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Supplementary Fig. 1a FACS gating strategy for sorting XO4" and XO4" microglia, presented
in Fig. le, i, j and Fig. 2. b, Methoxy-XO4 labels the core of 6E10" plaques, representative
image from n = 6 mice. Scale: 10 um ¢, Immunofluorescence image of brain sections from 6m
WT and 5xFAD mice Methoxy XO4, the phagosome marker CD68 and microglia marker Ibal,
representative from n = 5 mice per genotype, staining performed independently twice with
similar results. Scale: 10 um d, Hierarchical clustering using ward.D2 linkage and Euclidean
distance of bulk RNA-seq data.



Supplementary Fig 2

a b

X04 age'ow XO4hish quadrant agehigh XO4hish quadrant
- Gene is not-DE w.r.t. age - Gene is DE w.r.t. age (4mvs 1m)
- Gene is DE w.r.t. XO4 - Gene is DE w.r.t. XO4 (XO4+vs X04-)
batch - I /
. -
B8 region SX |
p= x A H Gene P
© 5 & 107)% D:nsny Each point is a gene
3 age . ° 2 wgn - Density of genes
o go F I reflected by contour
g § 104
genotype I 52 a
S § 17
sex ‘ 67 : PR o agehigh XO4'ow quadrant
- Geneis DE w.r.t. age
Gene score 4m > 1m !
0 2000 4000 (Gene score for age) - Gene is not-DE w.r.t. XO4
Number of genes
g Gene score = abs(LFC) x —log,,(FDR)
[ 0.01 <FDR<=0.1 - Higher the gene score, the gene is
| FDR <= 0.01 more differentially expressed
c d e
H2-Ab1 DE between DE between DE between
40 4mvs 1m 6mvs 1m X04+ vs XO04
we-ia 185 UP in 4M 40 258UPIn6M 0| ioresosoz Tyeop 1092 UP in XO4+
139 DOWN oney 207 DOWN " Gm3z098 1085 DOWN
N 24100p3L11Rik
%0 H2-Aa Tulp2’ Crybb1 px:!fcrl
o« 0@ 30 : o Neurod1 * Ctsb"Cclé
[=] [=) o 40 . Hifta
w ™ ™ Retnlg Ner3-ps Syngrt Apbb2
o - ° o AC122382.2 Trhemite
=4 1= = Gm43537 Maf? i
<) o <) 587, RfsS
N Gm12724 22 n 20 Gm22154 Lyz2 n "
Gm12409 A Gma4gs1 Ifitm3 .
Keni13/Gm24gs4 : G".”;?Tsxlm 20
A2 N10Rik it m . Gm13280 -Gm31363 2
1010 . szgggﬁs 10 Ifitm3 G 222:5 10 u ,,ne/rxs— nenosa :
Vs - Anxas o25703 Anxas
"\\ AN . Gm3zizg , * . |ga%$st7 _—
- \..\_ . f’satl AXI L e
ol iR
0 0 s R 0
-20 0 20 -20 0 20 -20 0 20
log, Fold Change log, Fold Change log, Fold Change

® X0O4
O4m
O6m



Supplementary Fig. 2a, The number of genes for which expression levels could be explained
by each covariate in bulk RNA-seq data. b, cartoon showing how to interpret gene cytometry
plots in Fig. 1f-g. c-e, Volcano plots representing logioFDR on the y axis and log> Fold change
on the x axis show significant gene expression changes (red, upregulated; blue, downregulated,
logi0FDR<0.01 between ¢, 4m and Im microglia, d, 6m and Im microglia, and e, XO4" and
XO04" microglia. f, Overlap between DEGs (abs(LFC)>1 and FDR<0.05) for (i) XO4" vs X04"

, (1) 4m vs Im and (iii) 6m vs Im.
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Supplementary Fig. 3a, Overlap between microglial sensome genes and XO4" genes (bulk
RNA analysis), p=6.1x10"" by hypergeometric distribution test. b-¢, Venn diagram showing
overlap between microglial bulk gene expression signatures associated with XO4" microglia
and other reported microglial signatures b, ' or ¢, * d-e, Heatmap of enriched KEGG
pathways in the microglial populations identified in each study d, ' or e, * compared to bulk
gene expression signatures associated with XO4" microglia, colored by -log,,(adjusted

p-value).
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Supplementary Fig. 4 Scatter plot of DEPs and DEGs between XO4+ and WT groups. The

linear regression and 95% confidence intervals are shown.
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Supplementary Fig. 5a-c, To examine the heterogeneity inside the XO4" cell population, we
employed dimensionality reduction representation (viSNE®) on our FACS datasets (a). We
labelled myeloid cells with a subset of 6 microglial sensome markers® including LOAD risk
factors CD337 and TREM2® that regulate microglial AB phagocytosis®™'’. b, the median
fluorescence intensity (MFI) of CD115, CD33 and TREM2 in 6m 5xFAD FACS-gated XO4
compared to XO4" microglia, pooled males and females, n=14 5xFAD mice. XO4" labeled
microglia revealed uniformly high expression of CD33, TREM2 and the Csfl receptor,
CD115 (**** CDI115 p=6.5x10°, CD33 p=8.9x10"", TREM2 p=3.0x10 compared to XO4"
microglia by 2-tailed paired t-test, df=13, t=7.249, 18.69, 7.792, respectively). ¢, ViSNE,
representative of n=3 mice per genotype, of myeloid cells isolated from WT (top) and 5xFAD
(bottom) 6m male mice. Microglia (CD11b*CD45"°CX3CR1") are colored for expression of
CDl11b, CD45, CX3CR1, Methoxy-X04, CD115, CD33 and TREM?2, whereas remaining
myeloid cells are black for clarity. The grey cells are microglia from the other genotype. All
microglia homogeneously expressed CD11b, CX3CR1 and low levels of CD45, whereas
expression of microglia-specific proteins, CD115, CD33 and TREM2 was highly variable in
individual WT and 5xFAD XO4 microglia. d-e, Venn diagram showing overlap between d,
the microglial gene expression signature associated with XO4" or e, ageing microglia from
our study and the DEGs induced by sorting artifacts, previously reported in *!'. p-values of
the overlap are 0.6556427 and 0.9379955, respectively, by hypergeometric test. f, Venn
diagram showing overlap between single cell and bulk gene signatures associated with XO4"
microglia and g, GO enrichment results of the overlapping (344 genes) and bulk or single-cell

specific signature genes associated with XO4" microglia.
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Supplementary Fig. 6a-d, Pairwise comparisons of DEGs between '? and this study (a-b),
and ' and this study (c-d). Scatter plot of DEGs (false discovery rate, FDR<0.05) with XO4"
and XO4 specific DEGs from single cell analyses with highest LogFC highlighted. Genes
with concordant upregulation between each 2 datasets examined are highlighted in red,
concordant downregulation are highlighted in orange. DEGs with discordant regulation are
highlighted in green, and genes that are DE in XO4+ vs XO4- but not in the comparison
dataset are highlighted in blue. e, Venn diagram showing the overlapping and distinct DEGs
across the 3 datasets and GO enrichment results of the overlapping (61 genes) and
dataset-specific gene sets i.e., XO4" vs XO4 (286 genes), DAM vs homeostatic (838 genes),
and AD vs WT (119 genes).
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Supplementary Fig. 7 a-b, Log:CPM Expression Heatmap of top 20 trajectory-specific DE
based on absolute log Fold Change (24M WT vs 6M WT and XO4" vs XO4") ordered by a,

age pseudotime or b, phagocytosis pseudotime, respectively.
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Supplementary Fig. 8 a-b, Slingshot pseudotime trajectory analysis of 6M WT, 24M WT,
6M 5xFAD X04 and 6M 5xFAD XO04" microglia. ¢ Slingshot pseudotime trajectory analysis
of 6M, 9M, 12M CX3CRI1°" and 6M WT, 24M WT, 6M 5xFAD XO4 and 6M 5xFAD
XO04" microglia. The lower, middle, and upper hinges represent the lower quartile, median,
and upper quartile respectively while the upper and lower whiskers extend + 1.5 times of the
interquartile range from the corresponding hinges. d-e, Violin plots showing Log,CPM

expression of d, Stage I DAM and e, Stage Il DAM genes' in a priori cell clusters.
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Supplementary Fig. 9a, FACS gating/sorting strategy for data presented in Figure 3.
Heatmap of gene expression in microglia isolated from OHSCs visualized with a
k-nearest-neighbor graph rendered using a force directed layout”, colored by log2

transformed ACt values of selected genes upregulated in b, homeostatic microglia or c,

NIAD4" (X0O4") microglia.
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Supplementary Fig. 10a, Representative 3D reconstruction of confocal z-stacks showing
PSD95 internalized within 6m WT, 5xFAD XO04 or 5XxFAD XO4" microglia cells (scale bars
= 15 pm). b, the relationship between synapse density and distance from plaques as
calculated by IMARIS from hippocampal z-stack images from n = 5 5XFAD animals. Data
are expressed as mean + SEM of volume of PSD935 staining per mm® within regions at each
distance from the plaque. p=0.017 by 1-way ANOVA and Dunnet’s multiple comparison test.
¢, pySCENIC regulon analysis showing that Hifla, EIf3 and Hdac2 are predicted to control
the XO4" gene regulatory network, and the AD and Cluster 1 network from ' are predicted to
be controlled by Irf8, Arnt2, Smarcbl, Mitf, Hifla, Bhlhe41, Creb3l2, Atf3, Bhlhe40 and
Mef2d. Clustering was performed on '* (Synapse DOI: 10.7303/syn21125841) with a
resolution of 0.4 after filtering for microglia and preprocessing. For each cell, pySCENIC
outputs a binary score for each regulon with 1 indicating on state and 0 indicating off state.
The regulon activity score plotted here is the percentage of cells (within each group) with the
regulon turned on. The top 20 regulons in terms of variance across a priori cell group labels
are visualised. d, FACS gating strategy for sorting ShARNA Hifl/a.mCherry and mCherry BV2
cells that were AF488-fAB" or AF488-fAp, presented in Fig. 4f. e, Representative FACS
histograms showing fluorescence intensity for synaptosomes in mCherry and shRNA Hifla
mCherry BV2 cells. AF488-fAB" cells are gated on AF488 fluorescence. f, The proportion of
cells that are phagocytic for fluorescent fAPB following transduction (or not) with a
dox-inducible Hifla overexpression construct and treatment with fAp. Data are expressed as
fold change in % phagocytosis relative to fAB-treated dox -ve controls (mean + SEM, 4
independent experiments, *p=0.038 by 2 tailed paired t-test, t=3.536, df=3).
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Supplementary Fig. 11a, The proportion of cells in each cluster from each study, and b,
bubble plot showing the proportion of cells in each cluster that are from AD, mild AD, no
AD patients in each study. The size of the circle represents the proportion of patients in the
group with any cells in that cluster, and the color of the circle represents the median
percentage of cells in the cluster for patients with any cells in that cluster. ¢, UMAP
projection of single microglia nuclei from control and AD patient entorhinal and frontal

cortex samples, combined by integrating data from '>!416

, comprising 102 patients.
Clustering and analysis of gene expression signature scores is performed using Seurat v3.
UMAP projection is colored by each gene expression signature score. d, box plots showing
the proportion of patient microglia within Cluster 10 (left) and Cluster 11 (right) for patients
with microglia in Cluster 10 (Grubman: n = 12 patients, Leng: n = 3 patients, Mathys n = 23
patients, Zhou: n = 16 patients) or 11 (Grubman: n = 8§ patients, Leng: n = 9 patients, Mathys
n = 29 patients, Zhou: n = 27 patients), respectively, separated by study and diagnosis
(p=0.035, Wilcoxon test with No AD as reference). The lower, middle, and upper hinges
represent the lower quartile, median, and upper quartile respectively while the upper and
lower whiskers extend + 1.5 times of the interquartile range from the corresponding hinges.
e, box plots showing the distribution of each gene expression signature score, split by study,
disease diagnosis and TREM2 genotype (Wilcoxon test with No AD as reference; n = 101
patients, 1 patient classified as other dementia excluded). The lower, middle, and upper
hinges represent the lower quartile, median, and upper quartile respectively while the upper
and lower whiskers extend + 1.5 times of the interquartile range from the corresponding

hinges. f, Overlap between Cluster 10 DEGs and mouse microglia gene expression

signatures. biomaRt was used for converting mouse gene symbols to human gene symbols.
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Supplementary Fig. 12a, Representative z-stack 3D projection and b, Imaris 3D
reconstruction showing PSD95 internalized within microglia cells in human frontal cortex
sections from AD patients (n = 9) and cognitively normal individuals (n = 8) stained with
PSD95, 6E10 and Ibal (scale bars for a and b = 15 um). ¢, quantitation of PSD95 internalized
within microglia that are plaque adjacent or plaque distal, n = 9 AD patients, with n = 21, 22,
16, 18,4, 3, 11, and 11 XO4" microglia, and 28, 13, 16, 9, 15, 8, 15, 10 and 11 XO4™ microglia
analyzed per patient, respectively. Data are mean + SEM for individual microglia in each
patient. p=0.02 using paired 1-tailed one-sample t-test to test whether the mean differences in
PSD95 within plaque adjacent compared to plaque-distal microglia are significantly different
from 0. d-e, Expression of HIF1A by d, immunofluorescence, scale bars = 50 um and e,

intracellular FACS staining in stable ELF3 or HIFA-overexpressing cells.
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Supplementary Fig. 13a, Stimulation of iMGLs with MyD88-dependent TLR agonist
Pam3csk (alone or with BMP9) induces GAPDH as predicted, but also represses APOE and
TREM?2, genes associated with XO4" microglia but not in the Hifla regulon. Data are fold
changes induced by rapamycin normalized to each respective treatment in the absence of
rapamycin, n=3 independent experiments. CY3CR1 ****p=8.0x107, ***p=0.00017; GAPDH
kikkn=2 0x107, p=1.6x107, respectively by two-way ANOVA and Holm-Sidak post-test
(comparing each treatment with rapamycin to the equivalent treatment in absence of
rapamycin), n=3 independent experiments. b, TREM?2 surface protein expression in iMGLs
following treatment with BMP9 and Pam3csk is reduced by the mTOR inhibitor, rapamycin,
as measured by FACS. ¢, heatmap showing concordant overlap of DEGs associated with the
phagocytic signature in XO4" microglia from bulk RNA-seq data compared to human DEGs
induced by Pam3csk and repressed by rapamycin in iMGLs. d, Overlap between the Hifla
module from Wendeln ef al.® and the Hifla regulon described in this study.
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Supplementary Fig. 14a-c, Overlap between batch-associated and age-associated genes
(DESeq2 Likelihood Ratio Test FDR<0.01), a, 15.8% (61 out of 387), b, XO4-associated genes
14.8% (417 out of 2810) and ¢, region associated genes 24.3% (83 out of 342). d, Projection
of single cell RNA-seq data onto bulk RNA-seq data using Reference Component Analysis
(RCA).
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