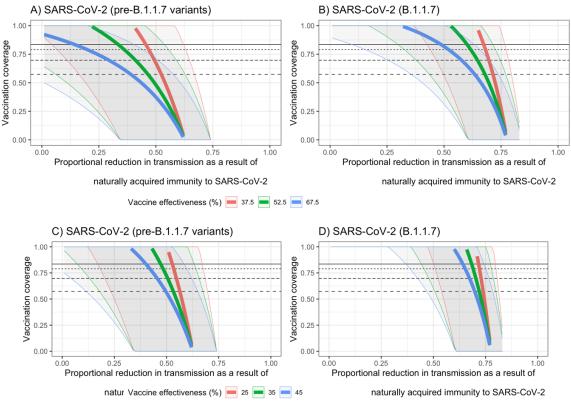
- 1 This supplementary material is hosted by Eurosurveillance as supporting information alongside the
- 2 article "The potential for vaccination-induced herd immunity against SARS-CoV-2 B.1.1.7 variant" on
- 3 behalf of the authors who remain responsible for the accuracy and appropriateness of the
- 4 content. The same standards for ethics, copyright, attributions and permissions as for the article
- 5 apply. Supplements are not edited by Eurosurveillance and the journal is not responsible for the
- 6 maintenance of any links or email addresses provided therein.
- 7
- 8

9	Methods
10	Formula for required vaccine coverage
11	
12	We defined the required coverage for herd immunity, C, as follows:
13	
14	$C = [(1 - 1/R_0) - p]/[(1-p) * V_e],$
15	
16	where R_0 is for SARS-CoV-2, p is the proportional reduction in transmission (due to previous
17	infection), and V_e is the vaccine effectiveness. If R_0 is calculated using an age-structured
18	next generation matrix and vaccination scales susceptibility across this matrix, the herd
19	immunity threshold will still be $1-1/R_0$.
20	
21	Source of vaccine effectiveness estimates
22	
23	We obtained published estimates for the average and 95% upper and lower confidence
24	intervals for vaccine effectiveness against measles ¹ , mumps ¹ , rubella ¹ , varicella ¹ , SARS-
25	CoV-2 ² , influenza A/H1N1 (post-2009), A/H3N2, and B ³ . For SARS-CoV-2, we used data
26	from a study estimating vaccine effectiveness in reducing infection among antibody negative
27	healthcare workers who received two doses of BNT162b2 ⁴ (effectiveness was estimated at
28	86% (95% CI: 76-97%). This compares with an estimate of 83% (76-87%) lower risk of
29	reinfection among healthcare workers following prior infection ⁵ . A recent analysis of UK
30	community infection data ⁶ also estimated a 64% (95% CI: 55–70%) reduction in risk of
31	infection following one dose of ChAdOx1 nCoV-19, and a 45% (33–54%) reduction in risk of
32	transmission if infected after ChAdOx1 nCoV-19 vaccination ⁷ , which would imply a potential
33	reduction in transmission of around 70–85% post-vaccination, because P(transmit
34	exposed) = P(transmit infected) x P(infected exposed). In order to reflect uncertainty in
35	estimates, we generated a set of Monte Carlo samples for each pathogen by fitting the
36	average and upper/lower confidence intervals to a beta distribution and sampling 1,000
37	values.
38	
39	Source of pathogen R ₀ estimates
40	
41	For mumps, rubella, and varicella, we obtained a set of 1,000 samples by bootstrapping a
42	set of pre-vaccination R_0 estimates from various regions ^{8,9} . For measles, SARS-CoV-2
43	variants, and influenza subtypes, we obtained estimates of the average, upper confidence
44	interval and lower confidence interval for each to a lognormal distribution in order to sample

45	1,000 values ^{10–13} . We assumed that transmissibility of SARS-CoV-2 B.1.1.7 was 67% highe	
46	than for pre-B.1.1.7 variants ¹¹ .	
47		
48	Source of age distribution data	
49		
50	Data on the country-specific proportion of the total population aged 0–14 years, and the	
51	income bracket of each country in 2020, was taken from The World Bank ¹⁴ .	
52		
53	Source of sero-prevalence estimates	
54		
55	Seroprevalence studies were obtained from SeroTracker, a dashboard that synthesises	
56	findings from hundreds of global SARS-CoV-2 serological studies ¹⁵ . We aimed to estimate	
57	the seroprevalence in the general population for each study region. Therefore, in an attempt	
58	to reduce selection bias, we only considered prospective households/community studies.	
59	Each seroprevalence study provides information on study site country, sample size,	
60	geographical scope (national, region, local), and the time frame in which samples were	
61	collected. If multiple studies exist for a country within a geographical scope, we consider only	
62	the most recent estimate.	


63 Supplementary Tables

Pathogen	Vaccine effectiveness (%, mean, 95% Cl)	Basic reproduction number (mean, 95% CI)
Measles	96 (72–99)	12.0 (6.0–18.0)
Mumps	86 (65–92)	4.2 (3.6–4.5)
Rubella	89 (58–97)	4.7 (3.4–7.8)
Varicella	95 (92–97)	6.5 (3.3–16.9)
SARS-CoV-2 (pre-B.1.1.7)	86 (76–97)	2.7 (1.5–3.8)
SARS-CoV-2 (B.1.1.7)	86 (76–97)	4.5 (2.5–6.4)
Influenza A/H1N1 (post- 2009)	61 (57–65)	1.4 (1.2–2.0)
Influenza A/H3N2	33 (22–43)	2.1 (1.6–2.5)
Influenza B	54 (46–61)	2.1 (1.6–2.5)

Supplementary Table 1: Assumed values of vaccine effectiveness and basic reproduction

67 number for different pathogens, based on empirical estimates.

75 Supplementary Figures

Prop. over 15 years — High income --- Upper middle income -- Lower middle income -- Low income

76

- 77 Figure S1. Vaccination coverage required to reach herd immunity for pre-B.1.1.7-like (A and
- C) and B.1.1.7-like (B and D) transmission and different levels of vaccine effectiveness
- assuming (in A and B) a reduction of 25% in vaccine effectiveness due to waning immunity,
- 80 and (in C and D) a reduction of 50% of vaccine effectiveness due to warning immunity
- 81 compared to vaccine effectiveness assumptions in **Figure 1b and 1c**.

82

83 References

- 84 1. Di Pietrantonj, C., Rivetti, A., Marchione, P., Debalini, M. G. & Demicheli, V. Vaccines 85 for measles, mumps, rubella, and varicella in children. Cochrane Database of 86 Systematic Reviews vol. 2020 (2020). 87 2. Weekes, M. et al. Single-dose BNT162b2 vaccine protects against asymptomatic 88 SARS-CoV-2 infection. Authorea Prepr. (2021) 89 doi:10.22541/AU.161420511.12987747/V1. 90 3. Belongia, E. A. et al. Variable influenza vaccine effectiveness by subtype: a 91 systematic review and meta-analysis of test-negative design studies. Lancet Infect. 92 Dis. 16, 942–951 (2016). 93 4. Hall, V. J. et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and 94 COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre 95 Prospective Cohort Study (the SIREN Study). SSRN Electron. J. (2021) 96 doi:10.2139/ssrn.3790399. 97 5. Hall, V. et al. Do antibody positive healthcare workers have lower SARS-CoV-2 infection rates than antibody negative healthcare workers? Large multi-centre 98 99 prospective cohort study (the SIREN study), England: June to November 2020. 100 medRxiv (2021) doi:10.1101/2021.01.13.21249642. 101 6. Pritchard, E. et al. Impact of vaccination on SARS-CoV-2 cases in the community: a 102 population-based study using the UK's COVID-19 Infection Survey. medRxiv 103 2021.04.22.21255913 (2021) doi:10.1101/2021.04.22.21255913. 104 7. PHE. One dose of COVID-19 vaccine can cut household transmission by up to half. 105 Press Release https://www.gov.uk/government/news/one-dose-of-covid-19-vaccine-106 can-cut-household-transmission-by-up-to-half (2021). 107 8. Edmunds, W. J., Gay, N. J., Kretzschmar, M., Pebody, R. G. & Wachmann, H. The 108 pre-vaccination epidemiology of measles, mumps and rubella in Europe: Implications 109 for modelling studies. Epidemiol. Infect. 125, 635-650 (2000). 110 9. Nardone, A. et al. The comparative sero-epidemiology of varicella zoster virus in 11 111 countries in the European region. Vaccine 25, 7866-7872 (2007). 112 10. Guerra, F. M. et al. The basic reproduction number (R0) of measles: a systematic review. The Lancet Infectious Diseases vol. 17 e420-e428 (2017). 113 114 11. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage 115 B.1.1.7 in England. Science (2021) doi:10.1126/science.abg3055. 116 12. Fraser, C. et al. Pandemic potential of a strain of influenza A (H1N1): Early findings. 117 Science (80-.). 324, 1557-1561 (2009). 118 13. Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M. & Finelli, L. Estimates of the
- reproduction number for seasonal, pandemic, and zoonotic influenza: A systematic

- 120 review of the literature. *BMC Infect. Dis.* **14**, 480 (2014).
- 121 14. Population ages 0-14 (% of total population) | Data.
- 122 https://data.worldbank.org/indicator/SP.POP.0014.TO.ZS.
- 123 15. Arora, R. K. et al. SeroTracker: a global SARS-CoV-2 seroprevalence dashboard. The
- 124 Lancet Infectious Diseases vol. 21 e75 (2020).
- 125
- 126