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22nd Oct 20201st Editorial Decision

Thank you for submit t ing your work to Molecular Systems Biology. We have now heard back from 
the three reviewers who agreed to evaluate your manuscript . As you will see from the reports 
below, the reviewers acknowledge the potent ial interest of the study. They raise however a series 
of concerns, which we would ask you to address in a major revision. 

Since the reviewers' recommendat ions are rather clear, there is no need to reiterate all the points 
listed below. Some of the key issues that would need to be addressed are the following: 

- A comparison of the presented approach to exist ing related methods needs to be performed, as
Reviewer #2 suggested.
- Reviewer #3 is concerned about the ut ility and relevance of the presented method in a broader
biological context , which needs to be carefully addressed.
- In line with Reviewer #2's comment regarding the Dempsey et  al, at tent ion should be given to
placing the findings in the context  of exist ing literature and to highlight ing the novelty of the current
study.

All other issues raised by the reviewers need to be sat isfactorily addressed as well. As you may 
already know, our editorial policy allows in principle a single round of major revision and it is therefore 
essent ial to provide responses to the reviewers' comments that are as complete as possible. 

On a more editorial level, we would ask you to address the following issues. 



REFEREE REPORTS
-------------------------------------------------------- 

Reviewer #1: 

Rahman et al. proposed FLEX, a pipeline for benchmarking genome-wide CRISPR screen data. 
Using this tool, they ident ified strong correlat ion of fitness among ETC-I genes. Further t ime-
resolved CRISPR screens suggest this correlat ion reflect screen dynamics and protein stability 
effects rather than genet ic dependency. 

I enjoyed reading this concise manuscript . FLEX can be a useful tool in the funct ional screening 
analysis. The observat ion of ETC-I related "bias" and the possible explanat ion is interest ing, which 
should be known by many people who are using large-scale genome-wide CRISPR screen datasets 
for their research. Meanwhile, I have several concerns about the descript ion of FLEX, as well as the 
interpretat ion of the observat ions related to ETC-I modules. 

Major points: 
1. It  is my understanding that FLEX is applicable for the studies involves gene-gene paired
relat ionship, such as co-dependency maps or genet ic interact ions. Is it  applicable for screening
datasets that involves only a few samples (<10)? What is the minimum number of cell lines in the
applicat ion? The scope of applicat ion and the limitat ion of FLEX should be clearly described in the
manuscript .
2. The authors provided evidence which suggests the correlat ions of ETC-I genes are due to the
protein stability and screen dynamics. If this is t rue, I'd expect the same correlat ions to be observed
in high-throughput shRNA screens in the DepMap data. The authors should check the co-
dependency of the ETC genes in shRNA datasets.
3. Many proteins other than the ETC-I genes are highly stable. Do these proteins show co-
dependency with the ETC-I genes? Are these genes correlated with ETC genes in the t ime-course
screening experiment?

Minor points: 
1. What is the rat ionale to use different scaling scheme in the x-axis of the PR plots in Fig. 1b&e
(exponent ial), Fig. 1c (fract ion of TP), and Fig. 1f&g (# of complexes)? This will impact the
calculat ion of AUC score.
2. Figure 1c is difficult  to understand. What are the meanings of colored areas in the plot? It  is my
understanding that, the authors want to show mt. ribo. module and ETC-I module significant ly
contribute to the predict ive power, whereas some funct ional modules are not highly predictable.
This concept can be visualized in a simpler way to improve the readability.
3. In Fig. 1g, bottom panel, the curve of Wainberg et  al does not start  from x=0, probably due to
visualizat ion issue.

Reviewer #2: 

Rahman, Billmann and colleagues present a method (FLEX) for assessing the ability of co-
essent iality, derived from CRISPR screens, to predict  co-complex / co-pathway membership.
Typically one might benchmark such approaches using a single list  of t rue posit ives (e.g. all gene
pairs that belong to the same complex) and a list  of t rue negat ives (e.g. all gene pairs that belong to
different complexes). The authors show that such an aggregated evaluat ion set can mask



important signals in the data - in part icular for CRISPR screens they show that a couple of
mitochondrial complexes are responsible for many of the t rue posit ives correct ly ident ified by co-
essent iality approaches. They develop, and advocate for, an approach to summarise the
performance of co-essent iality across all individual modules. They also provide nice visualisat ions
showing the contribut ion of each module to the predict ive power of co-essent iality methods. Much
of the manuscript  is devoted to an analysis of which complexes are ident ified as essent ial in
CRISPR screens performed by the Broad but not the Sanger. The authors provide a nice
explanat ion (long protein half-lifes and differing CRISPR screen lengths) for why some complexes
are more essent ial in the Broad screens, but this analysis is largely orthogonal to the establishment
of FLEX as a useful benchmark. 

Overall FLEX seems like it  might be a useful way of benchmarking approaches to ident ify funct ional
interact ions from co-essent iality, but  there is very limited benchmarking performed in the paper. The
analysis of which modules are essent ial in the Broad but not Sanger screens is interest ing and the
newly performed t ime-course CRISPR screens in HAP1s support  the authors' hypothesis that
screen durat ion is the major factor. However, previous work has discussed the issue of the
consequences of the different assay lengths between the two inst itutes and shown an enrichment
of mitochondrial genes ident ified as uniquely essent ial in the Broad study (Dempsey et  al, Nature
Comms 2019 ht tps://doi.org/10.1038/s41467-019-13805-y). It 's not clear that  the FLEX analysis
adds to this discussion. 

Major points: 
It  is well established that methods to predict  funct ional associat ions between genes can be biased
by certain complexes. Liu et  al (NAR 2008, ht tps://doi.org/10.1093/nar/gkn972) show that signals
from using co-expression to predict  complex membership are driven by a small number of large
complexes (ribosome, proteasome). Often authors have developed ad-hoc solut ions to address
issues with large complexes dominat ing the signal e.g. Drew et al (MSB 2016
https://doi.org/10.15252/msb.20167490) exclude complexes with more than 30 subunits from their
analysis. This does not diminish the ut ility of FLEX, but these exist ing approaches merit  some
discussion. 

Given that the stated purpose of the tool is benchmarking, very lit t le benchmarking is actually
performed in the manuscript . Different groups have established different pipelines for scoring
CRISPR screens (e.g. the Broad's DepMap project  uses CERES, while the Sanger's project  uses
BAGEL and CRISPRcleanR) but these are not benchmarked. Furthermore, there are many ways of
assessing co-essent iality (e.g. Pearson's correlat ion, Spearman's correlat ion, cosine similarity) and
these are not benchmarked. 

Minor points: 
Figure 2h - the fast  slow arrows are extremely confusing. I init ially thought they indicated that
ETC/mtRibo were fast  drop outs while splicesome/proteasome were slow drop outs. The differing y-
axes also make the chart  harder to read. 
Figure S4 - the different x-axes used for the module-level summaries make these charts very hard
to compare. I thought PCC was performing at  a similar level to Kim et al, although this is not the
case 

Reviewer #3: 



FLEX is a pipeline that is used to integrate, among others, publicly available reference datasets to
evaluate the integrity of large-scale loss-of-funct ion screening experiments. By using precision
recall stat ist ics, CRISPR screening dataset can be interrogated for known funct ional relat ionships
between gene co-dependency gene pairs and pathways. The authors used FLEX to assess gene-
level precision recall performance on commonly published datasets. Analyzing DepMap data based
on a CORUM standard, they found that the genes part  of the ETC I, V and the 55S mt ribosome
complexes are largely dominat ing the co-essent iality dependency networks. To account for the
large effect  of certain pathways in determining gene-level PR, the authors developed modular PR to
normalize highly co-dependent gene sets into one score. To explain this difference in ETC
dependency, the authors hypothesized that the screen length between Broad and Sanger DepMap
protocols are different, suggest ing that the difference in screen sampling t imes could contribute to
the differences in essent iality. Notably, they have pointed out that  the ETC I and V have the
highest protein stability, while the 55S was comparat ively close to the median half-life. To test  this
observat ion, the authors employed a CRISPR/Cas9 screen in HAP1 cells and sampled every 3-4
days. The authors ident ified several early and late dropout pathways and genes, highlight ing the
dependency of ETC-related genes in early t ime points. The authors suggested that the strength of
ETC-related fitness is able to accurately predict  the t ime of the screen. At the current stage, it
requires a major revision. Specific comments are: 
1. Overall, the manuscript  presents a method to use a novel AUPRC method to ident ify differences
in co-essent ial genes between studies. This represents a technical advance to anyone who wants
to perform essent iality CRISPR-KO or other KO screens. However, it  remains hypothet ical that  the
authors claiming the differences in dropout rate for the screens could be explained by the protein
half-life. In part icular, the strength of ETC-related phenotype is proposed as a metric for
determining the true length of a screen before sampling. While this point  could be great ly beneficial,
it  is uncertain whether this can be true for broad biological contexts. It  is also unclear how useful
this metric would be compared to any of the other essent ial genes or pathways. While the technical
challenge has been clearly described, the reviewer is not convinced of how this finding would
translate to promot ing a clear biological advance. 
2. The manuscript  is writ ten in a blended way, combining both a computat ional method with some
related discoveries/hypotheses. It  is confusing as the t it le only states one of the technical
challenges in CRISPR screening analysis. There is a lack of clarificat ion of challenges in the
introduct ion and their approach to address these challenges. There is also a lack of summary on
how their method and their discoveries can change the field. Much efforts are needed to make the
whole manuscript  more consistent, clearer, and less confusing. 
3. The reviewer would like the authors to comment more on how monitoring ETC-related
phenotypes can be applied to ident ify the difference in t iming for screens between different cell
types, and how tracking the dropout rate of ETC-related essent ial genes are different from doing
so with other essent ial genes or complexes. Do the cells applied with different drugs or other
treatments have similar essent iality scores for these genes? The reviewer would like the FLEX
analysis of a published screen with cell and/or animal models with drug treatments such as those
found in chemotherapy studies to compare the AUPRC. Aside from protein degradat ion, as
suggested by looking at  the protein half-life in Figure 2b, there could be other biological reasons for
funct ional differences in dropout speed including different levels of essent iality to the cell. For
example, a gene that is required for mismatch repair may drop out much slower than a gene
required for cell division checkpoints. Could the proteins of ETC genes be more tolerant of DNA
mismatches? In an effort  to isolate protein stability from the other biological effects, the reviewer
suggests the authors to provide protein stability-corrected essent iality scores for the genes based
on the 18,000 gene sgRNA library applied to the HAP1 cells. 
4. In Figure 2h, the authors highlight  the differences in protein degradat ion speeds as they relate to
dropout rate. The reviewer would like the authors to comment towards if there is a delayed fast  or a



delayed slow rate, and if 20 days is enough to show these curves. The reviewers would also like the
authors to comment on why the differences in essent ial/non-essent ial gene separat ion in S6C
seem to dissipate after 10 days while the ETC complex displays a dropout difference between the
Sanger and Broad screens which are between 14 and 21 days? 
In conclusion, the reviewer believes that the paper should be considered after more direct
demonstrat ion of how the technical bias can be addressed or used to benefit  future screens.



Response to reviewers 

We would like to thank all the reviewers for their constructive feedback and suggestions. We 

have addressed all comments, and we agree these changes have improved the manuscript 

considerably. Below we present a point-by-point response to the reviewer's comments. 

Reviewer comments are colored in black, our responses are colored in blue, and any changes 

to the manuscript are colored in red. 

Reviewer #1 

Rahman et al. proposed FLEX, a pipeline for benchmarking genome-wide CRISPR screen data. 

Using this tool, they identified strong correlation of fitness among ETC-I genes. Further time-

resolved CRISPR screens suggest this correlation reflect screen dynamics and protein stability 

effects rather than genetic dependency. 

I enjoyed reading this concise manuscript. FLEX can be a useful tool in the functional screening 

analysis. The observation of ETC-I related "bias" and the possible explanation is interesting, 

which should be known by many people who are using large-scale genome-wide CRISPR 

screen datasets for their research. Meanwhile, I have several concerns about the description of 

FLEX, as well as the interpretation of the observations related to ETC-I modules. 

Major Points 

1. It is my understanding that FLEX is applicable for the studies that involve gene-gene paired

relationships, such as co-dependency maps or genetic interactions. Is it applicable for screening

datasets that involve only a few samples (<10)? What is the minimum number of cell lines in the

application? The scope of application and the limitation of FLEX should be clearly described in

the manuscript.

We thank the reviewer for this interesting question. In general, FLEX can be used to evaluate 

the quality/functional composition of pairwise gene relationships of any type. The reviewer 

raises an interesting question about the extent to which the ability to derive co-dependency 

scores from a screening dataset depends on the number of samples. FLEX can be used to 

provide a definitive answer to this question. To show this, we performed an analysis in which we 

subsampled different numbers of screens from the Broad DepMap data. Our analysis showed 

that the amount of functional information captured increases with the number of screens 

included as expected, but that this saturates relatively quickly (Appendix Figure S5). For 

example, FLEX analysis indicates that there is little measurable difference between the quantity 

of functional information captured by only 300 screens as compared to the complete collection 

of 563 in the 2019Q2 release of the DepMap data (Appendix Figure S5). Even a set of as few 

as 100 randomly sampled screens performs similarly to the complete set of 563. Our FLEX 

analysis also indicated that with 15 or fewer screens, the ability of co-dependency scores to 

accurately capture functional information drops dramatically (Appendix Figure S5), suggesting 

this is a practical limit on the minimum number of screens required for generating co-

dependency maps.  

16th Feb 20211st Authors' Response to Reviewers



We also explored the related question of how the identity of the screens affects the type 

of functional information captured in response to Reviewer #3’s question. Briefly, in that context, 

we applied FLEX to analyze the data from 31 DNA-damage related chemical genetics screens 

from Olivieri et al, 2020. Interestingly, FLEX unveils enrichment for many DNA damage 

response related complexes (Appendix Figure S6), suggesting the type of screens conducted 

(in this case, phenotypes resulting from exposure to DNA-damage agents) influences the 

composition of the functional information captured. We believe that these additional analyses 

provide an informative demonstration of the utility of FLEX, and we thank the reviewer for the 

interesting questions. 

To better demonstrate the scope of application and limitations of FLEX, we added two 

new paragraphs at the end of subsection ‘Example applications of FLEX to benchmark CRISPR 

screen data and analysis methods’: 

“In a fourth application example, we applied FLEX to explore the extent to which the 

ability to derive co-essentiality networks from a CRISPR screen dataset depends on the number 

of screens. Specifically, we subsampled different numbers of screens from the DepMap data, 

measured co-essentiality networks on the resulting datasets of varying size, and evaluated 

these scores for functional information using FLEX. Our analysis showed that the amount of 

functional information captured increases with the number of screens included as expected, but 

that this saturates relatively quickly (Appendix Figure S5). For example, FLEX analysis indicates 

that there is little measurable difference between the quantity of functional information captured 

by only 300 screens as compared to the complete collection of 563 in the 2019Q2 release of the 

DepMap data (Appendix Figure S5). Even a set of as few as 100 randomly sampled screens 

performs similarly to the complete set of 563. Our FLEX analysis also indicated that with 15 or 

fewer screens, the ability of co-essentiality scores to accurately capture functional information 

drops dramatically (Appendix Figure S5), suggesting this is a practical limit on the minimum 

number of screens required for generating co-essentiality maps. 

As a final example FLEX application, we explored the question of how the identity of 

genetic screens affects the type of functional information captured in co-essentiality scores. 

Specifically, we applied FLEX to analyze the co-essentiality scores derived from 31 genome-

wide CRISPR-Cas9 screens against 27 DNA-damaging agents (Olivieri et al). Interestingly, 

FLEX contribution diversity analysis showed a strong dominance of protein complexes related to 

DNA damage repair (e.g. Fanconi anemia complex, DNA ligase IV−XRCC4−XLF complex, DNA 

synthesome complex) among predicted functional relationships (Appendix Figure S6A, B). At 

the same time, ETC-related complexes were not strongly represented amongst these co-

essentiality scores, suggesting that the factors driving the variation in ETC-related genes’ 

phenotypes are less prominent in this context. This example more generally shows how the 

biological focus of the investigated set of screens, an experimental theme spanning various 

model organisms (Billmann et al; Jonikas et al), can be evaluated.” 

2. The authors provided evidence that suggests the correlations of ETC-I genes are due to the

protein stability and screen dynamics. If this is true, I'd expect the same correlations to be



observed in high-throughput shRNA screens in the DepMap data. The authors should check the 

co-dependency of the ETC genes in shRNA datasets. 

Based on the reviewer’s suggestion, we performed a FLEX analysis of a large RNAi screen 

dataset that includes more than 700 diverse cancer cell lines (McFarland et al, 2018). In 

general, we found that co-essentiality scores based on this RNAi dataset performed 

substantially less well in capturing known functional relationships than the DepMap CRISPR 

screen dataset (563 screens) (Appendix Figure S10), which is likely due to the increased 

targeting efficacy and precision of CRISPR as has been reported in previous studies (Hart et al, 

2015). Regarding the reviewer’s specific question, we did find evidence for enrichment for the 

55S mitochondrial ribosome-related genes (Appendix Figure S10B, C) amongst the top-most 

correlated pairs (they explain ~35% of the true positive pairs at a precision of 50%, Appendix 

Figure S10C). However, the extent to which these pairs dominate the co-essentiality network 

here is lower than for any CRISPR screen dataset we have analyzed. We also note that the co-

essentiality network from these RNAi screens is composed of a large number of pairs from the 

cytoplasmic ribosome (Appendix Figure S10C), which is less true for analysis based on the 

CRISPR screen dataset. 

We have added the following text to reflect the results in the second paragraph of the 

subsection ‘Exploring the basis of strong ETC-related co-essentiality relationships in CRISPR 

screens’: “In our own FLEX-based analysis of RNAi screens (McFarland et al), we observed a 

similar, albeit weaker, enrichment for mitochondrial ribosome-related gene pairs (Appendix 

Figure S10), although unlike CRISPR screens, co-essentiality scores from RNAi screens also 

exhibited dominant enrichment for cytoplasmic ribosome gene pairs (Appendix Figure S10).” 

3. Many proteins other than the ETC-I genes are highly stable. Do these proteins show co-

dependency with the ETC-I genes? Are these genes correlated with ETC genes in the time-

course screening experiment?

We thank the reviewer for this interesting suggestion. We tested the hypothesis whether genes 

with high protein stability show fitness profile similarity in the DepMap CRISPR screens and our 

HAP1 time course screen data. In the DepMap data, we tested this hypothesis by first filtering 

down to a set of genes where we could expect this trend. 

First, about 8000 genes had good quality protein stability in at 

least one of the three cell lines considered. We further 

focused on the subset of these genes that showed a 

detectable fitness effect in a large number of cell lines (>30%; 

as reference, ETC-I components show a fitness effect in on 

average 40% of cell lines). The remaining genes that did not 

belong to the 55S ribosome or the ETC I or V complex (ETC-

related genes are labeled as orange in the scatter plots below) 

were defined as stable (half-life > 120 h; n = 551) and unstable (half-life < 120 h; n = 102). 

Neither group showed strong average similarity to ETC I or V genes (see barchart). 



A similar trend was observed for more lenient thresholding of genes based on their fitness effect 

(effect in >= 10 of 563 screens): 

We performed a similar test on our HAP1 time course screen data. Since all genes with fitness 

defects tend to show strong correlation with each other, we first normalized the time course 

profiles by removing the first singular vector from the data after applying SVD (this SV 

contributed 44% of the variance). 

This reduces non-specific correlations between genes with fitness 

defects. After this correction, more stable proteins showed a weakly 

elevated temporal profile correlation with ETC I and V complex 

members (see figure below). However, these differences were not 

statistically significant (p-val = 0.33 for ETCI, p-val = 0.32 for ETCV; 

Wilcoxon rank-sum test). 

Minor Points 

1. What is the rationale to use different scaling scheme in the x-axis of the PR plots in Fig. 1b&e

(exponential), Fig. 1c (fraction of TP), and Fig. 1f&g (# of complexes)? This will impact the

calculation of AUC score.

We apologize for the confusion. The goal and the input data for those three different types of 

figures are different. Figure 1B and 1E are traditional precision-recall curves in gene-pair space 



with the only modifications being that (1) we plot the absolute number of true positives (TP) 

instead of fractional recall (simply a scaling of the x-axis) and (2) to emphasize differences in 

the high-precision part of the curve, we use a log-scale. Figure 1C is designed to pair with the 

corresponding precision-recall curve (e.g. Figure 1C directly complements Figure 1B), and it 

plots the functional composition of different functional modules (in this case protein complexes) 

(x-axis) to the set of true positives predicted at each precision level (y-axis). For a given 

threshold on precision (horizontal line), the fraction of true positive (TP) pairs contributed by 

each indicated functional module is plotted, such that the total contribution always sums up to 1. 

For example, at a precision threshold of 1, the ETCI module contributes more than 50% of the 

TP pairs. Finally, Figure 1F and 1G (bottom panel) present a modified version of a precision-

recall curve that summarizes performance at a functional module level. These curves are 

assessing precision of gene-pair relationships identified by co-dependency scores, but the recall 

axis is measured in terms of the number of unique functional modules covered (in this case, 

protein complexes) rather than unique gene pairs. 

We only calculate AUPRC (the area under the curve for curves similar to Figure 1B) 

values in FLEX, and these are performed on gene-pairs, but using a usual precision (0-1 scale) 

and fractional recall (0-1 scale) to ensure that the area under the curve never exceeds 1. 

Hence, the AUPRC values are not affected by the exponential scaling of the x-axis (which is for 

visualization purposes only). 

We understand that two of these types of plots (Fig. 1C, Fig. 1F/G) are non-standard 

forms of plots that require extra attention for readers to interpret. However, we argue that these 

are the key utility of the FLEX method-- precision-recall analysis of pairwise co-dependency 

scores (or other predictions of functional relationships) should indicate the functional diversity of 

the pairs captured or important information is lost. Our analysis demonstrates that co-

dependency scores tend to be dominated by fairly specific functional modules, which is why we 

are suggesting that users benchmarking data or methods should consider these complementary 

means of visualizing comparative results. 

To avoid this confusion, we revised the corresponding legends and extended the main 

text to make these points more clear. We clarified legend of figure 1B as: “B, Precision-recall 

(PR) performance of gene-gene co-essentiality profile correlation using the CORUM complex 

standard to define true positives (TP). This is a traditional PR curve with the following 

modifications: (1) the absolute number of TP instead of fractional recall (0-1) on the x-axis 

(simply a scaling of the axis) and (2) use of a log-scale on the x-axis (highlights high precision 

part of the curve). Pearson correlation coefficients (PCC) are computed between CERES score 

profiles across the 563 19Q2 DepMap screens for all possible gene pairs.” 

For Figure 1C, we modified the legend as: “C, Contribution diversity of CORUM 

complexes in a PR performance (B). Functional composition of different complexes (x-axis, as a 

fraction) to the set of TP pairs predicted at different precision levels (y-axis) are plotted. Only the 

minimum number of complexes to cover the set of TP pairs (for a certain precision) are 

considered (see Methods for details). Complexes with a fraction smaller than 0.01 (1%) at any 

precision are collectively shown in light grey. The background (bg) contribution diversity 

represents the functional contribution of complexes across the entire CORUM standard. 

Highlighted complexes are defined in D.”  



We clarified the AUPRC calculation with the revised legend: “D, Size and individual 

CORUM complex PR performance. Area under the PR curve (AUPRC) was computed per 

complex on a fractional precision-recall (0-1) scale. Dot size corresponds to the mean within-

complex CERES profile PCC, adjusted by the standard error. Protein complexes with at least 30 

members (genes) are defined as large, otherwise small. Complexes with an AUPRC of at least 

0.4 are defined as high AUPRC, otherwise low. All sub-complexes mapping to the ETC I or 55S 

mitochondrial ribosome are shown in the respective color.”  

Legend for Figure 1F is modified to: “F, Module PR (mPR) curve summarizes 

performance at a functional module level (here, CORUM protein complexes). This is a modified 

version of a precision-recall curve (B) with the number of unique complexes (x-axis) covered 

and plotted (instead of unique gene pairs) at each precision cutoff (y-axis) (see Methods for 

details).”  

Additional text to explain 1C better is included in the first paragraph of subsection 

‘Development of a pipeline for evaluation of CRISPR screen data’:  “To understand how 

individual protein complexes contribute to overall performance, we decomposed the contribution 

of each complex (number of TP pairs) across the range of precision levels achieved (see 

Methods for details). FLEX visualizes these contributions per complex as a “contribution 

diversity” plot, where at each precision threshold (y-axis), the fraction of TP pairs mapping to 

each protein complex at that threshold is summarized (x-axis) (Figure 1C). Precision thresholds 

dominated by a single color indicate low functional diversity among the gene pairs supporting 

the predicted functional relationships at that cutoff. As a complementary view of how functional 

performance varies across functional modules, FLEX also reports the area under the PR curve 

(AUPRC) for each individual complex along with the complex size (Figure 1D, Table EV1).” 

We also expanded the text to clarify 1F and it’s connection with 1C in the third paragraph 

of subsection ‘Development of a pipeline for evaluation of CRISPR screen data’: “To compute 

the mPR measure, the contribution diversity data (e.g. as reported in Figure 1C) is used to 

count the number of distinct functional modules in the standard that are represented amongst 

the set of gene pairs meeting a given precision threshold (see Methods for details).” 

2. Figure 1c is difficult to understand. What are the meanings of colored areas in the plot? It is

my understanding that, the authors want to show mt. ribo. module and ETC-I module

significantly contribute to the predictive power, whereas some functional modules are not highly

predictable. This concept can be visualized in a simpler way to improve the readability.

As described above, Figure 1C is an important visualization that enables users to assess the 

different modules that are driving functional performance and to uncover major biases. In this 

case, yes, the point we are illustrating with this plot is that the mitochondrial ribosome and ETC I 

modules explain the majority of the performance in the high-precision portion of the precision-

recall curve in Figure 1B. However, in general, this type of plot is designed to highlight any bias 

that might appear in terms of functional modules and is one of the standard benchmarking 

outputs of the FLEX pipeline. We agree that our earlier version was unnecessarily complicated. 

To make this figure more easily interpretable, we have removed the bar plot that was previously 

to the right and have relabeled the X axis to make it more clear what is being plotted. We have 



also modified the figure legend and the main text with an expanded description of the different 

plots produced by FLEX (see Minor point 1 for details). 

 

 

3. In Fig. 1g, bottom panel, the curve of Wainberg et al does not start from x=0, probably due to 

visualization issue.  

 

We thank the reviewer for noticing this detail; however, it is not a visualization issue. The 

Wainberg et al. approach produces a measure of statistical significance (FDR) for each gene 

pair analyzed. We are ranking pairs in descending order based on (1-FDR) such that the most 

significant pairs appear at the top of the ranked list. There are a large number of gene pairs 

produced by this method with an FDR=0, which means there is no way to distinguish amongst 

this set. Due to these ties, this results in the first precision-recall point starting at a non-zero 

recall. This would be true of any method with ties among the highest ranking gene pairs. This 

information was originally mentioned in the Figure S4 (now Appendix Figure S4) legends, but 

we have now also added these details to the legend of Figure 1G: “The approach from 

Wainberg et al.7 bases gene pair similarity scores on FDR corrected p-values (1 - fdr) resulting 

in a ‘late start’ of the PR curve (many values at top are the same, 1.0).” 

 

 

 

Reviewer #2 

Rahman, Billmann and colleagues present a method (FLEX) for assessing the ability of co-

essentiality, derived from CRISPR screens, to predict co-complex / co-pathway membership. 

Typically one might benchmark such approaches using a single list of true positives (e.g. all 

gene pairs that belong to the same complex) and a list of true negatives (e.g. all gene pairs that 

belong to different complexes). The authors show that such an aggregated evaluation set can 

mask important signals in the data - in particular for CRISPR screens they show that a couple of 

mitochondrial complexes are responsible for many of the true positives correctly identified by 

co-essentiality approaches. They develop, and advocate for, an approach to summarise the 

performance of co-essentiality across all individual modules. They also provide nice 

visualisations showing the contribution of each module to the predictive power of co-essentiality 

methods. Much of the manuscript is devoted to an analysis of which complexes are identified as 

essential in CRISPR screens performed by the Broad but not the Sanger. The authors provide a 

nice explanation (long protein half-lifes and differing CRISPR screen lengths) for why some 

complexes are more essential in the Broad screens, but this analysis is largely orthogonal to the 

establishment of FLEX as a useful benchmark.  

 

Overall FLEX seems like it might be a useful way of benchmarking approaches to identify 

functional interactions from co-essentiality, but there is very limited benchmarking performed in 

the paper. The analysis of which modules are essential in the Broad but not Sanger screens is 

interesting and the newly performed time-course CRISPR screens in HAP1s support the 

authors' hypothesis that screen duration is the major factor. However, previous work has 

discussed the issue of the consequences of the different assay lengths between the two 



institutes and shown an enrichment of mitochondrial genes identified as uniquely essential in 

the Broad study (Dempster et al, Nature Comms 2019 https://doi.org/10.1038/s41467-019-

13805-y). It's not clear that the FLEX analysis adds to this discussion.) 

We thank the reviewer for this comment. We agree that more examples of benchmarking should 

be included, and we have added several based on this and other reviewers’ suggestions (see 

more details in our reply to Major point 2). Regarding the question of what our manuscript adds 

to the previous discussion in the Dempster et al. paper: mitochondrial genes are mentioned one 

time in that paper: “The Broad-exclusive enriched GO terms included classes related to 

mitochondrial and RNA processing gene categories and other gene categories previously 

characterized as late dependencies''. The authors identify a mitochondrial enrichment among 

genes that drop out late in screens. There’s no discussion of the covariance observed for 

mitochondria genes across screens, which is the major focus of our findings here--  specifically, 

the dominance of this covaration on dependency networks derived from these data. Importantly, 

this variation is not just an issue when one compares the Sanger vs. the Broad screens:  it is 

dominant even within a single dataset (e.g. the Broad screens). There, the authors focus on 

assay length, which is one factor that can cause differences in the apparent mitochondrial 

genes’ phenotypes. However, even for a collection of screens run the same length (e.g. within 

the Broad screens only), we argue that there is an interplay between the doubling rate of the cell 

line being screened and global protein stability in each cell line, which will introduce variation in 

the phenotypes measured for mitochondrial genes. We also note that there is no discussion of 

the biological basis of the late drop-out of mitochondrial genes in the Dempster et al. 

manuscript, whereas we propose that this relates to protein stability. Thus, we believe our 

manuscript highlights several important insights that are not covered by the Dempster et al. 

paper. 

More details on the additional benchmarking we’ve completed and added to the 

manuscript are described below in our reply to Major Point 2. 

Major Points 

It is well established that methods to predict functional associations between genes can be 

biased by certain complexes. Liu et al (NAR 2008, https://doi.org/10.1093/nar/gkn972) show 

that signals from using co-expression to predict complex membership are driven by a small 

number of large complexes (ribosome, proteasome). Often authors have developed ad-hoc 

solutions to address issues with large complexes dominating the signal e.g. Drew et al (MSB 

2016 https://doi.org/10.15252/msb.20167490) exclude complexes with more than 30 subunits 

from their analysis. This does not diminish the utility of FLEX, but these existing approaches 

merit some discussion. 

We agree with the reviewer that previous work on other types of genome-wide datasets have 

noted a problematic bias due to large complexes dominating functional evaluations of gene-pair 

data. As a tool for systematic evaluation of possible bias, FLEX was created to detect such 

biases by visualizing the contribution of each functional standard subset (module) to the global 

performance metric. It further contrasts the size of each module and its performance. This is 

crucial for several datasets evaluated in the current manuscript, because biases only affect a 

https://doi.org/10.1038/s41467-019-13805-y
https://doi.org/10.1038/s41467-019-13805-y
https://doi.org/10.1093/nar/gkn972
https://doi.org/10.15252/msb.20167490


specific set of large complexes (e.g. DepMap CRISPR screens) or can even be pronounced as 

expected biological bias (e.g. using data by Olivieri et al, 2020). 

We have now discussed this in more depth and cited the above-mentioned papers at the 

end of the second paragraph of the subsection ‘Development of a pipeline for evaluation of 

CRISPR screen data’: “Similar issues have been reported when evaluating other types of 

genomic datasets in a pairwise manner, particularly for large, coherent protein complexes (Drew 

et al; Liu et al; Myers et al.)” 

Given that the stated purpose of the tool is benchmarking, very little benchmarking is actually 

performed in the manuscript. Different groups have established different pipelines for scoring 

CRISPR screens (e.g. the Broad's DepMap project uses CERES, while the Sanger's project 

uses BAGEL and CRISPRcleanR) but these are not benchmarked. Furthermore, there are 

many ways of assessing co-essentiality (e.g. Pearson's correlation, Spearman's correlation, 

cosine similarity) and these are not benchmarked. 

We thank the reviewer for the comments, and we agree that our manuscript would be improved 

with more examples of how FLEX can be used to benchmark various aspects of CRISPR 

screen interpretation. We previously included a benchmarking for two different versions of 

Broad DepMap co-dependency networks (original Figure S2) and another benchmarking for 

alternative methods for deriving co-dependency networks from the Broad DepMap (original 

Figure S6). To better emphasize those benchmarking efforts, we elevated the visibility of 

previous Figure S6 to Figure EV2. 

To further address this comment, we performed three additional lines of benchmarking analysis 

with FLEX: 

1. We benchmarked the effectiveness of different similarity measures (PCC, Spearman

correlation, cosine similarity, and dot product similarity) for measuring co-dependency

networks using FLEX (Figure EV1). Interestingly, this analysis suggests that Pearson

and Spearman correlation are relatively similar to each other in their performance while

cosine or dot product metrics clearly perform less well (Figure EV1).

2. We used FLEX to evaluate the effect of the number of screens included in the dataset

on the performance of co-dependency networks by subsampling from Broad DepMap

screens (Appendix Figure S5). More details on the results of this analysis are included in

our response to Reviewer #1 (Major point 1).

3. We benchmarked previously published genome-wide RNAi screens against CRISPR

(Broad DepMap) screens (Appendix Figure S10). Unsurprisingly, this revealed the

superior performance of CRISPR screens in comparison to either of these RNAi screen

datasets. A detailed result of the analysis is included in the response to the comment of

Reviewer #1 (Major point 2).

We agree that these additional examples of benchmarking are useful for demonstrating

the utility of FLEX. 



To incorporate the benchmarking of similarity measures, we added the following text in 

the first paragraph of the subsection ‘Example applications of FLEX to benchmark CRISPR 

screen data/analysis methods’: “Second, we used FLEX to benchmark a variety of similarity 

metrics in their ability to construct co-essentiality networks that capture known functional 

relationships from the DepMap dataset. Specifically, we evaluated four different similarity 

measures for gene pairs: cosine similarity, inner (dot) product, Pearson correlation, and 

Spearman correlation. We found that Pearson correlation (PCC) and Spearman correlation 

provide comparable performance and that they clearly outperformed cosine and dot product 

similarity measures on the DepMap dataset (Figure EV1) (PCC is implemented as the default 

similarity measure in FLEX).” 

To demonstrate the effect of screen sizes on function performance, we included the 

following as the second paragraph of the subsection ‘Example applications of FLEX to 

benchmark CRISPR screen data and analysis methods’: “In a fourth application example, we 

applied FLEX to explore the extent to which the ability to derive co-essentiality networks from a 

CRISPR screen dataset depends on the number of screens. Specifically, we subsampled 

different numbers of screens from the DepMap data, measured co-essentiality networks on the 

resulting datasets of varying size, and evaluated these scores for functional information using 

FLEX. Our analysis showed that the amount of functional information captured increases with 

the number of screens included as expected, but that this saturates relatively quickly (Appendix 

Figure S5). For example, FLEX analysis indicates that there is little measurable difference 

between the quantity of functional information captured by only 300 screens as compared to the 

complete collection of 563 in the 2019Q2 release of the DepMap data (Appendix Figure S5). 

Even a set of as few as 100 randomly sampled screens performs similarly to the complete set of 

563. Our FLEX analysis also indicated that with 15 or fewer screens, the ability of co-essentiality

scores to accurately capture functional information drops dramatically (Appendix Figure S5),

suggesting this is a practical limit on the minimum number of screens required for generating

co-essentiality maps.”

Finally we added the results of systematic comparison of RNAi screens and CRISPR 

screens in the second paragraph of the subsection ‘Exploring the basis of strong ETC-related 

co-essentiality relationships in CRISPR screens’: “In our own FLEX-based analysis of RNAi 

screens (McFarland et al), we observed a similar, albeit weaker, enrichment for mitochondrial 

ribosome-related gene pairs (Appendix Figure S10), although unlike CRISPR screens, co-

essentiality scores from RNAi screens also exhibited dominant enrichment for cytoplasmic 

ribosome gene pairs (Appendix Figure S10).” 

Minor Points 

Figure 2h - the fast slow arrows are extremely confusing. I initially thought they indicated that 

ETC/mtRibo were fast drop outs while splicesome/proteasome were slow drop outs. The 

differing y-axes also make the chart harder to read. 

We thank the reviewer for pointing this out and agree we could have made this plot more clear. 

Figure 2H plots a normalized estimate of the derivative of the log fold-change (LFC) for each 

drop-out profile. We’ve revised this panel by adding an inset plot to the left that clarifies what we 



mean by “Dropout speed”. Specifically, we plot dropout speeds right above two hypothetical 

LFC profiles to provide a clear example of how dropout speed corresponds to the observed LFC 

values. We also updated the corresponding figure legend. 

Figure update: Figure 2H, added left panel.  Updated legend for 2H:  “H, Dropout speed 

for ETC-related and other selected essential complexes. Dropout speed is a normalized 

estimate of the derivative of an LFC profile (across time) for each guide (see Methods). A 

positive dropout speed indicates faster relative dropout, while a negative dropout speed 

indicates slower dropout (see left panel for hypothetical LFC profile examples and their 

corresponding dropout speeds). The average dropout speed across all genes in each of the 

indicated complexes is plotted as a function of screen sampling time (right). tSNE embedding 

groups CORUM complexes with similar dropout speed (see Methods). The six selected 

complexes on the right are indicated in the tSNE plot (large colored dots) and sub-complexes 

are labeled with matching colors (bottom).” 

Figure S4 - the different x-axes used for the module-level summaries make these charts very 

hard to compare. I thought PCC was performing at a similar level to Kim et al, although this is 

not the case 

We apologize for the confusion. Figure S4 (now Appendix Figure S4) is designed to 

demonstrate the effect of mitochondrial bias removal on the performance of individual methods, 

not as a comparative benchmarking of those methods. The goal of Figure S5 (now EV2) is to 

provide a head-to-head comparison for those methods, and they are plotted on the same axes. 

We have modified the figure legend of now Appendix Figure S4 and Figure EV2 to reflect this 

and also added explanatory legends in Figure 1. The titles in the legends of these figures have 

been modified to better reflect their purposes (Appendix Figure S4 and EV2, respectively): 

“Exploration of mitochondrial bias of different DepMap post-processing approaches.” and “Direct 

comparison of alternative DepMap post-processing approaches.” 

Reviewer #3 

FLEX is a pipeline that is used to integrate, among others, publicly available reference datasets 

to evaluate the integrity of large-scale loss-of-function screening experiments. By using 

precision recall statistics, CRISPR screening dataset can be interrogated for known functional 

relationships between gene co-dependency gene pairs and pathways. The authors used FLEX 

to assess gene-level precision recall performance on commonly published datasets. Analyzing 

DepMap data based on a CORUM standard, they found that the genes part of the ETC I, V and 

the 55S mt ribosome complexes are largely dominating the co-essentiality dependency 

networks. To account for the large effect of certain pathways in determining gene-level PR, the 

authors developed modular PR to normalize highly co-dependent gene sets into one score. To 

explain this difference in ETC dependency, the authors hypothesized that the screen length 

between Broad and Sanger DepMap protocols are different, suggesting that the difference in 



screen sampling times could contribute to the differences in essentiality. Notably, they have 

pointed out that the ETC I and V have the highest protein stability, while the 55S was 

comparatively close to the median half-life. To test this observation, the authors employed a 

CRISPR/Cas9 screen in HAP1 cells and sampled every 3-4 days. The authors identified several 

early and late dropout pathways and genes, highlighting the dependency of ETC-related genes 

in early time points. The authors suggested that the strength of ETC-related fitness is able to 

accurately predict the time of the screen. At the current stage, it requires a major revision. 

Specific comments are: 

1. Overall, the manuscript presents a method to use a novel AUPRC method to identify

differences in co-essential genes between studies. This represents a technical advance to

anyone who wants to perform essentiality CRISPR-KO or other KO screens. However, it

remains hypothetical that the authors claiming the differences in dropout rate for the screens

could be explained by the protein half-life. In particular, the strength of ETC-related phenotype is

proposed as a metric for determining the true length of a screen before sampling. While this

point could be greatly beneficial, it is uncertain whether this can be true for Broad biological

contexts. It is also unclear how useful this metric would be compared to any of the other

essential genes or pathways. While the technical challenge has been clearly described, the

reviewer is not convinced of how this finding would translate to promoting a clear biological

advance.

(Note: we have moved a portion of comment (3) up as it relates to the reviewer’s point (1) 

above) 

3. The reviewer would like the authors to comment more on how monitoring ETC-related

phenotypes can be applied to identify the difference in timing for screens between different cell

types, and how tracking the dropout rate of ETC-related essential genes are different from doing

so with other essential genes or complexes.

We briefly reiterate the key elements of our hypothesis here and then further address the 

reviewer’s questions below. Our claim that the strength of ETC-related genes’ phenotypes are a 

good indicator of screen timing is based on the data presented in Appendix Figure S6 and 

Figure 3C. Figures S8A-C demonstrate that the LFC (log fold change) values for mitochondrial 

ribosome and ETC I genes continue to grow more negative throughout the entire 18-day screen 

in HAP1 cells. In contrast, for other essential protein complexes (e.g. spliceosome, cytoplasmic 

ribosome, proteasome), the LFC values reach a minimum LFC very quickly (between 5-10 

days), such that there is little variation observed in the LFCs for those complexes after 10 days. 

If differences in screen timing or growth rates of cell lines are limited to +/- ~50% of the “typical 

screen time” in a given context, one would expect then that only protein complexes like the mito. 

ribosome and ETC I genes would show different phenotypes related to such differences in 

timing - the other essential complexes drop out so quickly that there is negligible variation in 

phenotypes for the vast majority of screens, even with some variation in effective sampling time. 

This idea that the ETC-related genes can effectively serve as a clock for a CRISPR screen is 

further supported by the data presented in Figure 3C. We ranked our HAP1 screen individual 

timepoint LFC measurements for ETC-related genes amongst the entire DepMap collection 



based solely on the strength of the observed ETC-related gene phenotypes. This quantity 

correlates well with the time at which the sample was taken (Spearman r=0.61, p = 0.0007, 

Figure 3C). When we repeated the same analysis with the other protein complexes, none of the 

correlations for the other essential complexes (spliceosome, cytoplasmic ribosome, or 

proteasome) were significant (p > 0.05 for all 3). To make this logic more clear, we have now 

included the following text in the second paragraph of ‘Discussion’ section: 

“Why are ETC-related genes unique in this regard? If differences in the effective 

sampling timing or growth rates of cell lines are limited to +/- ~50% of the typical sampling time 

in a given collection of screens, one would expect that only protein complexes like the 

mitochondrial ribosome and ETC I genes, whose fitness effect size is still increasing even late in 

screens would show different phenotypes related to such differences in timing. Other essential 

complexes drop out rapidly enough that there is negligible variation in phenotypes for the vast 

majority of screens regardless of small variation in effective sampling time or other factors.” 

We agree with the reviewer that our proposal about the connection between protein 

stability and the strength of ETC-related gene phenotypes is “hypothetical” in some sense, but 

we have presented multiple lines of evidence that support this hypothesis. We agree that more 

definitive experiments could be done to further test this hypothesis and have edited the text of 

the Discussion to reflect this: 

“We note that while multiple lines of evidence support our hypothesis about the effect of 

protein stability on ETC-related genes’ phenotypes in CRISPR screens, more definitive 

experiments could be done to further test this hypothesis. For example, one could specifically 

quantify the dynamics of wild-type protein abundance in a population of cells expressing guides 

targeting ETC-related genes. Also, we note that there are likely additional non-genetic factors 

(e.g. beyond sampling time, growth rate and protein stability) that could similarly modulate the 

apparent phenotypes measured in CRISPR screens.” 

It’s worth noting, however, that one key aspect of our paper is not hypothetical-- the fact 

that mitochondrial-related genes dominate evaluations of co-essentiality scores and relative 

comparisons of different methods for generating them. We clearly demonstrate the impact that 

these genes have on these evaluations, an effect that is important for our field to be aware of, 

regardless of the source of this bias. 

Regarding this comment, “the reviewer is not convinced of how this finding would 

translate to promoting a clear biological advance”:  our results suggest that there is substantial 

variation in the measured phenotype for ETC-related genes in CRISPR screens that is not due 

to differences in genetic dependency. This finding is important for anyone applying CRISPR 

screens to identify context-specific genetic dependencies. While we discovered the effect based 

on the DepMap dataset, we expect that these factors also influence small-scale CRISPR 

screens (currently being widely applied across our community) and will result in ETC-related 

genes being identified as “hits” when they are actually not true differential genetic 

dependencies. Differential phenotypes for these genes should be interpreted with caution. Thus, 

we believe our findings do have broad relevance to our field. To make this point explicit, we 

have added this to the second paragraph of ‘Discussion’ section: 

“While this effect is readily discoverable in the DepMap dataset, phenotypes for these 

ETC-related genes should be interpreted with caution in other CRISPR screen contexts as well, 



especially if one is interested in scoring differential phenotypes (e.g. cell line-specific 

dependencies, genetic- or chemical-genetic interactions).” 

 

2. The manuscript is written in a blended way, combining both a computational method 

with some related discoveries/hypotheses. It is confusing as the title only states one of the 

technical challenges in CRISPR screening analysis. There is a lack of clarification of 

challenges in the introduction and their approach to address these challenges. There is also 

a lack of summary on how their method and their discoveries can change the field. Much 

efforts are needed to make the whole manuscript more consistent, clearer, and less 

confusing.  

 

We thank the reviewer for this comment. In our original version, we attempted to cover both the 

FLEX pipeline and our mitochondria-related gene finding in a very succinct manner. We 

understand why this lacked clarity and have modified several aspects of the manuscript based 

on the reviewer’s comment. Specifically: 

- We changed the title to ““A method for benchmarking genetic screens reveals a 

predominant mitochondrial bias” to better reflect both the introduction of the FLEX 

pipeline as well as our specific finding about mitochondria-related genes. 

- We expanded both the abstract and introduction to include a focus on both the method 

and the mitochondrial gene finding. 

- We expanded our description of the actual functionality of FLEX in the early part of the 

Results section to make it more clear what problems it addresses. 

- We added a section in the Results that highlights other examples of benchmarking to 

demonstrate the types of questions our FLEX pipeline can help answer. 

- We added subsection headings to help with clarity of organization of the manuscript. 

- We expanded the Discussion section to include the following: 

- A clear statement that we think differential phenotypes for ETC-related genes 

should be interpreted with caution in all CRISPR screens, emphasizing the broad 

relevance of our finding beyond interpretation of the DepMap dataset. 

- Several sentences clarifying the scope of the FLEX pipeline and other potential 

applications, indicating that it can be applied to evaluate gene-pair relationship 

data of any type using a variety of different standards. 

- Statements regarding the primary limitations of the FLEX pipeline. 

Due to the extensive nature of these edits, we haven’t copied them here. However, we included 

a version of our manuscript in our submission files that highlights all of our changes. We agree 

that these changes have improved the clarity of our manuscript. 

 

(Note: this is the remainder of this reviewer’s comment (3)--the first part was moved up) 

3. (continued) Do the cells applied with different drugs or other treatments have similar 

essentiality scores for these genes? The reviewer would like the FLEX analysis of a published 

screen with cell and/or animal models with drug treatments such as those found in 

chemotherapy studies to compare the AUPRC.  

 



We thank the reviewer for this suggestion. To explore this, we applied FLEX to 31 targeted 

chemical genetic screens from Olivieri et al, 2020 (Appendix Figure S6). These screens were 

performed on RPE-1 cells and include a collection of drugs targeting DNA-damage related 

pathways. This evaluation shows that a co-dependency network derived from these chemical 

genetic screen profiles does predict functional relationships (Appendix Figure S6A), although 

with substantially lower performance than the complete DepMap dataset (Appendix Figure S5A) 

or even an equivalent number of screens sampled from the DepMap (Appendix Figure S5F). 

Interestingly, the FLEX contribution diversity analysis indicates that the vast majority of true 

positive relationships derived from these data are from protein complexes related to DNA 

damage repair (e.g. Fanconi anemia complex, DNA ligase IV−XRCC4−XLF complex, DNA 

synthesome complex) (Appendix Figure S6B), which reflects the focus of the chemical genetic 

screens. We did not see a strong representation of ETC-related complexes in this co-

dependency network, suggesting the factors driving the variation in ETC-related genes’ 

phenotypes are less prominent in this context. In general, this analysis demonstrates the utility 

of FLEX for interpretation of other CRISPR screens beyond the DepMap dataset. We have 

added a summary of this additional application of FLEX to the manuscript in the last paragraph 

of subsection ‘Example applications of FLEX to benchmark CRISPR screen data and analysis 

methods’ and it is also included below: 

“As a final example FLEX application, we explored the question of how the identity of 

genetic screens affects the type of functional information captured in co-essentiality scores. 

Specifically, we applied FLEX to analyze the co-essentiality scores derived from 31 genome-

wide CRISPR-Cas9 screens against 27 DNA-damaging agents (Olivieri et al). Interestingly, 

FLEX contribution diversity analysis showed a strong dominance of protein complexes related to 

DNA damage repair (e.g. Fanconi anemia complex, DNA ligase IV−XRCC4−XLF complex, DNA 

synthesome complex) among predicted functional relationships (Appendix Figure S6A, B). At 

the same time, ETC-related complexes were not strongly represented amongst these co-

essentiality scores, suggesting that the factors driving the variation in ETC-related genes’ 

phenotypes are less prominent in this context. This example more generally shows how the 

biological focus of the investigated set of screens, an experimental theme spanning various 

model organisms (Billmann et al; Jonikas et al), can be evaluated.” 

Aside from protein degradation, as suggested by looking at the protein half-life in Figure 2b, 

there could be other biological reasons for functional differences in dropout speed including 

different levels of essentiality to the cell. For example, a gene that is required for mismatch 

repair may drop out much slower than a gene required for cell division checkpoints. Could the 

proteins of ETC genes be more tolerant of DNA mismatches? In an effort to isolate protein 

stability from the other biological effects, the reviewer suggests the authors to provide protein 

stability-corrected essentiality scores for the genes based on the 18,000 gene sgRNA library 

applied to the HAP1 cells. 

We completely agree with the reviewer that in general, there could be many factors that 

influence the dropout speed of a gRNA targeting a particular gene including the specific function 

of that gene or the magnitude of the fitness effect caused by the loss of that gene’s function. 



However, in the case of the ETC-related genes, we do not think it is coincidental that these 

proteins exhibit the highest stability of any protein complex in the proteome. Our time-resolved 

screens in HAP1 cells also provide additional evidence for this hypothesis in that they 

demonstrate that the dynamics of the dropout of ETC-related genes are unique (consistent with 

their unique prolonged protein stability) and that these dynamics alone are enough to explain 

the range of phenotypes observed in the DepMap (Figure 3C). 

In the case of this complex, we think it is unlikely that the reason for the slow dropout is 

related to tolerance of DNA mismatches. The guides in our gRNA library induce a variety of 

insertions and deletions, many of which will cause out-of-frame translation. The additional 

tolerance to DNA mismatches hypothesis would require a substantial number of in-frame indels 

induced by the set of guides targeting these genes, and furthermore, it would require that most 

of the ETC-related genes have a similar tolerance for mismatches. 

We agree with the reviewer that it is important to acknowledge in the manuscript that 

while we present evidence for the protein stability hypothesis, more definitive experiments could 

be done to further test this hypothesis. We have edited the text of the Discussion to reflect this 

and have also mentioned the possibility that there are many other factors that contribute to the 

strength of CRISPR screen phenotypes. 

Regarding providing stability-corrected essentiality scores, we are currently working on a 

method for correcting these effects and agree that this is an important direction. However, as 

the reviewer notes above, the current manuscript is already stretched in the sense that we are 

both introducing the FLEX method that enabled the discovery of the ETC-related bias as well as 

exploring the biological basis of this bias (both important in our opinion). Describing a method 

for normalizing this effect, along with proper analysis to demonstrate that it works, is beyond the 

scope of this manuscript. 

We updated the text in the Discussion section in response to this comment: “We note 

that while multiple lines of evidence support our hypothesis about the effect of protein stability 

on ETC-related genes’ phenotypes in CRISPR screens, more definitive experiments could be 

done to further test this hypothesis. For example, one could specifically quantify the dynamics of 

wild-type protein abundance in a population of cells expressing guides targeting ETC-related 

genes. Also, we note that there are likely additional non-genetic factors (e.g. beyond sampling 

time, growth rate and protein stability) that could similarly modulate the apparent phenotypes 

measured in CRISPR screens.” 

4. In Figure 2h, the authors highlight the differences in protein degradation speeds as they

relate to dropout rate. The reviewer would like the authors to comment towards if there is a

delayed fast or a delayed slow rate, and if 20 days is enough to show these curves. The

reviewers would also like the authors to comment on why the differences in essential/non-

essential gene separation in S6C seem to dissipate after 10 days while the ETC complex

displays a dropout difference between the Sanger and Broad screens which are between 14

and 21 days?

We think there was some confusion about 2H, and we understand that our original version of 

this figure lacked clarity (also commented on by Reviewer #2). To clarify, Figure 2H plots the 



dynamics of the dropout for different protein complexes, including the ETC-related genes, but 

does not plot any data associated with protein stability. Our goal in showing the details of these 

dynamics is to explain how the increased protein stability of ETC-related genes could result in 

variable phenotypes across a set of screens. As described above, we added an additional panel 

to Figure 2h and extra detail to the legend. 

Figure update: Figure 2H, added left panel.  Updated legend for 2H:  “H, Dropout speed 

for ETC-related and other selected essential complexes. Dropout speed is a normalized 

estimate of the derivative of an LFC profile (across time) for each guide (see Methods). A 

positive dropout speed indicates faster relative dropout, while a negative dropout speed 

indicates slower dropout (see left panel for hypothetical LFC profile examples and their 

corresponding dropout speeds). The average dropout speed across all genes in each of the 

indicated complexes is plotted as a function of screen sampling time (right). tSNE embedding 

groups CORUM complexes with similar dropout speed (see Methods). The six selected 

complexes on the right are indicated in the tSNE plot (large colored dots) and sub-complexes 

are labeled with matching colors (bottom).” 

Regarding the question about essential/non-essential gene separation in our HAP1 screen 

data at 10 days, we would like to note that both early essential (e.g. 26S proteasome) and late 

essential (e.g. 55S ribosome) genes tended to reach a ‘bottom’ around day 10 (see Fig. EV3C). 

To explain why additional ETC-related gene dropout occurs between day 14 and day 21 in the 

DepMap screen data, we provide two reasons (both likely contribute): 

1. The definition of assay length is reported differently in our experiment (days past

puromycin selection for gRNA containing cells) than in the DepMap protocol (days past

gRNA library transfection). In our protocol, gRNA library transfection takes place roughly

4 days prior to successful puromycin selection. Therefore, our day 10 corresponds to

day 14 in the DepMap protocol.

2. Different cell lines can have substantially different doubling rates. HAP1 cells proliferate

rather quickly, and presumably, more quickly than several cell lines screened in the

DepMap project. Since doubling rate is a main determinant of residual wildtype protein

levels (as we describe in our manuscript), the ‘bottom’ observed in HAP1 around day 10

would be reached later in those slower cell lines.



19th Mar 20211st Revision - Editorial Decision

Thank you for sending us your revised manuscript . We have now heard back from the three 
reviewers who were asked to evaluate your study. As you will see the reviewers are overall sat isfied 
with the modificat ions made and think that the study is now suitable for publicat ion. 

Before we can formally accept your manuscript , we would ask you to address the following issues. 

REFEREE REPORTS

 ---------------------------------------------------------------------------- 

Reviewer #1: 

I appreciate the authors' efforts to answer my quest ions in the 1st round review. Most of the points 
have been addressed well. My remaining concern lies on Point 3, in which I asked for the 
examinat ion of the viabilit y profile upon KO of other stable proteins in addit ion to ETC complex 
subunits. To my understanding, the results from the authors' analysis suggest weak or even no 
correlat ion between other stable proteins and the ETC complex subunits. While I do not exclude 
the possibilit y that protein stability cont ributes to the high similarit y of ETC-related co-essent iality, 
I think other factors, such as the redox potent ial of the medium in cell culture, may also explain the 
observed similarit y in an alternat ive way. I'd suggest the authors to include the analysis on Point 3 
and to ment ion it in the 2nd discussion paragraph "Why are ETC-related genes unique in this



regard?" 

Reviewer #2: 

Billman and colleagues have addressed my concerns. The manuscript  has been significant ly
improved by the addit ion new benchmarking analyses - comparing different correlat ion metrics and
comparing co-essent iality derived from varying numbers of cell lines. 

Reviewer #3: 

Since the original review, the reviewers have addressed deficiencies in explanat ion for the scope
and applicat ions of this technology, and have more clearly defined FLEX's benchmarking
capabilit ies. The claims that highly stable protein complexes such as those involving ETC-related
genes have been largely reduced, with the surviving conclusion being mitochondrial-related genes
dominate evaluat ions of co-essent iality scores for DepMap gene sets. The reviewer thanks the
authors for providing the experiment for looking at  the DNA damage-related screening study and
ident ifying different pathway dependencies there. Overall, the reviewer is sat isfied with the amount
of work done to address the comments, though the conservat iveness of the corrected conclusions
may reduce the impact of the paper slight ly.



Response to reviewers 

Reviewer #1: 

I appreciate the authors' efforts to answer my questions in the 1st round review. Most of the 

points have been addressed well. My remaining concern lies on Point 3, in which I asked for the 

examination of the viability profile upon KO of other stable proteins in addition to ETC complex 

subunits. To my understanding, the results from the authors' analysis suggest weak or even no 

correlation between other stable proteins and the ETC complex subunits. While I do not exclude 

the possibility that protein stability contributes to the high similarity of ETC-related co-

essentiality, I think other factors, such as the redox potential of the medium in cell culture, may 

also explain the observed similarity in an alternative way. I'd suggest the authors to include the 

analysis on Point 3 and to mention it in the 2nd discussion paragraph "Why are ETC-related 

genes unique in this regard?" 

We thank the reviewer again for placing our efforts into a larger context and agree that other 

experimental factors in CRISPR screens such as the redox potential of the cell culture media 

likely do impact a cell’s dependency on the electron transport chain (ETC). In fact, a meta-

analysis of the DepMap data with a focus on media conditions, which we also cite in our 

manuscript, found differential gene effects including the gene ASNS (Lagziel et al). That study 

also built predictive models for cell line-specific dependence on genes in one-carbon 

metabolism. However, this study did not show a major differential effect for either ETC 

complexes I and V or the 55S ribosome. Moreover, this work predicted experimental factors 

explaining screen-to-screen differences and neither the ETC nor protein stability was 

mentioned. 

Nonetheless, we agree with the reviewer that other factors may contribute to the 

observed ETC-related gene co-essentiality. We have updated the suggested paragraph of the 

discussion to include this: 

“Also, we note that beyond sampling time, growth rate and protein stability, there are likely 

additional non-genetic factors, such as the redox potential of the media as explored by Lagziel 

and colleagues (Lagziel et al), that could similarly modulate the apparent phenotypes measured 

in CRISPR screens.” 

We have not added any supplemental analysis related to our earlier response to Point 3. It is 

important to note that the ETC complexes are not only the highest in terms of protein stability of 

any complex, they are the highest by a considerable margin. The median protein half-life of the 

ETC V complex across B cells, monocytes and hepatocytes is about 11 days while the median 

protein half-life of the next most stable complex is 6.5 days, and the overall median half-life of 

any complex is 3 days as reported in the original study of protein stability (Mathieson et al). 

Given this considerably higher protein stability, the significance of the absence of dropout profile 

similarity of the next most stable complexes is unclear to us. We feel that citing this negative 

result with unclear implications will only create confusion. 

19th Apr 20212nd Authors' Response to Reviewers



Reviewer #2: 

Billman and colleagues have addressed my concerns. The manuscript has been significantly 

improved by the addition new benchmarking analyses - comparing different correlation metrics 

and comparing co-essentiality derived from varying numbers of cell lines. 

We thank the reviewer again for the constructive suggestions on our manuscript. 

Reviewer #3: 

Since the original review, the reviewers have addressed deficiencies in explanation for the 

scope and applications of this technology, and have more clearly defined FLEX's benchmarking 

capabilities. The claims that highly stable protein complexes such as those involving ETC-

related genes have been largely reduced, with the surviving conclusion being mitochondrial-

related genes dominate evaluations of co-essentiality scores for DepMap gene sets. The 

reviewer thanks the authors for providing the experiment for looking at the DNA damage-related 

screening study and identifying different pathway dependencies there. Overall, the reviewer is 

satisfied with the amount of work done to address the comments, though the conservativeness 

of the corrected conclusions may reduce the impact of the paper slightly. 

We thank the reviewer again for the constructive suggestions on our manuscript. 



20th Apr 2021Accepted

Thank you again for sending us your revised manuscript . We are now sat isfied with the 
modificat ions made and I am pleased to inform you that your paper has been accepted for 
publicat ion. 
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