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Table S1.  Primers used in the freshwater benthos COI metabarcode dataset used 

in Part C (Hajibabaei et al., 2019 PLoS ONE). 

 

Amplicon Primer Target Primer sequence (5’-3’) Reference 
BR5 B Freshwater benthic 

macroinvertebrates 
CCIGAYATRGCITTYCCICG (Hajibabaei, Spall, Shokralla, 

& van Konynenburg, 

2012) 

 ArR5 Tropical arthropods GTRATIGCICCIGCIARIACIG
G 

(Gibson et al., 2014)* 

F230R LCO1490 Metazoan 
macroinvertebrates 

GGTCAACAAATCATAAAGAT
ATTGG 

(Folmer, Black, Hoeh, Lutz, & 
Vrijenhoek, 1994) 

 230_R Arthropods CTTATRTTRTTTATICGIGGR
AAIGC 

(Gibson et al., 2015) 

ml-jg mlCOIintF Metazoa GGWACWGGWTGAACWGT
WTAYCCYCC 

(Leray et al., 2013) 

 jgHCO2198 Marine 
invertebrates 

TAIACYTCIGGRTGICCRAAR
AAYCA 

(Geller, Meyer, Parker, & 
Hawk, 2013) 

BF1 BF1 Freshwater 
macroinvertebrates 

ACWGGWTGRACWGTNTAY
CC 

(Elbrecht & Leese, 2017) 

 BR2 Freshwater 
macroinvertebrates 

TCDGGRTGNCCRAARAAYC
A 

(Elbrecht & Leese, 2017) 

BF2 BF2 Freshwater 
macroinvertebrates 

GCHCCHGAYATRGCHTTYC
C 

(Elbrecht & Leese, 2017) 

 BR2 Freshwater 
macroinvertebrates 

TCDGGRTGNCCRAARAAYC
A 

(Elbrecht & Leese, 2017) 

fwh1 fwhF1 Freshwater 
macroinvertebrates 

YTCHACWAAYCAYAARGAY
ATYGG 

(Vamos, Elbrecht, & Leese, 
2017) 

 fwhR1 Freshwater 
macroinvertebrates 

ARTCARTTWCCRAAHCCHC
C 

(Vamos et al., 2017) 

* This primer sequence was published based on its alignment to the plus strand but is 

shown here in the 5’-3’ orientation 
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Table S2.  Description of the datasets analyzed in Part A and Part B. 

Experiment Dataset Proportion 
of dataset 
comprised 
of nuMTs 
(%) 

Average 
gene 
length 
(bp) 

Average 
nuMT 
length (bp) 

Gene GC 
content 
(%) 

nuMT GC 
content (%) 

Artificial 
DNA 
barcoding 
dataset.  
COI genes 
and nuMTs 
from 10 
species 

Full length COI 
barcodes and 
nuMT 
sequences 

19 659.6 508.1 32.0 30.8 

Perturbed 
community 
dataset 

Control full 
length COI 
barcodes, no 
nuMTs 

0 615 NA 31 NA 

Perturbed 
community 
dataset 

Full length COI 
barcodes, 
nuMTs 
introduced 
through point 
mutations to 
decrease GC 
content 

19 615 615 31 29 

Perturbed 
community 
dataset 

Full length COI 
barcode, 
nuMTs 
introduced 
through 
frameshift 
mutations 
(indels) 

19 615 607 31 31 

Perturbed 
community 
dataset 

Control short 
COI barcode 
sequences, no 
nuMTs 

0 307** - 
308* 

NA 30*-32** NA 

Perturbed 
community 
dataset 

Short COI 
barcode 
sequences, 
nuMTs with 
decreased GC 
content 

19 307** - 
308* 

308 30*-32** 28-29 

Perturbed 
community 
dataset 

Short COI 
barcode 
sequences, 
nuMTs with 
indels 

19 307** - 
308* 

304 30*-32** 31-32 

Perturbed 
community 
dataset 

Control full 
length COI 
barcode 

0 622 NA 31 NA 
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sequences, no 
nuMTs 

Perturbed 
community 
dataset 

Full length COI 
barcodes, twice 
the number of 
nuMTs with 
decreased GC 
content 

38 622 622 31 28 

Perturbed 
community 
dataset 

Full length COI 
barcodes, twice 
the number of 
nuMTs with 
indels 

38 622 614 31 32 

Perturbed 
community 
dataset 

Control full 
length COI 
barcode 
sequences, no 
nuMTs 

0 622 NA 31 NA 

Perturbed 
community 
dataset 

Full length COI 
barcodes, half 
the number of 
nuMTs with 
decreased GC 
content 

9.5 622 623 31 28 

Perturbed 
community 
dataset 

Full length COI 
barcodes, half 
the number of 
nuMTs with 
indels 

9.5 622 615 31 32 

* 5’ fragment 

** 3’ fragment 
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Fig S1.  COI gene sequences accumulate substitutions in synonymous sites.  For 

10 species with annotated COI genes and nuMTs, we did a pairwise comparison of 

nucleotide substitutions in non-synonymous and synonymous sites: a) COI barcode 

sequences tend to accumulate substitutions in synonymous sites.  In contrast, COI 

nuMTs tend to accumulate substitutions in non-synonymous sites.  After filtering out 

pairwise comparisons between species with < 0.01 substitutions in synonymous sites 

(sequences too similar to yield a reliable dN/dS estimate) or > 2 substitutions in 

synonymous sites (sequences that have accumulated too many substitutions to yield a 

reliable dN/dS estimate), it was only possible to analyze dN/dS ratios for COI barcode 

sequences.  b) Most pairwise comparisons of COI gene sequences resulted in dN/dS 

ratios < 1 consistent with purifying selection pressure and the conservation of a protein 

sequence. 
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Fig S2.  Bemisia tabaci COI pseudogenes cluster together on long branches.  A 

mid-point rooted neighbor joining phylogram using the Kimura 2-parameter model of 

nucleotide substitution included gene and known pseudogene sequences.  Sequences 

annotated in GenBank as a nuclear copy of a mitochondrial gene are shown in red.  

Nodes with greater than 70% bootstrap support are labelled. 
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Fig S3. A single Xylosandrus germanus COI pseudogene sequence is found on a 

long branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-

parameter model of nucleotide substitution included COI gene sequences as well as a 

sequence annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  

Nodes with greater than 70% bootstrap support are labelled. 
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Fig S4.  A single Triatoma dimidiata COI pseudogene sequence is found on a long 

branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-parameter 

model of nucleotide substitution included COI gene sequences as well as a sequence 

annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  Nodes with 

greater than 70% bootstrap support are labelled. 
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Fig S5.  A single Trialeurodes vaporariorum COI pseudogene sequence is found 

on a long branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-

parameter model of nucleotide substitution included COI gene sequences as well as a 

sequence annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  

Nodes with greater than 70% bootstrap support are labelled. 
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Fig S6. Melissotarsus insularis COI gene and annotated pseudogene sequences 

are often found in intermixed clusters.  A mid-point rooted neighbor joining 

phylogram using the Kimura 2-parameter model of nucleotide substitution included COI 

gene sequences as well as sequences annotated in GenBank as a nuclear copy of a 

mitochondrial gene (red).  Nodes with greater than 70% bootstrap support are labelled.  

Clusters of nearly identical sequences were collapsed.  
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Fig S7. A single Lepidocyrtus cyaneus COI pseudogene sequence clusters with 

other gene sequences.  A mid-point rooted neighbor joining phylogram using the 

Kimura 2-parameter model of nucleotide substitution included COI gene sequences as 

well as a sequence annotated in GenBank as a nuclear copy of a mitochondrial gene 

(red).  Nodes with greater than 70% bootstrap support are labelled. 
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Fig S8. Two Halictus rubicundus COI pseudogene sequences cluster together 

near other gene sequences.  A mid-point rooted neighbor joining phylogram using the 

Kimura 2-parameter model of nucleotide substitution included COI gene sequences as 

well as two sequences annotated in GenBank as a nuclear copy of a mitochondrial 

gene (red).  Nodes with greater than 70% bootstrap support are labelled. 
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Fig S9. Several Goneplax rhomboides COI pseudogene sequences cluster 

together.  A mid-point rooted neighbor joining phylogram using the Kimura 2-parameter 

model of nucleotide substitution included COI gene sequences as well as sequences 

annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  Nodes with 

greater than 70% bootstrap support are labelled. 
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Fig S10. A single Ectatomma gibbum COI pseudogene sequence is found on its 

own branch.  A mid-point rooted neighbor joining phylogram using the Kimura 2-

parameter model of nucleotide substitution included COI gene sequences as well as a 

sequence annotated in GenBank as a nuclear copy of a mitochondrial gene (red).  

Nodes with greater than 70% bootstrap support are labelled. 
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Fig S11. Cyphoderris monstrosa COI gene and annotated pseudogene sequences 

sometimes cluster with regular gene sequences.  A mid-point rooted neighbor 

joining phylogram using the Kimura 2-parameter model of nucleotide substitution 

included COI gene sequences as well sequences annotated in GenBank as a nuclear 

copy of a mitochondrial gene (red).  Nodes with greater than 70% bootstrap support are 

labelled. 
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Fig S12.  Sensitivity and specificity were used to assess the effectiveness of our 

two pseudogene filtering approaches.  The vertical dashed line represents a 

threshold used to delimit nuMT sequences.  The ability to detect pseudogenes 

represents the positive condition.  Correctly removed nuMTs are true positives (TP).  

Incorrectly filtered COI gene sequences (genes) represents false positives (FP).  

Correctly retained genes represents true negatives (TN).  Incorrectly retained nuMTs 

represents false negatives (FN). 
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Fig S13. Halving COI sequence lengths results in fewer pseudogenes removed 

compared with full length COI barcode sequences.  Each column shows the results 

from a particular simulation: a controlled community with nuMTs absent, a community 

with simulated nuMTs with a reduced GC content, and a community with simulated 

nuMTs with frameshift mutations (introduced indels).  The top two panels show the 

length variation of sequences in the longest retained open reading frame for short 

sequences sampled from the 5’ and 3’ end of COI barcode sequences.  The solid 

vertical line indicates half the length of a typical COI barcode at 329 bp.  The two 

vertical dashed lines shows the boundaries for identifying ORFs with outlier lengths. 

The bottom two panels show the nucleotide bit score for short sequences sampled from 

the 5’ and 3’ ends of COI barcode sequences.  The dashed vertical line shows the 

boundary for identifying sequences with unusually short scores. 
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Fig S14.  Doubling the proportion of mutated sequences greatly reduces the 

number of pseudogenes removed.  Each column shows the results from a particular 

simulation: a controlled community with nuMTs absent, a community with nuMTs that 

have a reduced GC content, and a community with nuMTs with frameshift mutations 

(introduced indels).  The top panel shows the length variation of sequences in the 

longest retained open reading frame.  The solid vertical line indicates the length of a 

typical COI barcode at 658 bp.  The two vertical dashed lines shows the boundaries for 

identifying ORFs with outlier lengths.  The bottom panel shows the sequence bit score 

variation.  The vertical dashed line shows the boundary for identifying sequences with 

small outlier scores. 
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Fig S15.  Halving the proportion of mutated sequences increases the number of 

pseudogenes removed.  Each column shows the results from a particular simulation: a 

controlled community with nuMTs absent, a community with nuMTs that have a reduced 

GC content, and a community with nuMTs with frameshift mutations (introduced indels).  

The top panel shows the length variation of sequences in the longest retained open 

reading frame.  The solid vertical line indicates the length of a typical COI barcode at 

658 bp.  The two vertical dashed lines shows the boundaries for identifying ORFs with 

outlier lengths.  The bottom panel shows the sequence bit score variation.  The vertical 

dashed line shows the boundaries for identifying sequences with short outliers scores.   
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