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1. Example Chemical Property Prediction Methods

Many groups have developed methods for predicting chemical properties measured in several 
identification platforms including quantitative structure-retention relationship and machine 
learning models to predict liquid chromatography retention times,1,2 combinatorial approaches to 
predict  MS/MS fragmentation patterns,3-5 quantum chemical calculations and artificial neural 
networks for NMR chemical shift predictions,6-9 and classical scattering and machine/deep 
learning to predict CCS for IMS.10-15 Similarly, our group recently developed the In Silico 
Chemical Library Engine (ISiCLE), which is an automated workflow for molecular property 
calculation. It has shown preliminary success for calculating collision cross sections (CCS) and 
NMR chemical shifts.16,17

2. Conformer Definition

We define a conformer as returned by conformer generation tools: Each structure is a conformer, 
regardless of energy or energy minima. This is important in applications like IMS, where any 
valid structure can contribute to the CCS. This is in contrast to the IUPAC definition, where a 
conformer is only a structure that sits at the minimum of a potential energy well. 18 This latter 
definition makes no reference to transition state structures that, although fleeting, are present 
during experiments and impact measured properties such as CCS. 

Table S1. Summary of the small molecule test set. We used a benchmark set of 18 small molecules reported in Colby et al. 
(2019) 17 with masses ranging from 113 to 687 Da. Experimental CCS values for benchmark set adducts ([M+H]+, [M-H]+, or 
[M+Na]+) were obtained using an Agilent 6560 Ion Mobility Q-TOF MS (Agilent Technologies, Santa Clara) with nitrogen 
buffer gas, as described in Zheng et al. 19. This adduct set was also processed through ISiCLE (“Standard” calculation methods) 
to create an initial predicted CCS baseline. Fig. 2 in the main plots the m/z vs CCS for the benchmark set molecules.

Molecule Formula Adduct Mass Experimental CCS Superclass Class
Harmine C13H12N2O +H 212.095 146.033 Alkaloids and derivatives Harmala alkaloids

1-Methylguanosine C11H15N5O5 +H 297.107 168.803 Nucleosides, nucleotides, and analogues Purine nucleosides
Sphingosine C18H37NO2 +H 299.282 185.998 Organic nitrogen compounds Organonitrogen compounds

riboflavin C17H20N4O6 +H 376.138 188.27 Organoheterocyclic compounds Pteridines and derivatives
Mandelonitrile C8H7NO +H 133.053 128.871 Benzenoids Benzene and substituted derivatives

Creatinine C4H7N3O +Na 113.059 133.413 Organic acids and derivatives Carboxylic acids and derivatives
Methyleugenol C11H14O2 +Na 178.099 160.357 Benzenoids Benzene and substituted derivatives

N6-methyladenosine C11H15N5O4 +Na 281.112 170.398 Nucleosides, nucleotides, and analogues Purine nucleosides
Cholic Acid C24H40O5 +Na 408.288 197.349 Lipids and lipid-like molecules Steroids and steroid derivatives

Astilbin C21H22O11 +Na 450.116 212.637 Phenylpropanoids and polyketides Flavonoids
SDGRG C17H30N8O9 +Na 490.214 203.5 Organic acids and derivatives Carboxylic acids and derivatives

Biliverdin C33H34N4O6 +Na 582.248 246.731 Organoheterocyclic compounds Tetrapyrroles and derivatives
Anthranilic acid C7H7NO2 -H 137.048 123.994 Benzenoids Benzene and substituted derivatives

Aminohippuric acid C9H10N2O3 -H 194.069 147.552 Benzenoids Benzene and substituted derivatives
3'-O-methylguanosine C11H15N5O5 -H 297.107 163.776 Nucleosides, nucleotides, and analogues Purine nucleosides

Sucrose C12H22O11 -H 342.116 168.467 Organic oxygen compounds Organooxygen compounds
Naringin C27H32O14 -H 580.179 217.329 Phenylpropanoids and polyketides Flavonoids

PE 16:1/16:1 C37H70NO8P -H 687.484 256.3 Lipids and lipid-like molecules Glycerophospholipids

3. Hardware Architecture and Software Parameters

RDKit, CREST, and software used in the ISiCLE pipeline (AMBER, NWChem, MOBCAL-
SHM) were run on PNNL supercomputing platforms, Cascade and Constance. Cascade has 
1,440 compute nodes with 16 Intel Xeon cores (E5-2670, 2.6 GHz), 128 GB memory per node, 
and 14Gb/s data rate per lane (FDR InfiniBand). Constance has 464 dual socket compute nodes 
with 12-core Intel Haswell processors (E5-2670v3, 2.3 GHz), and 64 GB of DDR3-1600 
memory per node.
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CREST (v2.7.1):
Under the iMTD-GC workflow, CREST uses a mixture of meta-dynamics (MTD), MD, z-matrix 
crossing, and other methods to iteratively search for low energy conformers and fill out their 
conformations by finding their rotamers (conformers in this case being understood under the 
IUPAC definition, i.e. a conformer is only the lowest energy structure of a potential energy 
well). We used the following parameters and other default options.

GFN2-xTB (very tight or “vtight” optimization level)
z-matrix sorting
6 kcal/mol energy threshold
40 ps MD simulations with 5 fs time step
and other default options 

RDKit (v 2019.03.1):
RDKit randomly generates conformers using distance geometry, where constraints bound the 
minimum and maximum pairwise distances between any two atoms 20. We used the default 
parameters with and without UFF optimization.

MOBCAL-shm: 
SEED_I2 5013489
BUFFER_GAS NITROGEN
BUFFER_GAS_MASS 28.0134
TEMPERATURE 300
IPR 1000
ITN 10
INP 48
IMP 1024
NUM_THREADS 24

NWChem: 
XC: B3LYP
Basis: * library 6-31G*
task dft energy

AmberTools17, Sanders: 
As described by Colby et al. (2019) 17
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Fig. S1 Single point convergence plot on conformer variability (RMSD) for PE 16:1/16:1, the most flexible molecule in our set. 
At sample size S=500, the convergence plot shows the thoroughness of a MC simulation at increasing MC iterations. We used 
10,000 which we found to be sufficient.

4. Monte Carlo Sampling Across Versus Within Cycles

Because simulated annealing works in cycles, conformers were sampled from cycles using two 
different methods to distinguish possible cycle correlation. As shown in Fig. S3, in one method 
the cycles were effectively pooled together by sampling across cycles. One conformer was 
randomly selected from each of the 1000 cycles for a total of 50 conformers. Their RMSD was 
then calculated for every conformer pair and then averaged. The second method was to keep the 
annealing cycles isolated, or to select all of the 50 conformers within a cycle, calculate their 
pairwise RMSD, and average the result. MC was then performed on these averages to simulate 
generating random cycles. Indeed, the lower average RMSD in Fig. S3 for the within cycle 
method, as well as the clustering shown in Fig. S2, shows the conformers of a single cycle are, in 
some cases, more correlated with each other than they are with conformers of another cycle, as 
expected. 

For BW and LE on CCS, there was no noticeable difference between sampling across cycles vs 
within cycles. SA would occasionally have a wider standard deviation (as shown in Fig. S4) 
when sampling within cycles, suggesting conformational space is more thoroughly covered when 
sampling across cycles. We confirm it is best to sample across many cycles to achieve the higher 
variability between conformer geometries.
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Fig. S2 A particularly distinct example of four sequential AMBER simulated annealing cycles clustering separately. 
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Fig. S3 Monte Carlo convergence plots of the RMSD between conformer geometries for 18 small molecules. The left shows 
random sampling across AMBER simulated annealing cycles, or treating the whole conformation as a single pool. The right 
shows sampling within cycle, or sampling a number of whole cycles together.
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Fig. S4 Monte Carlo convergence plots of BW, LE, and SA demonstrating a lower standard deviation (higher precision) for SA 
when sampling across cycles (left) than when sampling within cycles (right). 

5. Similarity Downselection Description

The goal of similarity downselection (SDS) is to sample conformational space with fewer 
conformers while still being representative of the larger population, thus saving on 
computational expense. Pairwise RMSD between conformations are used as a reciprocative 
similarity metric – the smaller the RMSD, the greater the similarity. SDS downselects based on 
this structural similarity to choose a subset of representative similar and most dissimilar 
conformers.

We developed a heuristic algorithm for performing SDS and created an open source Python 
package that can be found at https://github.com/pnnl/sds. The package includes relevant 
functions for performing SDS on conformers, but the SDS algorithm can also be generalized to 
any set of items where the items can be described as arrays whose elements are composed of the 
pairwise relations between the item in question and all other items of the set. Here, we employed 
the SDS algorithm to find the set of the n conformers most dissimilar from each other. To choose 
the most similar conformer, the pairwise RMSD between all conformers was summed, and the 
conformer with the smallest total RMSD was considered the most similar conformer.

https://github.com/pnnl/sds
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6. Molecular Property Correlations

Fig. S5 Heat map of molecular properties (y-axis) correlated with RMSD MC convergence properties and exact molecular weight 
(x-axis), showing the r2 correlation with its associated p-value. 
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Fig. S6 Volcano plot of MC convergence properties (converged value, convergence point, maximum standard deviation) 
correlated against calculated molecular properties. The plot shows possible statistical significance of these correlations, although 
the p-value of 0.05 was arbitrarily chosen, and having a lower p-value does not necessarily mean higher statistical significance 
once the target p-value threshold his crossed. Interestingly, we note the one molecular property most negatively correlated with 
all three MC convergence properties (metrics of the variability between a molecule’s conformers) was the second acidic pKa site 
being more weakly acidic. 

Table S2 CCS values for various conformer selection methods. See Table S3 for description of columns.

Molecule BW LE SA ET 5 ET 2 ET 1 ET 0.5 CREST ISiCLE Best Combo Experimental
Harmine +H 149.2 148 149.7 149.4 149.1 149.3 149.3 149.2 148.7 149.7 146

1-Methylguanosine +H 164.5 164.4 166.7 165.4 165 164.5 164.5 164 165.7 165.8 168.8
Sphingosine +H 201.8 207.4 207.4 204.9 202.8 202.8 196.8 170.9 180.6 184.5 186

riboflavin +H 192.8 193.1 197.3 193.7 193.9 191.6 191.6 182.4 192.9 193.4 188.3
Mandelonitrile +H 129 128.5 130.4 130.3 129.7 128.5 128.5 131.3 127.1 129.2 128.9

Creatinine +Na 119.4 119.5 119.7 119.3 119.3 119.4 119.6 118.7 118.9 119.7 133.4
Methyleugenol +Na 143.3 143 143 143 143 143.4 144.2 139.4 141.8 143.1 160.4

N6-methyladenosine +Na 166.8 168 165.1 165.7 166.2 166.7 167.3 164.9 166 165.5 170.4
Cholic Acid +Na 186.5 186.6 186.9 186.2 186.4 186.7 187.4 183.6 185.8 187.1 197.3

Astilbin +Na 206.5 208.3 201.2 202.7 204 204 208.3 202.8 200.9 203.3 212.6
SDGRG +Na 227.5 227.5 218.4 227.5 227.5 227.5 227.5 209.6 226.6 224.3 203.5

Biliverdin +Na 256.8 256.4 251.8 250 263.4 256.4 256.4 258.3 257.6 265.2 246.7
Anthranilic acid -H 127.8 127.7 128.1 127.9 127.7 127.6 127.7 126.7 127.9 126.8 124

Aminohippuric acid -H 154.7 154.7 155.4 154.7 154.6 154.7 154.7 152.3 152.1 157.1 147.6
3'-O-methylguanosine -H 169 167.8 176.1 169.4 169.2 169.4 169.4 168.7 168.7 171.9 163.8

Sucrose -H 163.2 163.5 166.3 165.3 163.1 163.1 163.1 157.6 163.4 162.9 168.5
Naringin -H 238.8 238.1 235.9 238.8 240.5 238.1 238.1 219.3 240.9 234.7 217.3

PE 16:1/16:1 -H 292.4 292.4 309.7 305.2 291.9 291.9 291.9 NaN 311.3 314.5 256.3
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Table S3 Mean absolute percent error of various conformer selection method results relative to ISiCLE CCS. The ISiCLE 
method selects the most similar and two most dissimilar conformers out of 10 AMBER simulated annealing cycles (for a total of 
30 conformers), applies DFT geometry optimization, and averages the CCS with Boltzmann weighting. Boltzmann weighting 
(BW), lowest energy (LE), simple average (SA), and simple averaging under energy thresholds 5, 2, 1, and 0.5 kcal/mol (ET 5, 2, 
1, 0.5) were applied to 50k AMBER conformers and using DFT energies. CREST is the single lowest energy CREST conformer. 
The best combo is the statistical best combination we found on the AMBER conformers for the 18 molecules—10 AMBER 
cycles, selecting the most similar and 10 most dissimilar set under an AMBER energy threshold of 10 kcal/mol, and choosing the 
lowest energy according to the conformer’s DFT energy.

Molecule BW LE SA ET 5 ET 2 ET 1 ET 0.5 CREST ISiCLE Best Combo
Harmine +H 0.33 0.48 0.70 0.49 0.27 0.45 0.44 0.35 0.66 0.48

1-Methylguanosine +H 0.69 0.75 0.66 0.16 0.39 0.72 0.72 1.01 0.10 0.75
Sphingosine +H 11.75 14.83 14.85 13.47 12.32 12.30 8.95 5.36 2.13 14.83

riboflavin +H 0.10 0.10 2.26 0.40 0.51 0.69 0.69 5.46 0.23 0.10
Mandelonitrile +H 1.54 1.09 2.59 2.54 2.08 1.09 1.09 3.32 1.63 1.09

Creatinine +Na 0.41 0.56 0.66 0.35 0.34 0.45 0.65 0.17 0.67 0.56
Methyleugenol +Na 1.10 0.89 0.86 0.88 0.86 1.17 1.69 1.66 0.96 0.89

N6-methyladenosine +Na 0.51 1.22 0.54 0.17 0.14 0.40 0.77 0.66 0.32 1.22
Cholic Acid +Na 0.41 0.42 0.61 0.21 0.33 0.47 0.89 1.15 0.72 0.42

Astilbin +Na 2.76 3.68 0.14 0.88 1.55 1.55 3.68 0.94 1.17 3.68
SDGRG +Na 0.42 0.42 3.60 0.42 0.42 0.42 0.42 7.51 1.02 0.42

Biliverdin +Na 0.33 0.47 2.28 2.97 2.22 0.47 0.47 0.24 2.95 0.47
Anthranilic acid -H 0.07 0.09 0.16 0.03 0.16 0.23 0.16 0.89 0.80 0.09

Aminohippuric acid -H 1.66 1.70 2.17 1.66 1.61 1.70 1.70 0.11 3.25 1.70
3'-O-methylguanosine -H 0.20 0.50 4.40 0.45 0.32 0.43 0.43 0.02 1.92 0.50

Sucrose -H 0.11 0.06 1.78 1.17 0.16 0.16 0.16 3.52 0.29 0.06
Naringin -H 0.86 1.14 2.07 0.86 0.15 1.14 1.14 8.95 2.56 1.14

PE 16:1/16:1 -H 6.06 6.07 0.51 1.97 6.24 6.24 6.24 NaN 1.04 6.07
MAPE 1.63 1.91 2.27 1.62 1.67 1.67 1.68 2.43 1.25 1.91

Table S4 Same Table S3 except with mean absolute percent error calculated relative to experimental CCS.

Molecule BW LE SA ET 5 ET 2 ET 1 ET 0.5 CREST ISiCLE Best Combo
Harmine +H 2.14 1.32 2.52 2.31 2.08 2.27 2.26 2.17 1.81 2.48

1-Methylguanosine +H 2.54 2.59 1.22 2.02 2.24 2.57 2.57 2.86 1.86 1.76
Sphingosine +H 8.50 11.49 11.51 10.17 9.06 9.04 5.78 8.11 2.90 0.83

riboflavin +H 2.38 2.59 4.80 2.89 3.01 1.77 1.77 3.12 2.48 2.72
Mandelonitrile +H 0.13 0.32 1.16 1.11 0.66 0.32 0.32 1.88 1.39 0.22

Creatinine +Na 10.53 10.40 10.31 10.59 10.60 10.51 10.32 11.06 10.90 10.31
Methyleugenol +Na 10.62 10.80 10.82 10.81 10.83 10.55 10.09 13.06 11.59 10.74

N6-methyladenosine +Na 2.10 1.40 3.12 2.76 2.45 2.20 1.84 3.24 2.59 2.90
Cholic Acid +Na 5.48 5.46 5.29 5.66 5.55 5.42 5.02 6.95 5.86 5.19

Astilbin +Na 2.90 2.03 5.37 4.67 4.04 4.04 2.03 4.62 5.51 4.40
SDGRG +Na 11.81 11.81 7.34 11.81 11.81 11.81 11.81 2.99 11.34 10.20

Biliverdin +Na 4.08 3.93 2.05 1.32 6.74 3.93 3.93 4.67 4.42 7.50
Anthranilic acid -H 3.04 3.02 3.28 3.14 2.95 2.87 2.95 2.19 3.11 2.29

Aminohippuric acid -H 4.82 4.86 5.34 4.82 4.77 4.86 4.86 3.22 3.11 6.46
3'-O-methylguanosine -H 3.20 2.48 7.52 3.46 3.32 3.43 3.43 3.01 2.99 4.96

Sucrose -H 3.13 2.97 1.29 1.88 3.17 3.17 3.17 6.43 3.02 3.31
Naringin -H 9.88 9.57 8.54 9.88 10.67 9.57 9.57 0.91 10.83 7.99

PE 16:1/16:1 -H 14.10 14.09 20.84 19.07 13.88 13.88 13.88 NaN 21.46 22.72
MAPE 5.63 5.62 6.24 6.02 5.99 5.68 5.31 4.73 5.96 5.94

Table S5. Shows at which Sanders (AmberTools17) simulated annealing cycle the nth lowest energy conformer was generated for 
n=1-10. The maximum number of cycles generated for this project was 1000. Based on this data it is reasonable to assume new 
low energy conformers would be generated past 1000 cycles.

AMBER cycles which generated the nth lowest energy conformer 
Molecular Adduct 1st LE 2nd LE 3rd LE 4th LE 5th LE 6th LE 7th LE 8th LE 9th LE 10th LE

Harmine 765 832 903 47 767 798 814 45 703 776
1-Methylguanosine 145 285 922 145 312 490 147 486 685 81

Sphingosine 362 449 656 947 479 273 92 180 991 60
riboflavin 343 66 442 934 501 781 303 792 87 134

Mandelonitrile 152 975 649 972 462 720 348 160 223 785
Creatinine 198 944 3 565 761 162 594 951 374 926

Methyleugenol 234 292 580 865 902 612 62 655 997 544
N6-methyladenosine 409 583 409 380 202 975 181 560 563 176
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Cholic Acid 117 955 789 246 766 246 190 29 418 658
Astilbin 704 594 574 866 361 854 83 494 11 133
SDGRG 422 815 283 50 521 202 34 152 822 206

Biliverdin 590 95 505 351 986 406 590 641 491 224
Anthranilic acid 547 644 652 655 922 227 374 259 120 930

Aminohippuric acid 366 10 607 733 643 930 372 718 882 583
3'-O-methylguanosine 114 31 708 434 635 929 541 249 754 633

Sucrose 316 540 117 241 630 505 960 37 77 540
Naringin 153 664 621 801 681 663 39 490 328 338

PE 16:1/16:1 398 870 400 728 407 311 219 227 705 883
Average 352 536 546 553 608 560 330 396 513 478

stdev 199 336 243 322 220 282 273 284 324 311
Max 765 975 922 972 986 975 960 951 997 930
Min 114 10 3 47 202 162 34 29 11 60

7. Monte Carlo Simulations and CCS vs Energy Space
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Fig. S7 MC simulation convergence plots on CCS (left) for SA, BW, and LE, and how they relate to CCS vs energy space (right). 
Black and gray represent standard deviation from the average (pink). SA converges to the CCS where the conformers are most 
dense in the CCS versus energy space, BW convergences to the average of low energy conformers or clusters of conformers, and 
LE converges to the single lowest energy CCS after 50k conformers are selected.

Fig. S8 RDKit with UFF optimization on ~6k mandelonitrile [M+H]+ conformers. Left gray cluster shows ~50k DFT 
geometry optimized AMBER structures, right gray cluster shows ~50k RDKit without UFF, and middle clusters with density 
coloring indicate the ~6k RDKit structures with UFF optimization. In this example, UFF optimization clustered the RDKit 
conformers into tight energy intervals, which would likely greatly increase precision for BW, LE, and other low energy 
dependent conformer selection methods. However, the UFF conformers have energies much higher than the DFT geometry 
optimized conformers, and different CCS as well, making it unclear how this affects accuracy.
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Fig. S9 MC convergence plots on CCS using three sampling techniques (SA, BW, LE) for conformers generated in AMBER and 
the same AMBER conformers after a DFT geometry optimization for mandelonitrile [M+H]+, creatinine [M+Na]+, and sucrose 
[M-H]-. Note that for sucrose, only about 25k of the 50k AMBER conformers were DFT geometry optimized here.
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Fig. S10 MC convergence plots on CCS applying SA under 5, 2, 1, and 0.5 kcal/mol energy thresholds. Black represents standard 
deviation from the average (pink).
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Fig. S11 Diagram of conformer selection and down selection methods for all molecules in the test set. Simple average (SA), 
lowest energy (LE), Boltzmann weighting (BW), energy threshold (ET), and similarity down selection (SDS). SA shows 50 
randomly selected conformers, BW is shaded based off real weighted values, ET is a 5 kcal/mol threshold, and SDS shows the 
one most similar and 49 most dissimilar conformers. 
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8. Using MD vs DFT energy on MD structures

Fig. S12 Comparison of run times for NWChem energy optimization on MD structures (node minutes), NWChem geometry 
optimization (node minutes), MOBCAL-shm (node minutes), and AMBER simulated annealing (averaged per conformer, wall 
minutes).

Table S6 Average and range of runtimes for NWChem (node), MOBCAL-shm (node), and AMBER (wall). 

NWChem energy NWChem geom opt MOBCAL-shm AMBER sim. anneal.

mean 3.61 209.73 9.47 0.06

stdev 6.07 254.35 3.15 0.03

max 25.29 868.93 15.03 0.11

min 0.11 5.82 5.27 0.03

Fig. S13 Comparing CCS vs energy space for MD and DFT calculations. Top row: AMBER conformers with MD energies 
relative to the minimum energy. Middle row: DFT geometry optimized and non-optimized AMBER conformers with DFT 
energies, relative to the minimum energy of both sets. There are 30 DFT geometry optimized conformers for all molecules except 
for mandelonitrile and creatinine which have about 50k and sucrose which has about 25k. Bottom row: DFT vs MD energy 
correlations. 

9. Limitations of the study

- The RMSD for SDS and geometry variability were calculated by excluding the non-backbone 
hydrogens. However, it appears even rotating a methyl group can lead to significantly different 
CCS calculations, and this appears to contribute to the CCS range of DFT geometry optimized 
conformers.

- Duplicate or nearly identical conformers generated by chance may give those conformers more 
weight than they should when Boltzmann weighting. This is a general problem for conformer 
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generation tools like AMBER that don’t screen for duplicate conformers. Tools like CREST 
check for this duplicity. 

- The stereochemistry of generated conformers was spot checked. Differences in stereochemistry 
can lead to differences in CCS and energy. We recommend using automated checking software, 
such as Bond Locator Utilizing Electronic Structure (BLUES, 
https://github.com/quantum2classical/blues) in conjunction with smiles canonicalizers. 

10. Conformer selection analyses with AMBER energies

The following are example figures with the original AMBER energies instead of DFT energies, 
which were calculated on the AMBER structures. DFT energies were found to have better 
correlation with the conformers after DFT geometry optimization.

Fig. S14 CCS vs energy landscapes for 50k AMBER generated conformers for creatinine [M+Na]+, sucrose [M-H]-, PE 
16:1/16:1 [M-H]- respectively. Highlighted are the most similar (dashed) and two most dissimilar (solid) conformers chosen 
heuristically with a structural RMSD metric.
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Fig. S15 MC convergence plots on CCS for harmine [M+H]+.

Fig. S16 MC convergence plots on CCS using three sampling techniques (SA, BW, LE) for conformers generated in AMBER, 
RDKit, and the AMBER conformers after a DFT geometry optimization for mandelonitrile [M+H]+.

Fig. S17 MC convergence plots on CCS for mandelonitrile [M+H]+ for 5, 2, 1, and 0.5 kcal/mol energy thresholds.
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