation of Figure 4D with non-linear fit exponential growth trendline (See Table S2). Percentage of recombined Jurkat T cells (normalized to maximal recombination) = 100%*(% of CAR-EGFP⁺ cells) / (initial % of CAR Reporter⁺ cells, measured via myc).

Table S2. Non-linear Fit Trendline Information. Parameters of non-linear fit trendlines in Fig. S3, S9, and 4E (GraphPad Prism 7.04).

Non-linear Fit for Fig. S	3 (Dark)	Non-linear Fit for Fig. S3 (Light)					
	Y=Ymax1*(1-exp(-		Y=Ymax1*(1-exp(-				
Two phase exponential	K1*X)) + Ymax2*(1-	Two phase exponential	K1*X)) + Ymax2*(1-				
association	exp(-K2*X))	association	exp(-K2*X))				
Best-fit values		Best-fit values					
Ymax1	~ 1395	Ymax1	~ 91.95				
K1	~ 8.632e-007	K1	~ 1.241e-006				
Ymax2	~ -1116	Ymax2	~ 32.57				
К2	~ 1.061e-006	K2	~ 1.242e-006				
HalfLife 1	~ 803039	HalfLife 1	~ 558449				
HalfLife_2	~ 653400	HalfLife 2	~ 558143				
Std. Error		Std. Error					
Ymax1	~ 1347390	Ymax1	~ 25035263861847				
K1	~ 0.0001031	K1	~ 92.78				
Ymax2	~ 1351367	Ymax2	~ 25035263863047				
К2	~ 0.0001136	K2	~ 261.2				
95% CI (profile		95% CI (profile					
likelihood)		likelihood)					
Ymax1	(Very wide)	Ymax1	(Very wide)				
K1	(Very wide)	K1	(Very wide)				
Ymax2	(Very wide)	Ymax2	(Very wide)				
К2	(Very wide)	K2	(Very wide)				
HalfLife_1		HalfLife 1					
HalfLife_2		HalfLife_2					
Goodness of Fit		Goodness of Fit					
Degrees of Freedom	8	Degrees of Freedom	8				
R square	0.9979	R square	0.9982				
Absolute Sum of		Absolute Sum of					
Squares	11.74	Squares	14				
Sy.x	1.211	Sy.x	1.323				
Constraints		Constraints					
K1	K1 > 0	К1	K1 > 0				
K2	K2 > 0	K2	K2 > 0				
Number of points		Number of points					
# of X values	48	# of X values	48				
# Y values analyzed	12	# Y values analyzed	12				

Non-linear Fit for Fig. S	9	Non-linear Fit for Fig. 4E (% myc-Receptor+							
One phase exponential	$V = V = v = (K \times V)$	Cells) Continued							
association	f = f max (1-exp(-K X))	Goodness of Fit							
Best-fit values		Plateau	-0.1024 to 0.1169						
Ymax	0.413	HalfLife	0.9373 to 1.934						
К	0.3253	Goodness of Fit							
HalfLife	2.131	Degrees of Freedom	10						
Std. Error		R square	0.9571						
Ymax	0.005569	Absolute Sum of	0.02617						
К	0.01258	Squares	0.03617						
95% CI (profile		Sy.x	0.06014						
likelihood)		Constraints							
Ymax	0.4012 to 0.4251	Span	Span = 1.026						
К	0.2992 to 0.3546	ĸ	K > 0						
HalfLife	1.955 to 2.317	Number of points							
Goodness of Fit		# of X values	12						
Degrees of Freedom	18	# Y values analyzed	12						
R square	0.9942	Non-linear Fit for Fig. 4	E (% CAR-EGFP+ Cells)						
Absolute Sum of	0.000540	One phase exponential							
Squares	0.002519	association	$r = r max^{-1}(1-exp(-K^{-1}X))$						
Sy.x	0.01183	Best-fit values							
Constraints		Ymax	0.4643						
К	K > 0	K	1.251						
Number of points		HalfLife	0.554						
# of X values	20	Std. Error							
# Y values analyzed	20	Ymax	0.008901						
Non-linear Fit for Fig. 4	E (% myc-Receptor ⁺	K	0.102						
Cells)		95% CI (profile							
One phase exponential	Y=Span*exp(-K*X) +	likelihood)							
decay	Plateau	Ymax	0.4446 to 0.4851						
Best-fit values		K	1.039 to 1.523						
Span	= 1.026	HalfLife	0.455 to 0.6673						
К	0.542	Goodness of Fit							
Plateau	0.02641	Degrees of Freedom	10						
HalfLife	1.279	R square	0.8925						
Std. Error		Absolute Sum of	0.004004						
К	0.1417	Squares	0.004884						
Plateau	0.07495	Sy.x	0.0221						
95% CI (profile		Constraints							
likelihood)		К	K > 0						
K	0.3583 to 0.7395	Number of points							
Plateau	-0.1024 to 0.1169	# of X values	12						
HalfLife	0.9373 to 1.934	# Y values analyzed	12						

Table S2. Non-linear Fit Trendline Information, Continued.

Figure S10. Expanded lower range of plots in Fig. 5B-E. S10A = 5B, S10B = 5C, S10C = 5D, S10D = 5E. Percentage of recombined Jurkat T cells (normalized to maximal recombination) = 100%*(% of CAR-EGFP⁺ cells) / (initial % of CAR Reporter⁺ cells, measured via myc). Percentage of activated Jurkat T cells (normalized to maximal recombination) = 100%*(% of CD69⁺ cells) / (initial % of CAR Reporter⁺ cells, measured via myc).

SI References

1. Wu, C. Y.; Roybal, K. T.; Puchner, E. M.; Onuffer, J.; Lim, W. A., Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. *Science* **2015**, *350* (6258).

2. Kloss, C. C.; Condomines, M.; Cartellieri, M.; Bachmann, M.; Sadelain, M., Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. *Nat Biotechnol* **2013**, *31* (1), 71-+.

3. Roybal, K. T.; Rupp, L. J.; Morsut, L.; Walker, W. J.; McNally, K. A.; Park, J. S.; Lim, W. A., Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. *Cell* **2016**, *164* (4), 770-9.

4. Taslimi, A.; Zoltowski, B.; Miranda, J. G.; Pathak, G. P.; Hughes, R. M.; Tucker, C. L., Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. *Nat Chem Biol* **2016**, *12* (6), 425-30.

5. Kawano, F.; Okazaki, R.; Yazawa, M.; Sato, M., A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. *Nat Chem Biol* **2016**, *12* (12), 1059-+.

6. Komatsubara, A. T.; Matsuda, M.; Aoki, K., Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer. *Sci Rep* **2015**, *5*, 13283.

7. Kawano, F.; Suzuki, H.; Furuya, A.; Sato, M., Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. *Nat Commun* **2015**, *6*, 6256.