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Stability analysis of grouping cell process

Two random factors in cell grouping process (Step 1 of JRIM) could affect the results.
(1) The stopping criterion. JRIM stops the grouping process until no new group can be
created, which means no new group could overlap any existing one by less than a
percentage of cells (80% by default). Obviously, this stopping criterion is directly
related to the number of groups where lower stop criterion will lead to fewer number of
groups (Figure S15A). (2) The randomness of dimensionality reduction algorithm.
JRIM constructs a k-nearest neighbor graph based on the t-SNE embedding. However,
t-SNE has a certain randomness.

In order to analyze the stability of cell grouping process, we first run JRIM using all
the cells from 13 tissues in chromosome 1 with different stopping criteria (70%, 80%
and 90%) (Figure S15A). Note that the number of peaks in each 500kb local genomic
window is generally less than 200, while the number of groups in cerebellum (tissue
with fewest cells) is 241 for 70% and 459 for 80%. Thus, in principle, the results of
JRIM are stable because the sample covariance matrix is nonsingular. We set the
inferred interactions of 80% as reference and calculated the ROC curves. As expected,
the AUC score is high (>0.85 between 80% and 90%, >0.78 between 80% and 70%)
in tissues with different number of cells (Figure S15B, S15C) and the rate of common
interactions between results of 80% and results of 90% is about 87% (Figure S15D),
suggesting that the inferred networks of JRIM is robust in terms of the stopping criterion.

We then set the stopping criterion as 80% and run JRIM with different random seeds
which affecting the t-SNE results in cell grouping process. As shown in Figure S15B
and S15C, the impacts of randomness in t-SNE is greater than the impacts of different
stopping criteria (AUC=0.73 in cerebellum and AUC=0.66 in heart). And the rate of
common interactions between results of different random seeds is about 71% (Figure
S15D). Although we think this degree of difference is acceptable because the number
of candidate pairs of peaks is huge, JRIM still needs further optimization to alleviate its
impact. One possibility is to adopt a more robust dimensionality reduction method or
integrate prior knowledge such as the protein labeling of cells when perform
dimensionality reduction. Another approach we more recommended is to run JRIM
with different random seeds and voted for the final results. An example of common
interactions between results using three different random seeds are shown in Figure
S15E. The rate of common interactions in both three resulting networks is about 60%.
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Figure S1. Cell number (A) and data sparsity (B) of single-cell ATAC-seq data for
each tissue.
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Figure S2. lllustration of the workflow of data processing for each tissue. (A) JRIM
takes the peak x cell matrix of each tissue as input. (B) JRIM first maps single cells
into low dimensional spaces using t-SNE and aggregates single cells into overlapping
groups. (C) After clustering similar cells into overlapping groups, JRIM aggregates their
accessibility counts to construct grouped matrix. The purple diamond represents peaks
overlapped with one gene promoter and the ellipse represents the remaining ones. (D)
Finally, JRIM calculates sample covariance matrix of grouped matrix for each local
genomic window. The resulting sample covariance matrices are adopted to joint
graphical lasso model to jointly reconstruct cis-regulatory interaction networks (Figure

1).
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Figure S3. Number of interacting co-accessible DNA element pairs (i.e., cis-regulatory
interactions) in each tissue estimated by JRIM (A), and by Cicero (using the same
sparsity parameter A=0.25 for each tissue respectively) (B).
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Figure S4. Distribution of distance between interacting co-accessible DNA elements.
The red line is the estimated probability distribution function by python function seaborn.
Distplot ().
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Figure S5. Enrichment degrees (fold changes) of the number of cis-regulatory
interactions in different genomic regions.
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Figure S7. Comparison of the number of promoter-related interactions of 27
consistently and highly expressed genes obtained from [1] and remaining genes.
Statistical significance of the difference was calculated using two-sample Wilcoxon
tests with P < 0.01 in all 13 tissues.
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Figure S8. Hierarchical clustering of the 13 tissues in terms of gene activity scores.
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Figure S9. Enrichment analysis of chromatin modification mark around TSSs of tissue-
specific differential activity genes (DAGS). (A) Enrichment analysis of CTCF around
TSSs of DAGs. The CTCF signal around TSSs of DAGs and remaining genes are
labeled as red and gray colors, respectively. The blue line is the mean CTCF signals
around TSS of DAGs in other tissues. (B) Enrichment analysis of H3K27ac mark
around TSSs of DAGs. The colors of lines are the same as (A).
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Figure S11. Reconstructed regulatory networks around Fto gene and Irx3 gene (chr9:
93,500,000-94,750,000). The green line and yellow line represent the contact
frequencies with Fto TSS and Irx3 TSS respectively. The red line and blue line are the
ChiIP-seq signal of H3K27ac in cortex and cerebellum respectively. 1rx3 is highly
expressed in brain and lung. Fto is highly expressed in brain only. JRIM identifies the
relatively high activity of Fto in brain and prefrontal cortex. And it has been reported [2]
that enhancers located in Fto region regulate the expression of Irx3 in brain as shown
in the region D.
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Figure S12. lllustration of 4C-seq data of Gys2 gene in liver at different time points in
wild-type mouse (A) and clock-deficient Bmall knockout mouse (B). The 4C-seq data
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Figure S13. Spatial regulatory loci interacting with Gys2 TSS in liver and kidney
estimated by ‘FourCSeq’ method [4] from a 4C-seq data with z-score >1.5.
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Figure S14. Changes of sparsity and similarity of cis-regulatory interaction networks
with respect to parameter tuning: A; and A, in (A, B) and w, and w, in (C, D). This
experiment was performed in four tissues (kidney, liver, heart and thymus).
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Figure S15. Stability analysis of cell grouping process. (A) The number of groups using
different stopping criteria in cell grouping process. Tissues are sorted by the number
of cells. (B, C) ROC curves of the consistency with JRIM results using stopping
criterion 80% in Cerebellum (tissue with the fewest cells) and Heart (tissue with the
most cells). We set the results of stopping criterion 80% as the reference (i.e. the true
label) when plotting the ROC curves. (D) The number of common interactions in all 13
tissues between inferred networks using different stopping criteria 70%, 80% and 90%
with random seed 2020. (E) Venn diagram about the number of common interactions
in three JRIM networks using three different random seeds (i.e., 0, 2000, 2020).



Table S1. Examples of Homer motif analysis for tissue-specific functional peaks. Top

three enriched motifs of each tissue are shown.

Tissue Motif P-value TF Brief description Reference
Bone AA 1e-45 RUNX1 RUNX1 is essential for the development of normal 18258917
marrow E C hematopoxess and Involved in lineage commitment of
= =2 B immature T cell precursors.
GC 1e-44 GATAB
TS
<CTTATCIs=
AC - 1e-43 MAX MAX is overexpressed in peripheral blood 17072327
QCA:CAQ , T EZ?’é e mononuclear cells, CD4 T cells, and monocytes.
e X IR AL
Cerebellum T~ - 1e-105  NF1
LTGECAAS
- T # 1e-100 NEURO NEUROD1 associates with chromatin to enhancer 18007592
QQC A ; CT IE D1 regulatory elements in neurogenesis regulation genes.
< TACCA CT ? 1e-99 ATOH1 ATOH1 plays a rol}e in the differentiation of subsets of 10648228
AT E neural cells by activating E box-dependent
C=GR TA $‘ L tra\nscnptinn,y ¢
Large A \/ T T 1e-229 KLF5 Tissue-specific expression in digestive track. Highest 25409824
. . T 9 - | expression in adult mouse colon.
intestine Lo CAIGN X Q
TI'rIAI SGC! 1e-217  HOXA11
alls .vZéxg
GG ILRNNC GC 1e-211  KLF14
AXGUUUXUTREeS
Heart > I - C 1e-161 MEF2B MEF2B may be involved in muscle-specific and 9443808
gQIA I ! I ! WA growth factor-related transcription.
= o UMT
7 Tc 1e-153 TBX5 TBXS5 regulates the transcription of ion channel genes 20133910
A E I ?TA and is essential for heart development.
S S S (S5
TG A Q A 1e-149 THRB
ZZAGCT
Small \ ST 1e-77 OLIG2
intestine Q;QQATR | \ C;E
{ :.CT A ATCQ 1e-87 CRX
3 4 AV, 2
GIL Ve 1e-65 ATOH1 Express specificity in adult epithelial cells of the
éﬁﬁic ATgT 9? e gastrointestinal tract
i ~ / - PPARA is key regulator of lipid metabolism and 7
Kidney 21A_A \ TC !! AA TQA 1e-282 PPARA regulates the peroxisomal beta-oxidation pathway of 1208514
YRS SEXDSIINYY N =10 fatty acids.
s A N 1e-277 HNF4A HNF4A binds fatty acids and may be essential for 25409824
gé éA k .ZEC A A A T?-CA e development of the liver, kidney and intestine.
CQIII— 5 1e-248 RARA
E-EI ARCIZEZ
Liver TI CQIIT 3 1e-313 RARA
ff_téA LEER
G c P 1e-283 HNF4A HNF4A binds fatty acids and may be essential for 25409824
gé éA ZEC A AA T(-ELA development of the liver, kidney and intestine.
A A T G 1e-272 ERRA
CeAAGEICAS
Lung GG AA G 1e-119 NKX2.1 NKX2.1 forms a regulatory loop with GRHL2 that 22955271
ég [ T‘?— g g%oerr(g:gt;ii Llfng epithelial cell morphogenesis and
AACCéCTCA 1e-114  NKX2.5
ZERN T Cé
NKX3.1

SASCACTZAS




Tissue Motif P-value TF Brief description Reference
Prefrontal AQCATg T;E 1e-156 QLIG2 OLIG2 is req;]_\reg for u\tirgudendrlucytz and motor 11955448
cortex X | \Js= neuron specification in the spinal cord.
Q T IT 1e-143 NEURO NEUROD1 associates with chromatin to enhancer 18007592
AW C D1 regulatory elements in neurogenesis regulation genes.
TACCA CT ? 1e-123 ATOH1 ATOH1 plays a ru\_e in the differentiation of subsets of 10648228
s neural cells by activating E box-dependent
E_A TA T L transcription.
Spleen A T TT 1e-136 ELF4 ELF4 plays a role in the development and function of 12387738
NK and NK T-cells.
ACTICCLc2L
CCA?ITCCT(F 1le-128  ETV2
AR V3
ACA AA I 1e-123 ETS1 ETS_1 contrals the dif‘fe_rent\at\un, survival and 11909962
b4 proliferation of lymphoid cells.
L=l e -
Testes A 1e-102 MYB MYE plays an important r_o\e in the control of 20484083
CA | | proliferation and differentiation of hematopoietic
Z9NC progenitor cells.
é 1e-88 AMYB AMYB acisas a master regulator of male meiosis by 21750041
laéc TT A A promoting expression of piRNAs
1e-85 THRB
Z5AGGICA
Thymus 1e-247 ETS1 ETS1 controls the differentiation, survival and 11909962
Y ACA A I‘; e proliferation of lymphoid cells.
=G Lt
CC A?ITCCT T 1e-226 ETV2
C 1e-213 FLI1 FLI1 is involved in erythroleukemia induction by 2044959
I;%IICC&% Friend murine leukemia virus (F-MULV).
Whole TT 1e-164 NEURO NEUROD1 associates with chromatinto enhancer 18007592
brain A A CT cC D1 regulatory elements in neurogenesis regulation genes.
T 1e-163 QLIG2 OLIG2 is required for oligodendrocyte and motor 11955448
AQCAT% I ; neuron specification in the spinal cord.
-4 S s
T TT 1e-151 NEURO NEUROG2 is Involved in neuronal differentiation. 14897368
=XuAl cCc G2
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