
1

Multi-Domain Image Completion for Random
Missing Input Data (Supplementary)

APPENDIX I
IMPLEMENTATION DETAILS

A. Hyperparameters
In our algorithm, we use the Adam optimizer with β1 =

0.5, β2 = 0.999. The learning rate is 0.0001. We set the loss
weights in the total loss (Equation 7 in main text) as λadv =
1, λxcyc = 10, λccyc = 1, λscyc = 1, λrec = 20, and λseg = 1 in
the unified model for image completion and segmentation. For
comparison purpose, we train the model with batch size 1 and
100,000 iterations for image generation task, and compare the
results across MUNIT, StarGAN, CollaGAN, and ours ReMIC
in all the three datasets In ReMIC, we set the dimension of
the style code as 8 for comparison purpose with MUNIT. For
image generation during testing, we use a fixed style code
of 0.5 in each dimension for both MUNIT and ReMIC to
compute quantitative results.

B. Network Architectures
The network structure of ReMIC is developed on the

backbone of MUNIT model. We describe the details of each
module here.

1) Unified Content Encoder: : consists of a down-sampling
module and residual blocks to extract contextual knowledge
from all available domain images in inputs. The down-
sampling module contains a 7 × 7 convolutional block with
stride 1 and 64 filters, and two 4 × 4 convolutional blocks
with stride 2 and, 128 and 256 filters respectively. The
convolutional layers downsample the input to features maps
of size W/4×H/4×256, where W and H are the width and
height of input image. Next, there are four residual blocks,
each of which contains two 3 × 3 convolutional blocks with
256 filters and stride 1. We apply Instance Normalization
(IN) after all the convolutional layers. Note that the proposed
unified content encoder accepts images of all domains as input
(missing domains are filled up with zeros padding in the initial-
ization), and learns a universe content code complementarily
and collaboratively, which are different from MUNIT.

2) Style Encoder: : contains a similar down-sampling mod-
ule and several residual blocks, which is followed by a global
average pooling layer and a fully connected layer to learn
the verteorized style code. The down-sampling module is
developped using the same structure as that in the unified
content encoder above, and two more 4 × 4 convolutional
blocks with stride 2 and 256 filters are followed. The final
fully connected layer generates style code as a 8-dim vector.
There is no IN applied to the style encoders to keep the original
feature means and variances with style information.

3) Generator: : includes four residual blocks, each of which
contains two 3 × 3 convolutional blocks with 256 filters and
stride 1. Two nearest-neighbor upsampling layers and a 5 ×
5 convolutional block with stride 1 and, 128 and 64 filters
respectively are followed to up-sample content codes back to
the original image size. Finally, there is a a 7×7 convolutional
block with stride 1 to output the reconstructed image. In order
to incorporate the style code in the generation process, the
Adaptive Instance Normalization (AdaIN) is applied to each
residual block as follows

AdaIN(z, γ, β) = γ
(z − µ(z)

σ(z)

)
+ β (1)

where z is the activation from the last convolutional layer. µ(z)
and σ(z) are the channel-wise mean and standard deviations of
the activation. γ and β are the affine parameters in the AdaIN
layers that are generated from style codes via a multi-layer
perceptron (MLP). In this way, the input style code controls the
generated style information through the affine transformation
in the AdaIN layers in all generators.

4) Discriminator: : includes four 4× 4 convolutional blocks
with stride 2 and, 64, 128, 256, and 512 filters in sequence.
The Leaky ReLU activation with slope 0.2 is applied after
convolutional layers. A multi-scale discriminator is used to
include the results at three different scales together. In adver-
sarial training, we adopt LSGAN objective as the adversarial
loss to learn to generate realistic images.

5) Segmentor: : We adopt a segmentation net with a U-
Net shape . In order to build a joint model with the image
generation modules, we build a variant of U-Net, that is, the
downsampling part shares the same structure as the content
encoder aforementioned while the upsampling part has the
same layers as the generator as described above. Similar to the
original U-Net , we also adopt the skip connections between
the downsampling and upsampling layers in our segmentation
module.

APPENDIX II
EXTENDED RESULTS AND ABLATIVE STUDY FOR

MULTI-DOMAIN IMAGE COMPLETION

A. Multi-sample learning

Based on the proposed model as shown in Fig. 3 in the
main text, we further propose a training strategy when multiple
samples are inputted at one time to facilitate learning disen-
tangled representations. Specifically, based on the assumption
of partially shared latent space, we assume that the factorized
latent code can represent the corresponding content and style



2

TABLE I
EXTENDED RESULTS OF MULTI-DOMAIN IMAGE COMPLETION FOR BRATS DATASET

Methods T1 T1Gd
MAE(↓) / NRMSE(↓) / PSNR(↑) / SSIM(↑) MAE(↓) / NRMSE(↓) / PSNR(↑) / SSIM(↑)

ReMIC 0.0187 / 0.2008 / 28.5508 / 0.9618 0.0153 / 0.2375 / 29.1628 / 0.9521
ReMIC+Multi-Sample 0.0180 / 0.1942 / 28.8354 / 0.9634 0.0127 / 0.2070 / 30.2444 / 0.9555
ReMIC+Seg 0.0195 / 0.2033 / 28.5679 / 0.9597 0.0142 / 0.2285 / 29.2134 / 0.9468
ReMIC+Joint 0.0214 / 0.2128 / 27.9944 / 0.9568 0.0140 / 0.2251 / 29.3624 / 0.9484

Methods T2 FLAIR
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

ReMIC 0.0190 / 0.2481 / 27.4829 /0.9457 0.0198 / 0.2469 / 27.1540 / 0.9367
ReMIC+Multi-Sample 0.0195 / 0.2493 / 27.5168 / 0.9463 0.0192 / 0.2456 / 27.3598 / 0.9385
ReMIC+Seg 0.0193 / 0.2525 / 27.2864 / 0.9431 0.0206 / 0.2553 / 26.9191 / 0.9333
ReMIC+Joint 0.0197 / 0.2596 / 26.9954 / 0.9429 0.0220 / 0.2651 / 26.5068 / 0.9302

TABLE II
EXTENDED RESULTS OF MULTI-DOMAIN IMAGE COMPLETION FOR PROSTATEX DATASET

Methods T2 ADC
MAE(↓) / NRMSE(↓) / PSNR(↑) / SSIM(↑) MAE(↓) / NRMSE(↓) / PSNR(↑) / SSIM(↑)

ReMIC 0.0840 / 0.4908 / 18.6200 / 0.5427 0.0253 / 0.2179 / 26.6150 / 0.9232
ReMIC+Multi-Sample 0.0810 / 0.4742 / 18.8986 / 0.5493 0.0250 / 0.2171 / 26.7024 / 0.9263
ReMIC+Seg 0.0871 / 0.5024 / 18.4236 / 0.5336 0.0272 / 0.2322 / 26.0828 / 0.9107
ReMIC+Joint 0.0881 / 0.5071 / 18.3206 / 0.5353 0.0288 / 0.2403 / 25.8024 / 0.9064

Methods HighB
MAE(↓) / NRMSE(↓) / PSNR(↑) / SSIM(↑)

ReMIC 0.0254 / 0.3894 / 24.7927 / 0.9150
ReMIC+Multi-Sample 0.0268 / 0.3945 / 24.8066 / 0.9116
ReMIC+Seg 0.0272 / 0.4110 / 24.3277 / 0.9061
ReMIC+Joint 0.0286 / 0.4359 / 23.8270 / 0.9006

information in the input image. Therefore, by exchanging the
style codes from two independent samples in all available
domains, it should be able to reconstruct the original input
images by recombining the original content and the new style
codes from the other sample. Based on this idea, we build a
comprehensive model with cross-sample training between two
samples. Similarly as the framework in Fig. 3 in main text,
the image and latent consistency loss and image reconstruction
loss are also constrained through the encoding and decoding
procedure. The results of multi-sample learning are shown in
Table I and Table II denoted as “ReMIC+Multi-Sample”.

B. Multi-task learning

For the jointly trained model of image completion and seg-
mentation, the generated images are also evaluated using the
same metrics as shown in Table I and Table II. Similarly to Ta-
ble 3 in the main text, “ReMIC+Seg” stands for using separate
content encoders for image generation and segmentation tasks
in our proposed unified framework, while “ReMIC+Joint”
indicates sharing the weights of content encoder for both two
tasks. The results indicate that adding segmentation branch
does not bring an obvious benefit for image generation. This
is because the segmentation sub-module mainly focuses on
the tumor region which takes up only a small part among
the whole slice image. Besides, we use dice loss as the
segmentation training objective which might not be consistent
with the metrics used to evaluate generated image quality,
which mainly emphasize the whole-slice pixel-level similarity.

TABLE III
MISSING-DOMAIN SEGMENTATION WITH INFERENCE ON PRE-TRAINED

SEGMENTATION MODEL (DICE SCORES ARE REPORTED)

Methods BraTS ProstateX
T1 T1Gd T2 FLAIR T2 ADC HighB

Oracle 0.822 0.908
Zero 0.651 0.473 0.707 0.454 0.528 0.243 0.775
Average 0.763 0.596 0.756 0.671 0.221 0.692 0.685
NN 0.769 0.540 0.724 0.606 0.759 0.850 0.854
MUNIT 0.783 0.537 0.782 0.492 0.783 0.708 0.858
StarGAN 0.799 0.553 0.746 0.613 0.632 0.653 0.832
CollaGAN 0.753 0.564 0.798 0.674 0.472 0.760 0.842
ReMIC 0.819 0.641 0.823 0.784 0.863 0.907 0.903

TABLE IV
MISSING-DOMAIN SEGMENTATION WITH RE-TRAINING SEGMENTATION

MODEL (DICE SCORES ARE REPORTED)

Methods BraTS ProstateX
T1 T1Gd T2 FLAIR T2 ADC HighB

Oracle 0.822 0.908
Zero 0.811 0.656 0.823 0.775 0.868 0.899 0.897
Average 0.796 0.604 0.788 0.759 0.856 0.885 0.897
ReMIC 0.789 0.655 0.805 0.765 0.871 0.898 0.891
ReMIC+Seg 0.806 0.674 0.822 0.771 0.872 0.909 0.905
ReMIC+Joint 0.828 0.693 0.828 0.791 0.867 0.904 0.904

APPENDIX III
EXTENDED RESULTS AND ABLATIVE STUDY FOR

MISSING-DOMAIN SEGMENTATION

A. Missing-domain segmentation with inference on
pre-trained segmentation model

Suppose we have trained an oracle segmentation model on a
complete dataset with all domain images. Then this pre-trained
model would be used to predict segmentation results for new



3

TABLE V
MISSING-DOMAIN SEGMENTATION WITH INFERENCE ON PRE-TRAINED 2D AND 3D SEGMENTATION MODEL (PER-CLASS DICE SCORES ARE

REPORTED)

Methods T1 T1Gd T2 FLAIR
WT / TC / ET WT / TC / ET WT / TC / ET WT / TC / ET

2D Oracle 0.910 / 0.849 / 0.708
Zero 0.771 / 0.609 / 0.572 0.872 / 0.539 / 0.008 0.755 / 0.690 / 0.677 0.458 / 0.468 / 0.435
Average 0.870 / 0.744 / 0.674 0.882 / 0.603 / 0.303 0.849 / 0.732 / 0.686 0.655 / 0.710 / 0.648
NN 0.883 / 0.765 / 0.660 0.871 / 0.564 / 0.186 0.811 / 0.720 / 0.642 0.534 / 0.669 / 0.614
MUNIT 0.886 / 0.785 / 0.679 0.872 / 0.552 / 0.187 0.882 / 0.781 / 0.682 0.408 / 0.541 / 0.527
StarGAN 0.897 / 0.795 / 0.704 0.886 / 0.588 / 0.184 0.851 / 0.725 / 0.661 0.570 / 0.664 / 0.604
CollaGAN 0.860 / 0.747 / 0.651 0.864 / 0.576 / 0.252 0.882 / 0.811 / 0.700 0.663 / 0.697 / 0.663
ReMIC 0.909 / 0.834 / 0.714 0.899 / 0.669 / 0.354 0.905 / 0.855 / 0.709 0.853 / 0.807 / 0.691

3D Oracle 0.909 / 0.867 / 0.733
Zero 0.876 / 0.826 / 0.694 0.884 / 0.574 / 0.020 0.901 / 0.865 / 0.728 0.661 / 0.730 / 0.643
Average 0.880 / 0.814 / 0.640 0.854 / 0.618 / 0.282 0.838 / 0.801 / 0.695 0.713 / 0.732 / 0.675
NN 0.890 / 0.829 / 0.703 0.859 / 0.538 / 0.081 0.790 / 0.799 / 0.704 0.472 / 0.686 / 0.607
ReMIC 0.905 / 0.864 / 0.722 0.888 / 0.614 / 0.273 0.902 / 0.871 / 0.734 0.855 / 0.850 / 0.724

samples during the inference. For new subjects, some domains
might be missing. Straightforward solutions to complete the
missing domains include zero filling, average image computed
from the existing domains, and the nearest neighbor (NN)
searching among available training samples. We show the dice
scores for these baseline methods in Table III. Oracle results
give the average testing dice score when all the domains are
available in the inference. Each column shows the dice scores
of segmentation predictions when the current domain is miss-
ing during inference. Moreover, based on image translation
methods, we can generate fake images for missing domain
imputation, and the results for different methods are shown
in Table III. We show that our proposed method achieves the
best dice score compared with all aforementioned baselines
and other GAN-based image translation methods. This also
indicates that our method could generate better images by
preserving a better content representation. Furthermore, from
the results in Table III, we know that the T1Gd modality
and the T2 modality are the most significant contrasts in the
segmentation of BraTS and ProstateX data, missing of which
will cause a severe performance decrease in dice score. Our
method could alleviate such a loss to a large extent. Here, the
dice score for BraTS is the average for the three segmentation
categories: enhancing tumor (ET), tumor core (TC), and whole
tumor (WT). Please see Table V for a full table with per-class
dice scores.

B. Missing-domain segmentation with re-training
segmentation model

Suppose we would like to train a segmentation model for
a new data set, but most patients in this cohort just contain
a random subset of all required domains. In this scenario,
it is definitely not efficient to just use the most common
domain overlapped by most patients. One simple solution is
to complete all the missing images in training set by some
imputation method, such as zero-filling image, average image,
or generating images via image translation model. The results
for these methods are shown in Table IV. More advanced,
based on the content code learned in our model, we could
develop a join model for multi-task learning of both generation

and segmentation. By optimizing the generation loss and
segmentation loss simultaneously, the unified model could
learn how to generate missing images to promote segmentation
performance. The results of jointly learned model as shown
in Table IV achieve the best dice score in both BraTS and
ProstateX datasets. “ReMIC+Seg” stands for using separate
content encoders for generation and segmentation tasks, while
“ReMIC+Joint” indicates sharing the weights of content en-
coder for the two tasks. We note that the baseline methods
get better results after retraining the model on the missing
data, since the model is trained to fit to the exact missing
inputs format by optimizing the segmentation objective under
the supervision of segmentation labels, which makes it more
robust to missing inputs. However, our method can still get
the best results through adaptive learning model.

C. 3D image segmentation with missing domains
Furthermore, we validate that our method could not only

work for 2D image segmentation but also 3D image segmenta-
tion. When a 3D volumetric image is missing in some domain,
we deploy our method to generate 2D images per slice and
stack them to build the whole 3D volumetric image in the
corresponding missing domain. As shown in Table V, we eval-
uate the per-class dice score for missing-domain imputation
with the oracle model trained from complete-domain 3D image
segmentation. The results show our method could give a better
performance in most domains. During experiments, we find
that the smoothness among different slices in the 3D image
generation might be an issue that needs to be further improved.
Besides, we also show that the per-class dice scores for BraTS
segmentation results in Table V. Compared with WT and TC
classes, ET class is definitely more challenging in the brain
tumor segmentation, since enhancing tumor usually just covers
a very small region among the whole tumor. Particularly in the
ET class segmentation, we can see our method outperforms the
other methods to a large extent.


