### **Supplementary information**

# Production of Viable Chicken by Allogeneic Transplantation of Primordial Germ Cells Induced from Somatic Cells

Ruifeng Zhao<sup>1,2§</sup>, Qisheng Zuo<sup>1,2§</sup>, Xia Yuan<sup>1,2§</sup>, Kai Jin<sup>1,2§</sup>, Jing Jin<sup>1,2</sup>, Ying Ding<sup>1,2</sup>, Chen Zhang<sup>1,2</sup>, Tingting Li<sup>1,2</sup>, Jingyi Jiang<sup>1,2</sup>, Jiancheng Li<sup>1,2</sup>, Ming Zhang<sup>1,2</sup>, Xiang Shi<sup>1,2</sup>, Hongyan Sun<sup>1,2</sup>, Yani Zhang<sup>1,2</sup>, Qi Xu<sup>1,2</sup>, Guobin Chang<sup>1,2</sup>, Zhenhua Zhao<sup>3</sup>, Bing Li<sup>3</sup>, Xinsheng Wu<sup>1,2</sup>, Yang Zhang<sup>1,2</sup>, Jiuzhou Song<sup>4</sup>, Guohong Chen<sup>1,2\*</sup>, Bichun Li<sup>1,2\*</sup>

<sup>1</sup>Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
<sup>2</sup>Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University

<sup>3</sup>The Poultry Research Institute of Chinese Academy of Agricultural Sciences, Yangzhou 225009, China

<sup>4</sup>Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA <sup>§</sup> These authors contributed equally to this work.

\* Corresponding author:

Bichun Li, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009, P.R., China. E-mail: yubcli@yzu.edu.cn

Guohong Chen, College of Animal Science and Technology, Yangzhou University, 88 South

University Ave, Yangzhou, Jiangsu 225009, P.R., China. E-mail: ghchen@yzu.edu.cn

#### **Table of contents**

### **Supplementary Figures**

- Supplementary Figure 1.
- Supplementary Figure 2.
- Supplementary Figure 3.
- Supplementary Figure 4.
- Supplementary Figure 5.
- Supplementary Figure 6.
- Supplementary Figure 7.
- Supplementary Figure 8.
- Supplementary Figure 9.
- Supplementary Figure 10.
- Supplementary Figure 11.
- Supplementary Figure 12.

#### **Supplementary Tables**

- Supplementary Table 1.
- Supplementary Table 2.
- Supplementary Table 3.
- Supplementary Table 4.
- Supplementary Table 5.
- Supplementary Table 6.



Supplementary Figure 1. Evaluation of the OSNL vector function. a. Schematic diagram of the primers designed for evaluation of the exogenous and endogenous OSNL gene expression by qRT-PCR. b. qRT-PCR analysis of OSNL gene (exogenous and endogenous) expression in the CEFs after transfection with OSNL vectors for 48 h (Data are shown as the mean $\pm$ SEM, n=3 independent experiments, \* p<0.05, \*\* p<0.01, \*\*\* p<0.001, unpaired two-tailed *t*-test). c. qRT-PCR analysis of exogenous OSNL gene expression in the CEFs after transfection with OSNL gene expression in the CEFs after transfection with OSNL gene expression in the CEFs after transfection with OSNL vectors for 21 consecutive days (Data are shown as the mean $\pm$ SEM, n=3 independent experiments). d. Flow cytometric analysis of the SSEA-1-positive cells in the OSNL-induced CEFs (n=3 independent experiments).

**Supplementary Figure 2** 



Supplementary Figure 2. Evaluation of the glycolytic products in iPSCs and CEFs. a. Lactic acid concentration was evaluated to reflect the glycolytic level in CEFs and iPSCs (Data are shown as the mean $\pm$ SEM, *n*=3 independent experiments, \*\*\* *p*<0.001, unpaired two-tailed *t*-test). b. The dynamic glycolytic levels in *OSNL*- and *OSNL*+2i-induced iPSC formation from days 1 to 15 (Data are shown as the mean $\pm$ SEM, *n*=3 independent experiments, unpaired two-tailed *t*-test).



Supplementary Figure 3. Transcriptome analysis of iPSCs derived from CEFs in different induction systems. GO and KEGG analysis of DEGs between iPSCs vs CEFs or ESCs with different induction systems, including OSNL, OSNL+2i and OSNL+VC/VPA.



**Supplementary Figure 4. iPSC identification. a.** DNA methylation status evaluated by bisulfite sequencing for *Oct4*, *Sox2* and *Nanog* promoter regions of iPSCs, CEFs and ESCs, Black dots represent methylated sites, and white dots represent unmethylated sites, and '×' represents undetected sites (n=10 repeats). **b.** Fluorescence staining of iPSCs with SSEA-1. CEFs and ESCs were used as the negative controls and positive controls, respectively. Scale bar: 70 µm. (n= 3 independent experiments). **c.** Alkaline phosphatase staining of iPSCs. CEFs and ESCs were used as the negative controls, respectively. Scale bar: 20 µm. (n= 3 independent experiments). **d.** Chromosome karyotype analysis of iPSCs showing normal diploid karyotypes. Scale bar: 2 µm. (n= 3 independent experiments).



Supplementary Figure 5. Optimization of the iPGC induction system. a. Morphological observations of ESCs induced to differentiate into iPGCs. Scale bar: 50  $\mu$ m. (*n*= 3 independent experiments). b. Flow cytometric analysis of CKIT- and CVH-positive cells. (Data are shown as the mean±SEM, *n*=3 independent experiments, \*\*\* *p*<0.001, one-way ANOVA). c. CKIT and CVH immunofluorescence staining of iPGCs induced by BMP4 or BMP4/BMP8a/EGF on day 6, Scale bar: 70  $\mu$ m. (*n*= 3 independent experiments). d. PGCs, iPGCs, ESCs and CEFs stained with pKH26 were injected into the embryo vessels. The red fluorescence was monitored by real-time

fluorescence in day 4.5 chicken embryo genital ridges, Scale bar: 2 mm. (n=3 independent experiments). e. PGCs, iPGCs and CEFs stained with pKH26 were injected into embryo vessels. Genital ridges from day 4.5 chicken embryos were sectioned for red fluorescence and observed to track the migration of the injected cells, Scale bar: 4 mm. (n=3 independent experiments). f. qRT-PCR analysis of *Nanog* and *Cvh* gene expression during ESC induction to iPGCs with different components. (n=3 independent experiments). g. The induction efficiency of iPGCs by different combinations, including BMP4/BMP8B/EGF/VK3, BMP4/BMP8b/EGF/5Aza-cd and BMP4/BMP8b/EGF, was evaluated by flow cytometry. (Data are shown as the mean±SEM, n=3 independent experiments, \* p<0.05, \*\* p<0.01, one-way ANOVA).



Supplementary Figure 6. Optimization of the iPGC induction system. a. Schematic diagram of RNA-seq for iPGCs induced from ESCs by different components. ESCs and PGCs were used as the negative and positive controls, respectively. Unsupervised hierarchical clustering based on PGC development was applied to analyze the similarities among the ESCs, PGCs and iPGCs induced by different systems. The heatmap shows the selected gene expression profile. The color key from blue to red indicates low to high gene expression. White cells represent ESCs, red cells represent PGCs, cells with other colored represent iPGCs derived from different induction conditions. Dots with different colors represent independent samples of corresponding cells for RNA-seq. b, c. PCA (b) and correlation analysis (c) of ESCs, PGCs and iPGCs induced by different systems based on the genes selected in unsupervised hierarchical clustering analysis. The color key from blue to white indicates short to long distances between samples. The colored dots represent sequencing data from individual cell samples. d. Violin plot of PGC marker gene expression from the RNA-seq data of iPGCs from different groups, ESCs and PGCs. The solid lines at each end of the violin diagram represent the maximum and minimum values, respectively. The three dotted lines in the middle of the violin diagram represent the 75% percentile, the mean, and the 25% percentile in turn. e. iPGCs induced with different components, as well as ESCs and PGCs, were stained with pKH26 and injected into the recipients. The migration of the injected cells was evaluated by flow cytometric analysis of the pKH26-positive cells in isolated genital ridges from different groups. ESCs are used as control. (Data are shown as the mean $\pm$ SEM, n=3 independent experiments, \*\*\* p<0.001, oneway ANOVA)



Supplementary Figure 7. PGC marker gene expression in ESCs, PGCs, iPSCs and iPGCs. The expression of *Nanog*, *Sox2*, *Oct4*, the migration-related gene *Cxcr4*, the reproductive marker genes *c-kit* and *Cvh*, the PGC marker gene *Blimp1* and the CEF marker gene *Fsp1* in ESCs, PGCs, iPSC, iPGCs and CEFs was evaluated by qRT-PCR. (Data are shown as the mean±SEM, *n*=3 independent experiments, \* p<0.05, \*\* p<0.01, \*\*\* p<0.001, one-way ANOVA)



Supplementary Figure 8. EGFP expression in chicken embryo genital ridges analyzed by western blots. EGFP protein expression was evaluated in isolated embryo genital ridges from embryos transplanted with iPGCs, PGCs and CEFs. iPSCs and iPGCs were used as the positive controls.  $\beta$ -Actin was used as internal control of EGFP. (n= 3 independent experiments).



**Supplementary Figure 9. The genetic relationship between somatic cell-derived chickens and donors/recipients. a.** Microsatellite analysis of the LEI094 site. The length of the LEI094 site in black feathered Langshan chickens was 290 (i) and in White Plymouth Rock chickens was 311 (ii).

Lengths of both 290 and 311 were detected in the heterozygote offspring. The length of the MCW004 site was 180 in black feathered Langshan chickens and 186/215 in White Plymouth Rock chickens. Lengths of 180 and 186 were detected simultaneously in the heterozygotes. The length of the MCW104 site was 204/206 in black feathered Langshan chickens and 189 in White Plymouth Rock chickens. Lengths of 189 and 206 were detected simultaneously in the heterozygotes. (n= 61 independent individuals). **b.** PCA of somatic cell-derived chickens, black feathered Langshan chickens and White Plymouth Rock chickens. Different colored dots represent different individuals. **c.** Correlation analysis of the offspring with different feather color phenotypes, including black feathered, black-white feathered, yellow feathered and black-yellow feathered phenotypes, the color key from blue to red indicates the similarities from low to high between samples. **d.** The copy number of *OSNL* genes in the offspring. The boxplot contains the maximum values, the quarterback, the median, lower quartile and the minimum values in turn, the black dots represent outliers. **e.** qRT-PCR evaluation of EGFP expression in the somatic cell-derived chickens. (Data are shown as the mean $\pm$ SEM, n=3 independent experiments). **f.** SNP variations in two feather color-related genes, *MC1R* and *TYR*, in individuals with different feather color phenotypes.



**Supplementary Figure 10. Chickens produced by allogeneic transplantation of PGCs. a**. White hen × black cock (recipient of allogeneic transplantation of white chicken PGCs) produced positive white feathered offspring; **b**. White cock × black hen (recipient of allogeneic transplantation of white chicken PGCs) produced positive white feathered offspring; **c**. White hen (recipient of allogeneic transplantation of black chicken PGCs) ×white cock produced positive black feathered offspring; **d**. White hen × white cock (recipient of allogeneic transplantation of black chicken PGCs) produced positive black feathered offspring; **f**. black hen × black cock produced black feathered offspring; **g**. black hen × white cock produced black feathered offspring; **g**. black hen × white cock produced black feathered offspring. (Note: The gene encoding white feather is recessive.)



Supplementary Figure 11. Strategy for FACS sequential gating. a, b. Gating strategy for detection SSEA-1 positive cells from the unstain sample(a) and experiment sample(b) by flow cytometry analysis. Flowjo VX software package was used for flow cytometry data analysis. Select the gate tool to circle the area of majority cells to eliminate the interference from cell debris or background noise via FSC-A (forward scattering light area) and SSC-A (side scattering light area). APC-A (allophycocyanin area) was the fluorescent channel of SSEA-1 Alexa fluor 594 binding antibody to circle an area on the right side of the cell to detected the SSEA-1 positive cells within sample (the red circumscribe) (applied for Fig3b, Supplementary Figure 1c). c, d. Gating strategy for detection CVH/CKIT positive cells from the unstain sample(c) and experiment sample(d) by flow cytometry analysis. Flowjo VX software package was used for flow cytometry data analysis. Select the gate tool to circle the area of majority cells to eliminate the interference from cell debris or background noise via FSC-A and SSC-A. Moreover, the FSC-W (forward scattering light width) applied for improve the correlator output. FITC-A (fluorescein isothiocyante area) and PE-A (Phycoerythrin area) was the fluorescent channel of anti-CKIT and anti-CKIT, respectively. Absolute number of CKIT and CVH positive cells within sample was circle an area on the red circumscribe (applied for Fig5d, e; Supplementary Figure 5b).



Supplementary Figure 12. Uncropped western blotting images for Supplementary Figure 8.

| Group                  | Cell Name                      | Treatment           | cell type               |
|------------------------|--------------------------------|---------------------|-------------------------|
| iPS(OSNL)-1            | induced pluripotent stem cells | OSNL                | iPS induced from CEF    |
| iPS(OSNL)-2            | induced pluripotent stem cells | OSNL                | iPS induced from CEF    |
| iPS(OSNL)-3            | induced pluripotent stem cells | OSNL                | iPS induced from CEF    |
| iPS(OSNL+2i)-1         | induced pluripotent stem cells | OSNL+2i             | iPS induced from CEF    |
| iPS(OSNL+2i)-2         | induced pluripotent stem cells | OSNL+2i             | iPS induced from CEF    |
| iPS(OSNL+2i)-3         | induced pluripotent stem cells | OSNL+2i             | iPS induced from CEF    |
| iPS(OSNL+VC+VPA)-1     | induced pluripotent stem cells | OSNL+VC+VPA         | iPS induced from CEF    |
| iPS(OSNL+VC+VPA)-2     | induced pluripotent stem cells | OSNL+VC+VPA         | iPS induced from CEF    |
| iPS(OSNL+VC+VPA)-3     | induced pluripotent stem cells | OSNL+VC+VPA         | iPS induced from CEF    |
| CEF-1                  | chicken embryo fibroblasts     |                     | CEF                     |
| CEF-2                  | chicken embryo fibroblasts     |                     | CEF                     |
| CEF-3                  | chicken embryo fibroblasts     |                     | CEF                     |
| ESC-1                  | embryonic stem cells           |                     | ESCs                    |
| ESC-2                  | embryonic stem cells           |                     | ESCs                    |
| ESC-3                  | embryonic stem cells           |                     | ESCs                    |
| iPGC(BMP4)-1           | primordial germ-like cells     | BMP4                | iPGCs induced from ESCs |
| iPGC(BMP4)-2           | primordial germ-like cells     | BMP4                | iPGCs induced from ESCs |
| iPGC(BMP4+BMP8b+EGF)-1 | primordial germ-like cells     | BMP4+BMP8b+EGF      | iPGCs induced from ESCs |
| iPGC(BMP4+BMP8b+EGF)-3 | primordial germ-like cells     | BMP4+BMP8b+EGF      | iPGCs induced from ESCs |
| iPGC(VPA)-1            | primordial germ-like cells     | BMP4+BMP8b+EGF+VPA  | iPGCs induced from ESCs |
| iPGC(VPA)-2            | primordial germ-like cells     | BMP4+BMP8b+EGF+VPA  | iPGCs induced from ESCs |
| iPGC(VPA)-3            | primordial germ-like cells     | BMP4+BMP8b+EGF+VPA  | iPGCs induced from ESCs |
| iPGC(VK3)-1            | primordial germ-like cells     | BMP4+BMP8b+EGF+VK3  | iPGCs induced from ESCs |
| iPGC(VK3)-2            | primordial germ-like cells     | BMP4+BMP8b+EGF+VK3  | iPGCs induced from ESCs |
| iPGC(VK3)-3            | primordial germ-like cells     | BMP4+BMP8b+EGF+VK3  | iPGCs induced from ESCs |
| iPGC(5Aza)-1           | primordial germ-like cells     | BMP4+BMP8b+EGF+5Aza | iPGCs induced from ESCs |
| iPGC(5Aza)-2           | primordial germ-like cells     | BMP4+BMP8b+EGF+5Aza | iPGCs induced from ESCs |
| iPGC(5Aza)-3           | primordial germ-like cells     | BMP4+BMP8b+EGF+5Aza | iPGCs induced from ESCs |
| iPGC(iPS-derived)-1    | primordial germ-like cells     | BMP4+BMP8b+EGF      | iPGCs induced from iPS  |
| iPGC(iPS-derived)-2    | primordial germ-like cells     | BMP4+BMP8b+EGF      | iPGCs induced from iPS  |
| iPGC(iPS-derived)-3    | primordial germ-like cells     | BMP4+BMP8b+EGF      | iPGCs induced from iPS  |
| PGC-1                  | primordial germ cells          |                     | PGCs                    |
| PGC-2                  | primordial germ cells          |                     | PGCs                    |
| PGC-3                  | primordial germ cells          |                     | PGCs                    |

# Supplementary Table 1 Detailed information the samples for RNA-seq

| Number | Nameplate | Color of feather | MCW004                  |     | MCW104       |                 | Туре            |  |
|--------|-----------|------------------|-------------------------|-----|--------------|-----------------|-----------------|--|
| 1      | 2001      | black-white      | 180 186 202             |     | 202          | 221             | Heterozygote    |  |
| 2      | 2002      | black            | 180 186 189 206         |     |              |                 | Heterozygote    |  |
| 3      | 2006      | black-white      | black-white 180 190 206 |     |              |                 | Heterozygote    |  |
| 4      | 2007      | black-white      | 186                     |     | 189          | 204             | Heterozygote    |  |
| 5      | 2011      | black-white      | 182                     | 186 | 194          | 206             | Heterozygote    |  |
| 6      | 2012      | black-white      | 182                     | 186 | 206          | 214             | Heterozygote    |  |
| 7      | 2016      | black-white      | 182                     | 186 | 186          | 189             | Heterozygote    |  |
| 8      | 2019      | yellow           | 180                     | 182 | 206          |                 | Homozygous      |  |
| 9      | 1853      | yellow           | 168                     |     | 184          | 188             | Heterozygote    |  |
| 10     | 1854      | black            | 180                     | 186 | 189          | 202             | Heterozygote    |  |
| 11     | 1858      | yellow           | 180                     | 186 | 189          | 206             | Heterozygote    |  |
| 12     | 1981      | yellow           | 184                     | 186 | 189          | 206             | Heterozygote    |  |
| 13     | 1984      | black-white      | 180                     | 182 | 214          | 221             | Heterozygote    |  |
| 14     | 1987      | yellow           | 180                     | 186 | 189          |                 | Heterozygote    |  |
| 15     | 3051      | yellow           | 182                     | 186 | 189          | 214             | Heterozygote    |  |
| 16     | 3080      | yellow           | 180 186 189 Heteroz     |     | Heterozygote |                 |                 |  |
| 17     | 3512      | black-white      | 180                     | 186 | 189          | 221             | 21 Heterozygote |  |
| 18     | 3513      | black-yellow 18  |                         | 186 | 189          | 207             | Heterozygote    |  |
| 19     | 3519      | black-white      | 180                     | 186 | 189          |                 | Heterozygote    |  |
| 20     | 3700      | black-yellow     | 179                     | 186 | 195          |                 | Heterozygote    |  |
| 21     | 3704      | yellow           | 180                     | 186 | 189          | 192             | Heterozygote    |  |
| 22     | 3707      | yellow           | 179                     | 186 | 188          |                 | Heterozygote    |  |
| 23     | 3719      | black-white      | 180                     | 186 | 189          |                 | Heterozygote    |  |
| 24     | 3724      | yellow           | 180                     | 186 | 189          |                 | Heterozygote    |  |
| 25     | 3736      | black-white      | k-white 180 186 189 He  |     | Heterozygote |                 |                 |  |
| 26     | 3739      | black            | 184                     | 186 | 202          | 214             | Heterozygote    |  |
| 27     | 3962      | black-yellow     | 180                     | 186 | 202          | 206             | Heterozygote    |  |
| 28     | 3968      | yellow           | 180                     | 186 | 189          | 202             | Heterozygote    |  |
| 29     | 3971      | black-white      | 184                     | 186 | 206          | 221             | Heterozygote    |  |
| 30     | 3975      | black-white      | 180                     | 186 | 189          | 206             | Heterozygote    |  |
| 31     | 3984      | black-white      | 180                     | 186 | 189          |                 | Heterozygote    |  |
| 32     | 3992      | yellow           | 180                     | 182 | 189          | 194             | Heterozygote    |  |
| 33     | 3995      | black            | 182                     | 186 | 192          |                 | Heterozygote    |  |
| 34     | 4000      | black            | 184                     | 186 | 189          |                 | Heterozygote    |  |
| 35     | 4005      | yellow           | 180                     | 186 | 189          | 206             | Heterozygote    |  |
| 36     | 4011      | black            | 180                     |     | 189          | 221             | Homozygous      |  |
| 37     | 4013      | yellow           | 182                     | 186 | 189          | 192             | Heterozygote    |  |
| 38     | 4017      | black            | 180 186 189 194 Heteroz |     | Heterozygote |                 |                 |  |
| 39     | 0556      | yellow           | 180                     |     | 189          | 89 Heterozygote |                 |  |
| 40     | 1986      | yellow           | 179                     | 186 | 189          | 202             | Heterozygote    |  |

Supplementary Table 2 Results of microsatellite analysis

| 41 | 0539 | yellow       | 179 | 186 | 189 |     | Heterozygote   |  |  |
|----|------|--------------|-----|-----|-----|-----|----------------|--|--|
| 42 | 3970 | yellow       | 179 | 186 | 189 | 221 | Heterozygote   |  |  |
| 43 | 3977 | yellow       | 179 | 181 | 214 | 221 | Homozygous     |  |  |
| 44 | 1994 | black-yellow | 179 |     | 189 | 221 | Heterozygote   |  |  |
| 45 | 3728 | black-yellow | 179 | 186 | 189 | 206 | Heterozygote   |  |  |
| 46 | 3735 | black-yellow | 182 | 186 | 214 | 221 | Homozygous     |  |  |
| 47 | 3517 | black-yellow | 184 | 186 | 189 | 202 | 2 Heterozygote |  |  |
| 48 | 3960 | black-yellow | 179 | 186 | 189 | 221 | 1 Heterozygote |  |  |
| 49 | 3972 | black        | 184 | 186 | 189 | 202 | 2 Homozygous   |  |  |
| 50 | 3978 | black        | 179 | 182 | 189 | 194 | Homozygous     |  |  |
| 51 | 0560 | yellow       | 179 | 186 | 206 | 221 | Heterozygote   |  |  |
| 52 | 0562 | black        | 179 | 186 | 189 | 202 | Heterozygote   |  |  |
| 53 | 0573 | black        | 179 | 186 | 189 |     | Heterozygote   |  |  |
| 54 | 3073 | black-white  | 179 |     | 206 | 221 | Heterozygote   |  |  |
| 55 | 3074 | yellow       | 184 | 186 | 202 |     | Homozygous     |  |  |
| 56 | 3524 | yellow       | 184 | 186 | 189 | 214 | Heterozygote   |  |  |
| 57 | 3526 | black        | 184 | 186 | 189 | 221 | Heterozygote   |  |  |
| 58 | 3964 | yellow       | 179 | 186 | 189 | 221 | Heterozygote   |  |  |
| 59 | 3071 | black-yellow | 179 | 186 | 202 | 221 | Heterozygote   |  |  |
| 60 | 3969 | black-white  | 179 | 181 | 189 | 214 | Heterozygote   |  |  |
| 61 | 3505 | black-yellow | 179 | 186 | 189 |     | Heterozygote   |  |  |

| Number | Feather color | Chicken number |
|--------|---------------|----------------|
| 1      | black         | 2002           |
| 2      | black         | 3995           |
| 3      | black         | 5488           |
| 4      | black         | 5495           |
| 5      | black         | 1851           |
| 6      | black         | 5964           |
| 7      | black         | 5484           |
| 8      | black         | 3728           |
| 9      | black         | 0634           |
| 10     | yellow        | 3051           |
| 11     | yellow        | 5498           |
| 12     | yellow        | 2019           |
| 13     | yellow        | 4005           |
| 14     | yellow        | 5451           |
| 15     | yellow        | 3714           |
| 16     | yellow        | 5386           |
| 17     | yellow        | 5447           |
| 18     | black-yellow  | 5969           |
| 19     | black-yellow  | 1994           |
| 20     | black-yellow  | 3962           |
| 21     | black-yellow  | 5229           |
| 22     | black-yellow  | 5967           |
| 23     | black-yellow  | 5965           |
| 24     | black-yellow  | 5973           |
| 25     | black-yellow  | 5441           |
| 26     | black-yellow  | 5976           |
| 27     | black-white   | 2012           |
| 28     | black-white   | 1855           |
| 29     | black-white   | 2016           |
| 30     | black-white   | 0003           |
| 31     | black-white   | 0005           |
| 32     | black-white   | 0012           |
| 33     | black-white   | 0013           |
| 34     | black-white   | 0016           |
| 35     | black-white   | 0021           |

### Supplementary Table 3 Sample list for whole genome resequencing

Supplementary Table 4 Specific SNPs from Black Langshan chicken and White Plymouth

| sample | LS    | PR     | het   | miss | LS_perc | PR_perc | het_perc | miss_perc |
|--------|-------|--------|-------|------|---------|---------|----------|-----------|
| S1     | 63783 | 90615  | 66160 | 762  | 28.8194 | 40.943  | 29.8934  | 0.344298  |
| S2     | 43849 | 106260 | 70722 | 489  | 19.8125 | 48.0119 | 31.9546  | 0.220947  |
| S3     | 45979 | 116348 | 58362 | 631  | 20.7749 | 52.57   | 26.37    | 0.285108  |
| S4     | 56504 | 98381  | 65734 | 701  | 25.5305 | 44.4519 | 29.7009  | 0.316736  |
| S5     | 56336 | 97861  | 66555 | 568  | 25.4545 | 44.217  | 30.0718  | 0.256642  |
| S6     | 44219 | 89317  | 87266 | 518  | 19.9797 | 40.3565 | 39.4298  | 0.23405   |
| S7     | 53636 | 87504  | 79618 | 562  | 24.2346 | 39.5373 | 35.9742  | 0.253931  |
| S8     | 51116 | 87459  | 82344 | 401  | 23.096  | 39.517  | 37.2059  | 0.181186  |
| S9     | 52019 | 111044 | 57623 | 634  | 23.504  | 50.1735 | 26.0361  | 0.286463  |
| S10    | 51216 | 111698 | 57634 | 772  | 23.1412 | 50.469  | 26.041   | 0.348816  |
| S11    | 32623 | 105394 | 82880 | 423  | 14.7402 | 47.6206 | 37.448   | 0.191126  |
| S12    | 53675 | 108945 | 57939 | 761  | 24.2522 | 49.2251 | 26.1788  | 0.343846  |
| S13    | 34592 | 112435 | 74083 | 210  | 15.6299 | 50.802  | 33.4733  | 0.0948852 |
| S14    | 40313 | 116174 | 64382 | 451  | 18.2148 | 52.4914 | 29.09    | 0.203777  |
| S15    | 35781 | 101934 | 83392 | 213  | 16.1671 | 46.0573 | 37.6794  | 0.0962407 |
| S16    | 35520 | 109422 | 76125 | 253  | 16.0492 | 49.4406 | 34.3959  | 0.114314  |
| S17    | 38693 | 105269 | 77163 | 195  | 17.4828 | 47.5642 | 34.8649  | 0.0881077 |
| S18    | 49541 | 113287 | 58155 | 337  | 22.3843 | 51.187  | 26.2764  | 0.152268  |
| S19    | 44083 | 114038 | 62906 | 293  | 19.9182 | 51.5263 | 28.4231  | 0.132387  |
| S20    | 42412 | 83114  | 95586 | 208  | 19.1632 | 37.5538 | 43.189   | 0.0939816 |
| S21    | 57738 | 103360 | 59899 | 323  | 26.088  | 46.7016 | 27.0644  | 0.145943  |
| S22    | 37417 | 103796 | 79883 | 224  | 16.9063 | 46.8986 | 36.0939  | 0.101211  |
| S23    | 38810 | 105496 | 76772 | 242  | 17.5357 | 47.6667 | 34.6882  | 0.109344  |
| S24    | 36121 | 106427 | 78489 | 283  | 16.3207 | 48.0874 | 35.464   | 0.127869  |
| S25    | 37810 | 101504 | 81567 | 439  | 17.0839 | 45.863  | 36.8548  | 0.198355  |
| S26    | 51897 | 106244 | 62584 | 595  | 23.4489 | 48.0047 | 28.2776  | 0.268841  |
| S27    | 50690 | 93237  | 76988 | 405  | 22.9035 | 42.1277 | 34.7858  | 0.182993  |
| S28    | 56727 | 103770 | 59998 | 825  | 25.6312 | 46.8869 | 27.1092  | 0.372763  |
| S29    | 58528 | 104903 | 57286 | 603  | 26.445  | 47.3988 | 25.8838  | 0.272456  |
| S30    | 61481 | 93004  | 66223 | 612  | 27.7792 | 42.0224 | 29.9218  | 0.276523  |
| S31    | 56089 | 94273  | 70388 | 570  | 25.3429 | 42.5958 | 31.8037  | 0.257546  |
| S32    | 58767 | 94776  | 67208 | 569  | 26.553  | 42.8231 | 30.3669  | 0.257094  |
| S33    | 44511 | 81461  | 94982 | 366  | 20.1116 | 36.8069 | 42.9161  | 0.165371  |
| S34    | 53219 | 113082 | 54328 | 691  | 24.0462 | 51.0943 | 24.5473  | 0.312218  |
| S35    | 50201 | 80775  | 89983 | 361  | 22.6825 | 36.4969 | 40.6574  | 0.163112  |

Rock Chicken in offspring

Note: LS represented Langshan Feather chicken, and PR represented White Plymouth Rock Chicken.

•

### Supplementary Table 5 Specific SNP sites in the offspring of different feather color phenotypes

| Crown         | offspring |             |        |              |  |  |
|---------------|-----------|-------------|--------|--------------|--|--|
| Group         | black     | black-white | yellow | black-yellow |  |  |
| Specific SNPs | 519       | 674         | 698    | 966          |  |  |

# Supplementary Table 6 Primers for qRT-PCR, Bisulfite Sequencing and Microsatellite

| qRT-PCR Primers                                                            |                                                                            |                                |  |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Primer<br>Name                                                             | Forward Primer 5' -> 3'                                                    | Reverse Primer 5' -> 3'        |  |  |  |  |
| Oct4 UTR                                                                   | CGGGATCTCCATGAACAACAG                                                      | CTGGCCCCAGGCAGGTAA             |  |  |  |  |
| Sox2 UTR                                                                   | GTTCCAGGCTAAAGTAGTTTGA                                                     | CGGGCTGTTCTTCTGGTTGT           |  |  |  |  |
| SSEA-1 UTR                                                                 | GCCACCTACCTGAAGTTCCTCG                                                     | GCTGATTCCCTGCCGTCCT            |  |  |  |  |
| Nanog UTR                                                                  | GTATGCAACCAGCTCACC                                                         | TAGTAGTGTCCGCACCTAAC           |  |  |  |  |
| Lin28 UTR                                                                  | AAAGCCAATGCCAAGTGA                                                         | CAAACAAACCCAAAGATACG           |  |  |  |  |
| Klf4                                                                       | ATGCACAGGATGCTGCAACACG                                                     | TGGTGTGCGCCAGGATGAAGTC         |  |  |  |  |
| Rps17                                                                      | ACACCCGTCTGGGCAACGAC                                                       | CCCGCTGGATGCGCTTCATC           |  |  |  |  |
| SALL4                                                                      | GTCCACTGCGGACCCCAACG                                                       | GGTGGAGAAGGCACGGCCAC           |  |  |  |  |
| TRIM7                                                                      | CATCGTGGCTGACCGCAGCA                                                       | CGACGATCCGGCGTGAGACG           |  |  |  |  |
| Nanog                                                                      | TGGTGTGCGCCAGGATGAAGTC                                                     | TGCTGGGTGTTGCAGCTTGTTC         |  |  |  |  |
| Cvh                                                                        | TTCTTGTGGCAACTTCGG                                                         | AACTTCCTGCTGGGCTTC             |  |  |  |  |
| Sox2                                                                       | AAACCAAGACCCTGATGAAGA                                                      | ATCCCATAGCCTCCGTTG             |  |  |  |  |
| Oct4                                                                       | TGCAATGCAGAGCAAGTGCTGG                                                     | ACTGGGCTTCACACATTTGCGG         |  |  |  |  |
| C-kit                                                                      | GCATCCAGCAATGGTGAC                                                         | AAGTTGCGTTGGGTCTAT             |  |  |  |  |
| Blimp1                                                                     | AAGAATCTGGTGAAAGGGAG                                                       | GCAGTTTGATGCGTATTTG            |  |  |  |  |
| Cxcr4                                                                      | GCCATTCTGGTCTGTGGATG                                                       | GGCATGGACTATTGCCAGGT           |  |  |  |  |
| FSP1                                                                       | CTTCTCCGTCAACGTCTCAG                                                       | GTTCGGCTTGGTGTTATCC            |  |  |  |  |
| Actin                                                                      | CAGCCATCTTTCTTGGGTAT                                                       | CTGTGATCTCCTTCTGCATCC          |  |  |  |  |
|                                                                            | Bisulfite Sequencing Primers                                               |                                |  |  |  |  |
| Oct4                                                                       | TTAAGAATAATAAATTAAAGGGGAAGG                                                | ACATCAAACAAAAAAAATACAACACC     |  |  |  |  |
| Sox2                                                                       | GGTTTTTTTTGTTTTGTTTTTTTATG                                                 | TATCAACTCTAAACTCCAAAAATTTTAATT |  |  |  |  |
| Lin28A                                                                     | AAAGAGTTGTTTGGTTTAGTAGAGA                                                  | AACTTTAAAATCCCCCAAAAAATAT      |  |  |  |  |
| Nanog                                                                      | GGGAAGTTTTGTTAGTAAAGGGATT                                                  | CAAATACTATCTTACCCTAAAACAC      |  |  |  |  |
| Microsatellite Primers                                                     |                                                                            |                                |  |  |  |  |
| LEI094                                                                     | AGGATGGCTGTTATGCTTCCA                                                      | GACCATACTTCTGGAACAAG           |  |  |  |  |
| ~290 in Black Langshan Chicken/~311 in White Plymouth Rock Chicken         |                                                                            |                                |  |  |  |  |
| MCW104                                                                     | TAGCACAACTCAAGCTGTGAG     CAGACTTGCACAGCTGTGACC                            |                                |  |  |  |  |
|                                                                            | ~180 in Black Langshan Chicken /~186 or 215 in White Plymouth Rock Chicken |                                |  |  |  |  |
| MCW-004                                                                    | <i>CW-004</i> GGATTACAGCACCTGAAGCCACTAG AAACCAGCCATGGGTGCAGATTGG           |                                |  |  |  |  |
| ~204 or 206 in Black Langshan Chicken /~189 in White Plymouth Rock Chicken |                                                                            |                                |  |  |  |  |

#### Primers