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Stability analysis of grouping cell process 
Two random factors in cell grouping process (Step 1 of JRIM) could affect the results. 

(1) The stopping criterion. JRIM stops the grouping process until no new group can be 

created, which means no new group could overlap any existing one by less than a 

percentage of cells (80% by default). Obviously, this stopping criterion is directly 

related to the number of groups where lower stop criterion will lead to fewer number of 

groups (Figure S15A). (2) The randomness of dimensionality reduction algorithm. 

JRIM constructs a k-nearest neighbor graph based on the t-SNE embedding. However, 

t-SNE has a certain randomness. 

In order to analyze the stability of cell grouping process, we first run JRIM using all 

the cells from 13 tissues in chromosome 1 with different stopping criteria (70%, 80% 

and 90%) (Figure S15A). Note that the number of peaks in each 500kb local genomic 

window is generally less than 200, while the number of groups in cerebellum (tissue 

with fewest cells) is 241 for 70% and 459 for 80%. Thus, in principle, the results of 

JRIM are stable because the sample covariance matrix is nonsingular. We set the 

inferred interactions of 80% as reference and calculated the ROC curves. As expected, 

the AUC score is high (>0.85 between 80% and 90%, >0.78 between 80% and 70%) 

in tissues with different number of cells (Figure S15B, S15C) and the rate of common 

interactions between results of 80% and results of 90% is about 87% (Figure S15D), 

suggesting that the inferred networks of JRIM is robust in terms of the stopping criterion. 

We then set the stopping criterion as 80% and run JRIM with different random seeds 

which affecting the t-SNE results in cell grouping process. As shown in Figure S15B 

and S15C, the impacts of randomness in t-SNE is greater than the impacts of different 

stopping criteria (AUC=0.73 in cerebellum and AUC=0.66 in heart). And the rate of 

common interactions between results of different random seeds is about 71% (Figure 

S15D). Although we think this degree of difference is acceptable because the number 

of candidate pairs of peaks is huge, JRIM still needs further optimization to alleviate its 

impact. One possibility is to adopt a more robust dimensionality reduction method or 

integrate prior knowledge such as the protein labeling of cells when perform 

dimensionality reduction. Another approach we more recommended is to run JRIM 

with different random seeds and voted for the final results. An example of common 

interactions between results using three different random seeds are shown in Figure 

S15E. The rate of common interactions in both three resulting networks is about 60%. 

  



 

 

Figure S1. Cell number (A) and data sparsity (B) of single-cell ATAC-seq data for 

each tissue. 

  



 

Figure S2. Illustration of the workflow of data processing for each tissue. (A) JRIM 

takes the peak × cell matrix of each tissue as input. (B) JRIM first maps single cells 

into low dimensional spaces using t-SNE and aggregates single cells into overlapping 

groups. (C) After clustering similar cells into overlapping groups, JRIM aggregates their 

accessibility counts to construct grouped matrix. The purple diamond represents peaks 

overlapped with one gene promoter and the ellipse represents the remaining ones. (D) 

Finally, JRIM calculates sample covariance matrix of grouped matrix for each local 

genomic window. The resulting sample covariance matrices are adopted to joint 

graphical lasso model to jointly reconstruct cis-regulatory interaction networks (Figure 

1).  

  



 

Figure S3. Number of interacting co-accessible DNA element pairs (i.e., cis-regulatory 

interactions) in each tissue estimated by JRIM (A), and by Cicero (using the same 

sparsity parameter λ=0.25 for each tissue respectively) (B). 

  



 

Figure S4. Distribution of distance between interacting co-accessible DNA elements. 

The red line is the estimated probability distribution function by python function seaborn. 

Distplot(). 

 

  



 

Figure S5. Enrichment degrees (fold changes) of the number of cis-regulatory 

interactions in different genomic regions. 

  



 

Figure S6. Mean number of occurring tissues of six types of genomic region related 

interactions. 

  



 

Figure S7. Comparison of the number of promoter-related interactions of 27 

consistently and highly expressed genes obtained from [1] and remaining genes. 

Statistical significance of the difference was calculated using two-sample Wilcoxon 

tests with P < 0.01 in all 13 tissues. 

  



 

Figure S8. Hierarchical clustering of the 13 tissues in terms of gene activity scores.  



 

Figure S9. Enrichment analysis of chromatin modification mark around TSSs of tissue-

specific differential activity genes (DAGs). (A) Enrichment analysis of CTCF around 

TSSs of DAGs. The CTCF signal around TSSs of DAGs and remaining genes are 

labeled as red and gray colors, respectively. The blue line is the mean CTCF signals 

around TSS of DAGs in other tissues. (B) Enrichment analysis of H3K27ac mark 

around TSSs of DAGs. The colors of lines are the same as (A). 

  



 

Figure S10. The H3K4me1 signal (A) and CTCF signal (B) of tissue-specific functional 

peaks compared to those of other peaks. 

  



 

Figure S11. Reconstructed regulatory networks around Fto gene and Irx3 gene (chr9: 

93,500,000-94,750,000). The green line and yellow line represent the contact 

frequencies with Fto TSS and Irx3 TSS respectively. The red line and blue line are the 

ChIP-seq signal of H3K27ac in cortex and cerebellum respectively. Irx3 is highly 

expressed in brain and lung. Fto is highly expressed in brain only. JRIM identifies the 

relatively high activity of Fto in brain and prefrontal cortex. And it has been reported [2] 

that enhancers located in Fto region regulate the expression of Irx3 in brain as shown 

in the region D. 

  



 

Figure S12. Illustration of 4C-seq data of Gys2 gene in liver at different time points in 

wild-type mouse (A) and clock-deficient Bmal1 knockout mouse (B). The 4C-seq data 

was generated in [3].‘ZT08’ and ‘ZT20’ indicate that the 4C-seq experiment is 

performed at zeitgeber time 8 and zeitgeber time 20. ‘ZT08-ZT20’ indicates the 

difference between signals at ZT08 and ZT20. 

  



 

Figure S13. Spatial regulatory loci interacting with Gys2 TSS in liver and kidney 

estimated by ‘FourCSeq’ method [4] from a 4C-seq data with z-score >1.5. 

  



 

Figure S14. Changes of sparsity and similarity of cis-regulatory interaction networks 

with respect to parameter tuning: λ1 and λ2 in (A, B) and 𝜔1 and 𝜔2 in (C, D). This 

experiment was performed in four tissues (kidney, liver, heart and thymus). 



 

Figure S15. Stability analysis of cell grouping process. (A) The number of groups using 

different stopping criteria in cell grouping process. Tissues are sorted by the number 

of cells. (B, C) ROC curves of the consistency with JRIM results using stopping 

criterion 80% in Cerebellum (tissue with the fewest cells) and Heart (tissue with the 

most cells). We set the results of stopping criterion 80% as the reference (i.e. the true 

label) when plotting the ROC curves. (D) The number of common interactions in all 13 

tissues between inferred networks using different stopping criteria 70%, 80% and 90% 

with random seed 2020. (E) Venn diagram about the number of common interactions 

in three JRIM networks using three different random seeds (i.e., 0, 2000, 2020). 

  



Table S1. Examples of Homer motif analysis for tissue-specific functional peaks. Top 

three enriched motifs of each tissue are shown. 
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