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Supplementary Figure S1. Detailed structure of the segmentation network. 

 
 

 

 



 

Supplementary Figure S2. Comparison of the co-occurrence frequency between cell types. A-C. Control 
group shows higher association between fibroblasts and endothelial cells (A), fibroblasts and lipids (B), 
and the clustering frequency of lipids (C), compared to the cancer group. D. Cancer tissue shows higher 
co-occurrence between endothelial cells and EV-shedding stromal cells than the normally associated pairs 
of endothelial cells and fibroblasts. E. Cancer tissue shows higher association between tumor cells and 
lipids than the normally self-clustered lipids. The co-occurrence frequency between cell type AB is 
computed by counting the frequency of having cell type B as the nearest neighbor of cell type A, divided 
by the frequency of cell type B at the imaging site. P values in A, B, C were computed using the two-
sample Student’s t-test based on 6 imaging sites from 3 control animals and 7 imaging sites from 3 tumor-
bearing animals. P values in D, E were computed using a paired Student’s t-test based on the 7 imaging 
sites from 3 tumor-bearing animals. 

  



Table S1.  Segmentation accuracy for each class. 

Class/Metric Precision Recall F1 Score 
Tumor cell 0.94 0.89 0.92 
Fibroblast 0.82 0.89 0.85 

Endothelial cell 0.94 0.79 0.86 
Lymphocyte 0.83 0.98 0.9 

EV-shedding stroma cell 0.87 0.89 0.88 
Blood 0.84 0.97 0.9 
Lipid 0.99 0.86 0.92 
EV 0.91 0.93 0.92 

 

Table S2. Average features of cells in cancer tissues (3 animals) and normal tissues (3 animals). 

Cancer 
Average value/Cell 

type Tumor cell (n=2776) Fibroblast (n=3924) Endothelial cell 
(n=558) Lymphocyte (n=279) EV-shedding stroma 

cell (n=1176) Lipid (n=956) 
Diameter (𝝁𝝁m) 13.16 [12.89, 13.44] 16.63 [16.36, 16.9] 20.98 [18.94, 23.25] 9.74 [9.4, 10.12] 17.71 [17.09, 18.34] 34.34 [32.21, 36.59] 

Symmetry 1.69 [1.67, 1.71] 1.76 [1.74, 1.79] 2.11 [2.02, 2.21] 1.56 [1.48, 1.67] 1.97 [1.92, 2.02] 1.63 [1.59, 1.67] 
Area (𝝁𝝁m

2
) 74.55 [71.53, 77.72] 120.63 [117.19, 

124.17] 178.33 [139.34, 
224.71] 45.62 [43.07, 48.35] 119.08 [110.59, 

127.82] 975.63 [854.89, 
1110.03] 

Perimeter (𝝁𝝁m) 43.3 [42.07, 44.62] 51.54 [50.62, 52.47] 72.88 [64.1, 82.73] 29.9 [28.71, 31.22] 57.78 [55.33, 60.33] 119.14 [110.73, 
128.25] 

Roundness 0.59 [0.58, 0.6] 0.57 [0.56, 0.57] 0.43 [0.41, 0.44] 0.69 [0.66, 0.71] 0.47 [0.46, 0.48] 0.55 [0.54, 0.56] 
Irregularity 0.28 [0.27, 0.28] 0.29 [0.28, 0.29] 0.34 [0.33, 0.35] 0.23 [0.22, 0.25] 0.33 [0.33, 0.34] 0.25 [0.24, 0.26] 

FAD/(FAD+NAD(P)H) 0.93 [0.92, 0.93] 0.94 [0.94, 0.95] 0.76 [0.76, 0.77] 0.88 [0.87, 0.89] 0.68 [0.67, 0.68] 0.79 [0.78, 0.8] 
IntensityTHG 22.99 [22.32, 23.69] 19.77 [19.31, 20.25] 21.58 [20.59, 22.61] 42.84 [40.14, 45.66] 22.47 [21.5, 23.5] 49.12 [46.03, 52.3] 

Control 
Average value/Cell 

type Tumor cell (n=NA) Fibroblast (n=3059) Endothelial cell 
(n=258) Lymphocyte (n=157) EV-shedding stroma 

cell (n=NA) Lipid (n=495) 
Diameter (𝝁𝝁m) NA 15.75 [15.46, 16.04] 25.66 [22.17, 29.58] 11.24 [10.55, 11.98] NA 44.1 [39.4, 49.49] 

Symmetry NA 1.96 [1.93, 2] 2.28 [2.13, 2.44] 1.72 [1.62, 1.82] NA 1.55 [1.5, 1.6] 
Area (𝝁𝝁m

2
) NA 92.14 [89.35, 95.08] 179.45 [141.55, 

223.7] 50.24 [46.18, 54.73] NA 2385.78 [1585.56, 
3681.4] 

Perimeter (𝝁𝝁m) NA 46.22 [45.21, 47.28] 93.62 [78.25, 111.29] 35.05 [32.85, 37.37] NA 168.6 [135.52, 217.88] 
Roundness NA 0.59 [0.58, 0.6] 0.37 [0.34, 0.39] 0.57 [0.54, 0.6] NA 0.61 [0.6, 0.63] 
Irregularity NA 0.3 [0.3, 0.3] 0.36 [0.35, 0.38] 0.29 [0.27, 0.31] NA 0.21 [0.2, 0.22] 

FAD/(FAD+NAD(P)H) NA 0.96 [0.95, 0.96] 0.85 [0.85, 0.86] 0.92 [0.91, 0.93] NA 0.72 [0.7, 0.73] 
IntensityTHG NA 23.47 [22.87, 24.1] 23.26 [22.13, 24.45] 47.91 [43.81, 52.18] NA 36.47 [33.49, 39.6] 

Note: Confidence intervals were computed by bootstrap. The data is reported in the form of “average 

and its 95% confidence interval”. 

  



Supplementary Note: Training the deep neural network (DNN) 

For the task of multiclass pixel-level segmentation, 226 image patches (128 by 128 pixels) were used for 

training, 16 image patches (128 by 128 pixels) from were used for validation, and 22 image patches (128 

by 128 pixels) from were used for testing. As with most biomedical image analysis task, the limited 

training data presents a challenge for using DNN for cell segmentation. To reduce overfitting and improve 

segmentation accuracy, we used the following methods. (a) We followed the modified U-Net (1) 

architecture by Yang et al. (2), where ResNet bottleneck design with identify shortcuts and batch 

normalization are applied on top of the standard U-Net (1) (Supplementary Figure S1 as shown below). 

Bottleneck design leads to better parameter efficiency (maintaining same number of feature channels 

while reducing number of parameters) and batch normalization leads to more stable training. (b) Through 

experiments on the validation set, we found the best F1 score can be achieved by removing the last two 

scale blocks from the architecture in Yang et al.’s work (see more details of the model architect design in 

Supplementary Figure S1). By removing the last two blocks, we reduce a significant amount of 

parameters in the network and thus reduce the risk of overfitting. (c) We adopted standard image 

augmentations (e.g. rotation, flipping, and cropping) to further reduce overfitting. Finally, our evaluation 

on the test set (Table S1) shows our network can generalize well to unseen images.  
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