A

Geneset	NES	NOM	FDR
	, i	p-value	q-value
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX	〈 3.9	0	0
REACTOME_PEPTIDE_CHAIN_ELONGATION	3.89	0	0
MIPS_RIBOSOME_CYTOPLASMIC	3.85	0	0
REACTOME_INFLÜENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION	3.82	0	0
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE	3.81	0	0
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION	3.81	0	0
REACTOME TRANSLATION	3.79	0	0
BILANGES SERUM AND RAPAMYCIN SENSITIVE GENES	3.78	0	0
REACTOME METABOLISM OF MRNA	3.75	0	0
KEGG_RIBOSOME	3.75	0	0

С

В

GO Term	p-value
translation	1.70E-39
RNA processing	3.30E-10
ribonucleoprotein complex biogenesi	s 5.90E-08
RNA splicing	9.30E-08
mRNA metabolic process	2.90E-07
ribosome biogenesis	4.20E-07
mRNA processing	5.20E-07
translational initiation	2.20E-05
rRNA processing	3.20E-05
rRNA metabolic process	3.70E-05
protein localization	8.30E-05
protein transport	8.70E-05
cell cycle	1.00E-04

D

	T	onMet	Met			
shRNA	368T1	394T4	238N1	482N1		
Cdkn2a	2.96	0.34	1.96	2.04		
Nf2	3.11	1.71	3.37	1.22		
Rb1	1.95	2.27	3.39	3.00		
Tsc2	1.86	2.23	3.90	4.32		
Cdkn2b	3.06	3.59	4.30	4.60		

Supplementary Figure S1. A genome-scale shRNA screen identifies candidate metastasis-specific lethal genes A. Gene set enrichment analysis (GSEA) of genes that lose representation in all cell line samples during *in vitro* culture

uncovers many known essential pathways. The pathways eliciting the most broadly lethal shRNA treatment responses are shown.

B. An example of a broadly essential pathway. Vertical bars are genes represented in the gene set/pathway sorted by essentiality (left: more essential) and the enrichment score is graphed above (green trace).

C. Gene ontology (GO) analysis depicts that knockdown of genes in essential pathways leads to reduced representation in all cell lines.

D. Single shRNAs targeting known tumor suppressors are within the most enriched shRNA across all cell lines. Numbers indicate log₂ fold change in loss of representation in the late samples.

E. Top 50 genes that are specifically required for each cell line, where knockdown leads to reduced representation in each individual cell line. Heatmaps show the Weighted Sum metric of shRNA representation for each gene after knockdown. Panels show cell-line specific lethal genes for (from top) 368T1, 394T4, 238N1, and 482N1 respectively.

Α

Lethal to all 12 genes 2 shRNAs per gene	Metastas 240 genes 1-2 shRNAs	s Lethal		Mrps 27	7mvm5	Fam102b	Mrol30	Ebyo32	Cdbr5
Mtor	KIf5	Mrn114	Cls2	Cryab	Ziliyili Mhtd1	Chr	Hmacs1	Mrn154	Tnfrsf1a
Fif4a1	Mdp1	Nii pi 14	GISZ Sp1	Cryab	1452	Gill Micin 1	Signal	Acon1	Mrnl21
Mcm6	Mup 1 Otud5	Crv1	Spi Limk2	Gabarapiz Vwboo	Hodh	Cd274	Domo?	Asap i Moto 1	Mrp120
Csell	Spata24	Klf6	Mrpl10	Tubb5	Adi1	Mottl22	Smad1	Srf	Mank9
Wee1	Gent2	Cldn6	Dan	ArlAc	Lend?	Smad7	Mia2	lun	Svnl
Nsf	Dnaih4	Fads6	Dap An4h1	Cchl2	Zbth10	Ovnad1	ivilaz Gnank1	Jun Abch1a	7fn422
Pdnk1	Ciz1	Katnh1	Nov4	Scin	ZDID 10 Rc3h1	Crkl	Basarf?	Abcb ra Atm	Kihi10
Fif3c	SIc7a1	NIn	Mtif?	Gtf2b	Thc1d9	Pnn3ca	7fn810	Pik3ca	Setd6
Rns3	Pld1	Tead1	SIc39a9	Lrrc 57	Fam06a	Sema6d	Ndufaf4	Rink2	1810055G02Rik
Rps4x	Tor	Nudt15	Cen350	Encor Fafrl1	Ndufb3	Nudt1	Nktr	Sra1	1810026J23Rik
Snrpe	Npas1	SIc12a9	Sar1b	Cnot2	Ain	Aox1	Mrpl52	Rac1	8430406107Rik
Snrpd3	Ppfia3	Vps11	Ddx3x	Gtf2h3	Akan12	Mxd1	Ythdc2	Sprvd4	2810021B07Rik
empae	lck	Atpaf1	Exn	Thc1d5	Orich1	Setd1h	Arnc.3	Ddx19h	2310033P09Rik
Advantageous to all	Baiap2l1	Atp5h	SIc22a18	Dnm2	Lass5	Abhd14b	Mrp63	IVI	Aapat6
5 genes	Mzt2	Nsun4	Bcap29	Rad52	Csf2ra	Wrb	Fkbp8	Whsc2	Tfap2b
NIT?	Ndra3	Zfp36/2	Acvr1b	Csnk1a3	Pkn2	Tab1	Chrnb1	lkbka	ממ
Db1	Mrpl10	Cvth2	Wasl	Gca	Anapc2	Than7	Stk36	Ssx2in	Epb4.112
	Tspo	Rai1	Fam36a	Raben1	Bet1	Mrpl24	Asb8	Eif2ak2	Rpa2
Cdkn2b	Ndufa8	Top3a	Pdha2	Vrk3	Evi5	Rpp38	Csnk2a2	Tcea3	Rabgap1
Conc	Eif4a1	Magee1	Sppl3	Polm	Hist3h2ba	Athl1	Mrpl39	Taif2	Ptprk
oche	Smuq1	XrnŽ	Xpo1	Vapa	Slx1b	Nfkb1	Nck2	Rps6ka1	Ly6c1
Inert	Crk	Nudc	Plcb1	Rnf125	Phf7	Mrpl42	Lss	Grhl3	lfi27l2b
comprizing 20% of the	Tnrc18	Car14	Diap2	Ppp5c	Ccdc99	Ywhah	Yme1l1	Pcdhb22	Acp6
32 shPN/As	Gpatch1	Plod2	H13	lars2	Letm1	Ccz1	Mrps26	Raf1	Cln8
52 SHINAS	Picl1	Sipa1l1	Csnk1q1	Clybl	Anapc5	1123a	Wnt7b	Sod2	lldr1
	Ydjc	Rwdd3	Tmem33	Setbp1	Mrpl16	Fam20b	Cd55	Evl	TagIn2

Supplementary Figure S2. Validation of metastasis specific lethal/sick genes

A. List of candidate genes identified in the initial screen and control genes (lethal, advantageous or inert) chosen for the secondary *in vitro* and *in vivo* screen. Genes involved in mitochondria function or metabolism are highlighted in red. **B.** Comparison of representation between replicates shows high reproducibility. Each dot represents one shRNA. **C.** Differential effect of each shRNA on 238N1 (Met) versus 368T1 (T_{nonMet}) cells. The difference in the change in representation between the Early and Late timepoint is indicated as Met-specific effect with many genes having a > 4x greater effect in the Met cells. Each dot represents one shRNA.

D. Representation before (Early) and after (Late) 20 doubling of 482N1 cells *in vivo*. The representation of lethal genes is reduced, inert genes are unchanged, and advantageous genes increase. Candidate genes have a great reduction in representation in the *in vivo* (Late) cells. Each dot represents one shRNA.

in vitro in vivo

Chuang et al. Supplementary Figure S4

Supplementary Figure S4. Metastasis cell lines are more susceptible to mitochondria targeting therapy due to altered mitochondria functionality.

A-C. *In vitro* competition assay of Met (238N1) and T (368T1) cell lines treated with 50ng/ml ethidium bromide (**A**), 15µg/ml doxycycline (**B**), or 200 µM phenformin (**C**) shows higher treatment effect on Met cells. Data normalized to untreated control; one representative experiment of at least three independent experiments tested in triplicate is shown. Error bars indicate S.D.; if the error bar is missing, the symbol was larger than the error bar.

Error bars indicate S.D.; if the error bar is missing, the symbol was larger than the error bar. **D.** *In vitro* competition assay of Met (482N1) and T_{nonMet} (394T4) cell lines under 1% oxygen conditions treated with 50ng/ ml ethidium bromide, 15 µg/ml doxycycline, 200 µM phenformin, or 2 µM FCCP shows higher treatment effect on Met cells. Data normalized to untreated control; one representative experiment of at least three independent experiments tested in triplicate is shown. Error bars indicate S.D.; if the error bar is missing, the symbol was larger than the error bar. **E**. Seahorse analysis of Met and T_{nonMet} cell lines (n = 3 each) to measure oxygen consumption rate. Met cell lines show higher ECAR (extracellular acidification rate) indicating higher use of gylcolysis in Met cells. Three independent experiments measured in quadruplicate, one representative experiment is shown. Error bars indicate SEM.

experiments measured in quadruplicate, one representative experiment is shown. Error bars indicate SEM. **F**, **G**. Seahorse MitoFuelFlexTest analysis of Met and T_{nonMet} cell lines (n = 3 each) to measure fuel capacity and dependency. Both T_{nonMet} and Met cells do not seem to fuse or rely on fatty acids as a fuel source. p > 0.05, error bars indicate SEM.

H, **I**. JC1 staining of Met (**H**, n = 2) and T_{nonMet} (**I**, n = 2) cell lines to measure relative depolarization by flow cytometry after treatment with DMSO, doxycycline (Dox) or ethidium bromide (EtBr) normalized to untreated control. No significant differences upon treatment could be observed. Error bars indicate SEM.

J, **K**. Reactive oxygen species (ROS) staining of T_{nonMet} (**J**) and Met (K) cell lines to measure relative ROS production by flow cytometry after treatment with ethidium bromide (EtBr), doxycycline (Dox) or phenformin (Phen) normalized to untreated control. One representative cell line in 3 independent repeats is shown, tested for 2 cell lines each. Error bars indicate SEM.

L. Western blot analysis of primary Met and T_{nonMet} cell lines for mitonuclear imbalance after 24 hours of treatment with control, doxycycline (Dox) or ethidium bromide (EtBr). No differences in expression of nuclear (Atp5, Uqcrc2 and Sdhb) or mitochondria encoded (mt-Co1) genes could be observed between T_{nonMet} and Met cell lines. One representative blot is shown, tested for 3 cell lines each.

M. Western blot analysis of primary Met and T_{nonMet} cell lines for differential changes in signaling pathways due to phenformin (phen) treatment for 24 hours. No differences in expression levels between T_{nonMet} and Met cell lines could be detected. One representative blot out of three blots is shown, tested for 2 cell lines each.

N-Q Cell viability analysis with PrestoBlue assay. Cells were either treated with vehicle (black line), 200 μ M phenformin (pink line), 50ng/ml ethidiumbromide (green line), or 15 μ g/ml doxycycline (blue line). No significant differences could be detected between the treated cells and their respective untreated controls. Two T_{nonMet} (**N**,**P**) and two Met (**O**,**Q**) cell lines were analyzed each tested in triplicate, each in three independent experiments. Error bars indicate SEM.

R-U. Analysis of migration in Met and T_{nonMet} cells at normoxic (**R**,**S**) and hypoxic (1 % O₂, **T**,**U**) conditions as well as at physiological (pH 7.4; **R**,**T**) or acidic (pH 6.5, **S**,**U**) conditions. Three independent experiments measured in triplicate, one representative experiment each is shown. Error bars indicate SEM.

V, **W**. Analysis of sphere forming capacity in T_{nonMet} and Met cells. (**V**) Exemplary pictures of one T_{nonMet} and one Met cell line on day 1 and day 8 of 3D sphere culture. (**W**) Quantification of growth in diameter from day 1 to day 8; One out of three independent experiments performed in triplicate for each three Met and three T_{nonMet} cell lines is shown. Error bars indicate SEM.

+

Supplementary Figure S5. Mitochondria of metastasis in *in vivo* mouse models of lung cancer have reduced functionality and are a target for anti-metastatic treatment.

A-C. Mice were subcutaneously injected with a metastatic lung cancer cell line and treated with either doxycycline (1 mg/kg i.p., n = 8 mice) or vehicle control (n = 8 mice) daily starting 9 days after injection. 29 days after injection, lungs were harvested and analyzed by fluorescent stereomicroscope (**A**, upper panel, scale bar = 1 mm) and H&E staining (**A**, lower panel, scale bar = 50 µm). (**B**) Primary tumor weight was slightly reduced in docycycline-treated animals. (**C**) The percent of Tomato^{positive} cancer cells was reduced in 6 out of 8 doxycycline-treated animals. Each dot represents one sample, the red line indicates the median.

D, **E**. 579DLN Met cells were pretreated *in vitro* with phenformin (*in vitro* phen: 200 μ M) or vehicle control for 48 hours and then intravenously injected into recipient mice. Mice were then treated with either phenformin (*in vivo* phen: 100 mg/kg p.o., n = 5 mice per group) or vehicle control (n = 3 or 5 mice, respectively) daily starting at the day of injection. 3 days after injection, lungs were harvested and analyzed by fluorescent stereomicroscope (**D**, upper panel, scale bar = 1 mm), H&E staining (**D**, middle panel, scale bar = 50 μ m), and IHC for Tomato and BrdU (**D**, lower panel, scale bar = 50 μ m) and flow cytometry (**E**). The percentage of Tomato^{positive} cancer cells in the lungs was significantly reduced upon pretreatment with phenformin (**E**, **p* < 0.05, n.s. *p* > 0.05). Each dot represents one sample, the red line indicates the mean.

F. Analysis of apoptosis induction in two Met cell lines used for the in vivo transplantation experiments after treatment with phenformin (200 μ M) or control. Three independent experiments measured in triplicate, one representative experiment is shown. Error bars indicate SEM.

G. Analysis of anoikis induction in two Met cell lines used for the in vivo transplantation experiments after treatment with phenformin (200 μ M) or control. Three independent experiments measured in triplicate, one representative experiment is shown. Error bars indicate SEM.

H, **I**. 579DLN Met cells were pretreated *in vitro* with phenformin (200 μ M), doxycycline (15 μ g/ml), FCCP (2 μ M), or vehicle control for 48 hours and then intravenously injected into recipient mice. 3 days after injection, lungs were harvested and analyzed by fluorescent stereomicroscope (**H**, upper panel, scale bar = 1 mm) and H&E staining (**H**, lower panel, scale bar = 100 μ m) and flow cytometry (**I**). The percentage of Tomato^{positive} cancer cells in the lungs was significantly reduced upon pretreatment with phenformin (*p* = 0.0002). Each dot represents one sample, the red line indicates the mean.