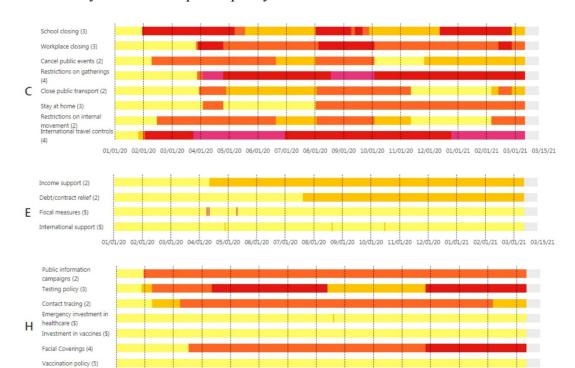

Multimedia Appendix 1

 Table S1. The information of hyperparameters, packages and function code for each


 model

Models	Hyperparameter	Library Package and Code
Autoregressive	Returns best ARIMA	library(forecast)
Integrated	model according to	auto.arima(y,)
Moving	either AIC, AICc or	Arima(y,
Average	BIC value.	order = $c(0, 0, 0)$,
		seasonal = c(0, 0, 0),
	e.g. Greece data	xreg = NULL,
	order = $c(5, 2, 2)$	include.mean = TRUE,
	seasonal = $c(0, 0, 2)$	include.drift = FALSE,
		include.constant,
	lambda="auto"	lambda = model\$lambda,
		biasadj = FALSE,
	frequency $= 14$	method = $c("CSS-ML", "ML", "CSS")$,
		model = NULL,
		x = y,)
Feedforward		library(forecast)
Neural Network		nnetar(y,
		p,
	NNAR(1,1,50)	$\mathbf{P}=1,$
	p=1, P=1, size=50	size,
		repeats = 20,
	maxit=100	xreg = NULL,
		lambda = NULL,
	frequency $= 14$	model = NULL,
		subset = NULL,
		scale.inputs = TRUE,
		x = y,)
Multilayer		library(nnfor)
Perceptron	m = frequency = 14	mlp(y, m = frequency(y), hd = NULL, reps = 20, comb
Neural		= c("median", "mean", "mode"), lags = NULL, keep =
Networks	rep=20	NULL, difforder = NULL, outplot = c(FALSE,
(MLPs)		TRUE), sel.lag = c(TRUE, FALSE), allow.det.season
	hd=c(5,5,5)	= c(TRUE, FALSE), det.type = c("auto", "bin", "trg"),
		xreg = NULL, xreg.lags = NULL, xreg.keep = NULL,

		hd.auto.type = c("set", "valid", "cv", "elm"), hd.max =
		NULL, model = NULL, retrain = $c(FALSE,$
		TRUE),)
Long	$V_{abara} = 1$	
Long	$X_{shape2} = 1$	library(caret)
Short-term	$X_{shape3} = 1$	library(keras)
Memory	$batch_size = 1$	library(tensorflow)
(LSTM)	units $= 1$	$dim(x_train) \le c(length(x_train), 1, 1)$
	scaler = $c(0, 3316)$	$batch_size = 1$
		units $= 1$
		<pre>model <- keras_model_sequential()</pre>
		model%>%
		layer_lstm(units, batch_input_shape = c(batch_size,
		X shape2, X shape3), stateful= TRUE)%>%
		layer dense(units = 1)
		#Compile the model
		model %>% compile(
		loss = 'mean_squared_error',
		optimizer = optimizer_adam(lr= 0.02, decay =
		1e-6), $metrics = c('accuracy'))$
		Epochs = 50
		for(i in 1:Epochs){
		model %>% fit(x train, y train, epochs=1,
		batch size=batch size, verbose=1, shuffle=FALSE)
		model %>% reset states()
		}

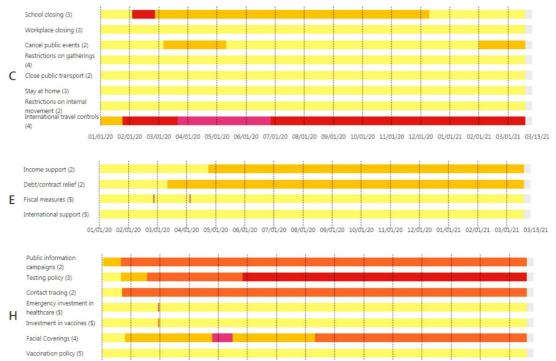


Figure S1. The dynamic heatmap with policy measures for New Zealand

01/01/20 02/01/20 03/01/20 04/01/20 05/01/20 06/01/20 07/01/20 08/01/20 09/01/20 10/01/20 11/01/20 12/01/20 01/01/21 03/01/21 03/01/21 03/15/21

Figure S2. The dynamic heatmap with policy measures for Vietnam

Figure S3. The dynamic heatmap with policy measures for Taiwan

01/01/20 02/01/20 03/01/20 04/01/20 05/01/20 06/01/20 07/01/20 08/01/20 09/01/20 10/01/20 11/01/20 12/01/20 01/01/21 02/01/21 03/01/21 03/15/21