Supplementary Figures

Supplementary Figure 1. Gene perturbations with highly similar and dissimilar gene expression signatures to cases in the TWAS. Expression signatures of perturbations (gene knockdowns) in CMap were compared with those of the TWAS. Perturbations with a median connectivity score > 90 (similar gene signatures) or < -90 (dissimilar gene signatures) are shown.

Supplementary Figure 2. RNAi successfully silences *GDF5* and does not cause cell death. a *GDF5* was silenced with siRNA and >75% silencing efficiency was achieved. Expression levels of *GDF5* as well as those of the housekeeping gene, *HPRT1*, were measured. Expression of *GDF5* was (1) specific to *GDF5* and silencing this gene did not affect expression of *HPRT1* (si*GDF5*), and (2) not affected by non-targeted silencing (siNT). b HCM cell absorbance was measured before treating the cells with doxorubicin and cell viability was not affected by si*GDF5* alone.

Supplementary Tables

Supplementary Table 1. Differential gene expression of TWAS associated genes

in each tissue

	G	GDF5	F	RS2	H	DDC2	EEF	1B2
	Z-		Z-		Z-		Ζ-	
Tissue	score	Р	score	Р	score	Р	score	Ρ
Adipose-Subcutaneous	-4.30	1.70x10 ⁻⁵			3.53	4.15x10 ⁻⁴		
Adipose-Visceral (Omentum)					1.63	0.10		
Adrenal Gland					0.16	0.87		
Artery-Aorta					2.55	0.01		
Artery-Coronary					3.32	9.01x10 ⁻⁴		
Artery-Tibial			-1.07	0.29	3.14	1.70x10 ⁻³		
Brain-Anterior cingulate cortex (BA24)					1.51	0.13		
Brain-Cerebellum					-2.36	0.02		
Brain-Cortex					4.01	6.08x10 ⁻⁵		
Brain-Frontal Cortex (BA9)					2.30	0.02		
Brain-Putamen (basal ganglia)	-0.59	0.55						
Breast-Mammary Tissue			0.78	0.43	2.97	3.00x10 ⁻³		
Cells-EBV-transformed lymphocytes					2.06	0.04		
Cells-Transformed fibroblasts			2.29	0.02	2.63	8.49x10 ⁻³		
Colon-Sigmoid	0.11	0.92			3.08	2.05x10 ⁻³		
Colon-Transverse			3.61	3.12x10 ⁻⁴	3.44	5.91x10 ⁻⁴		
Esophagus-Gastroesophageal Junction	-1.54	0.12	1.08	0.28	3.28	1.03x10 ⁻³		
Esophagus-Mucosa					3.32	9.01x10 ⁻⁴		
Esophagus-Muscularis	-1.19	0.23	0.12	0.91	3.34	8.38x10 ⁻⁴	-0.51	0.61
Heart-Atrial Appendage	-1.53	0.13			3.61	3.04x10 ⁻⁴		
Heart-Left Ventricle			-0.96	0.34	3.30	9.79x10 ⁻⁴		

Lung	1.63	0.10			3.44	5.76x10 ⁻⁴		
Minor Salivary Gland					2.99	2.79x10 ⁻³		
Muscle-Skeletal			-1.24	0.21	2.85	4.40x10 ⁻³	-1.57	0.12
Nerve-Tibial			2.30	0.02				
Ovary					2.19	0.03		
Pancreas			4.07	4.67x10 ⁻⁵	3.13	1.75x10 ⁻³		
Pituitary	-1.89	0.06			1.32	0.19		
Skin-Not Sun Exposed (Suprapubic)					3.35	8.11x10 ⁻⁴		
Skin-Sun Exposed (Lower leg)			1.39	0.17	2.77	5.63x10 ⁻³		
Small Intestine-Terminal Ileum					3.07	2.17x10 ⁻³		
Spleen			2.39	0.02	-0.56	0.58		
Stomach			-1.99	0.05	3.51	4.51x10 ⁻⁴		
Testis	1.47	0.14			-1.77	0.08		
Thyroid	0.87	0.39	1.90	0.06	3.26	1.11x10 ⁻³		
Vagina							-3.97	7.24x10 ⁻⁵
Whole Blood			-0.19	0.85	2.76	5.72x10 ⁻³		

Shaded cells indicate no differential expression

Supplementary Table 2. Publicly-available and cardiotoxic/cardioprotective gene

sets

Number of							
Gene Set	Description	genes	Reference(s)				
Publicly-available gene	Publicly-available gene sets						
	Genes whose protein						
targets	products are targets for	385	7–11				
largets	FDA-approved drugs						
Drug targets (Nelson et	Drug targets	201	12,13				
al., 2012)	0 0						
	OMIM disease genes						
All dominant genes	that follow autosomal	709	14,15				
	dominant inheritance						
	OMIM disease genes						
All recessive genes	that follow autosomal	1183	14,15				
	recessive inheritance						
Essential in culture	Genes essential in	283	16				
	human cell lines	200					
	Genes intolerant to						
Essential in mice	homozygous knockout in	2454	17–19				
	mice						
Genes nearest to	Genes closest to GWAS						
GWAS neaks	hits (p<5E-8) in the	6336	20				
Omno peans	NHGRI GWAS catalog						

DNA repair genes (Wood et al., 2005)	Human DNA repair genes	178	21, Updated table: https://www.mdanderson.org/documents/Labs/Wood- Laboratory/human-dna-repair-genes.html
DNA repair genes (Kang et al., 2012)	DNA repair genes derived from DNA repair pathways	151	22
ClinGen haploinsufficient genes	Genes with evidence for dosage pathogenicity according to the ClinGen Dosage Sensitivity Map	294	23
Olfactory receptors	Olfactory receptors	371	24
Genes with any disease association reported in ClinVar	All genes in ClinVar for which there is at least one pathogenic or likely pathogenic variant	3078	25
Kinases	Uniprot's list of protein kinases	347	26–29
GPCRs	GPCR list from guidetopharmacology.org and from UniProt	759	29–31
Natural product targets	Targets of natural products	37	32
BROCA - Cancer Risk Panel	Cancer risk panel consisting of genes involved in various cancers for individuals	66	http://tests.labmed.washington.edu/BROCA

	suspected to have a				
	hereditary cancer				
	predisposition				
	List of genes to be				
	reported as incidental or	50	33		
	secondary findings	59	55		
	developed by the ACMG				
CPI anabarad protaina	Proteins in UniProt that	125	20		
GFI-anchored proteins	are GPI-anchored	155	29		
	Protein-coding genes	10 10/	34		
Universe	according to HGNC	19 194	54		
	Genes deemed intolerant				
LoF intolerant	to loss of function	3230	35		
	mutations in ExAC				
Cardiotoxic/cardioprot	ective gene sets				
	Genes down-regulated in				
	hiPSC-CMs across a				
Cluster 1	gradient of 5 different	3062	36		
	concentrations of				
	doxorubicin				
	Genes initially up-				
	regulated and then				
Cluster 2	further down-regulated in				
	hiPSC-CMs across a	3517	36		
	gradient of 5 different				
	concentrations of				
	doxorubicin				

	Genes up-regulated in		
	hiPSC-CMs across a		
Cluster 3	gradient of 5 different	2026	36
	concentrations of		
	doxorubicin		
	Genes down-regulated at		
	lower concentrations and		
	up-regulated at higher		
Olympics 4	concentrations across a	1150	20
Cluster 4	gradient of 5 different	1150	30
	concentrations of		
	doxorubicin in hiPSC-		
	CMs		
	Genes up-regulated at		
	lower concentrations and		
	down-regulated at higher		
Cluster 5	concentrations across a	1410	26
Cluster 5	gradient of 5 different	1419	50
	concentrations of		
	doxorubicin in hiPSC-		
	CMs		
	Genes down-regulated at		
	low concentrations but		
	then partially recover at	1110	20
Cluster 6	higher concentrations	1143	30
	across a gradient of 5		
	different concentrations		

	of doxorubicin in hiPSC-		
	CMs		
	Civis		
	Genes up-regulated in		
	Conce up regulated in		
ATRA up	response to treating	76	N/A
	H9c2 cells with ATRA		
	Genes down-regulated in		
ATRA down	response to treating	175	N/A
	H9c2 cells with ATRA		
	All genes up- or down-		
	regulated in response to		
ATRA		251	N/A
	treating H9c2 cells with		
	ATRA		

Supplementary Table 3. Significantly enriched gene sets in heart and arterial tissues

	Heart and arterial tissues					
	Mean Z ²	Mean Z ²		Mean Z ²	Mean Z ²	
	(gene	(all		(gene	(all	
Gene set	set)	genes)	P^{a}	set)	genes)	Pa
Publicly-available gene sets						
Essential in mice	0.91	0.83	0.16	0.95	0.84	0.07
Essential in culture	1.09	0.84	0.04	1.09	0.84	0.12
Human LoF intolerant	0.92	0.83	0.06	0.95	0.84	1.00
Cardiotoxic/cardioprotective gene sets						
ATRA (downregulated)	0.98	0.84	0.41	1.15	0.85	0.61
Cluster 5 ^b	0.85	0.84	1.00	0.90	0.85	0.48

^aBonferroni adjusted

^bDescribed by Knowles *et al.*³⁶

LoF indicates loss of function and ATRA indicates all-trans retinoic acid.

	Aminkeng et al.	Schneider <i>et al.</i>
Sample size	280 (32 cases, 248 controls)	845 (51 cases, 794 controls)
Population	Children	Adults
Ancestry	European	European
Major cancer type	Acute lymphoblastic leukemia	Breast
GWAS covariates	 Age at start of treatment Cumulative anthracycline dose Tumour type (acute lymphoblastic leukemia, Ewing's sarcoma, rhabdomyosarcoma) Cardiac radiation therapy 	 Age Menopausal status Experimental arm Tumour grade Body surface area Hypertension during therapy Use of antihypertension medications at baseline or antihypertensive
		therapy added during treatment

Supplementary Table 4. Comparison of discovery and replication studies

Supplementary References

- Greene RF, Collins JM, Jenkins JF, Speyer JL, Myers CE. Plasma Pharmacokinetics of Adriamycin and Adriamycinol: Implications for the Design of in Vitro Experiments and Treatment Protocols. *Cancer Res.* 1983;43(7):3417-3421.
- Liu J, Zheng H, Tang M, Ryu Y-C, Wang X. A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. *Am J Physiol-Heart Circ Physiol.* 2008;295(6):H2541-H2550. doi:10.1152/ajpheart.01052.2008
- Wickham H. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag; 2009.
 Accessed November 13, 2018. //www.springer.com/gp/book/9780387981413
- Kassambara, Alboukadel. ggpubr: "ggplot2" based publication ready plots. R package version 0.2.2.
- 5. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. *Nat Biotechnol*. 2016;34(5):525-527. doi:10.1038/nbt.3519
- Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNAseq incorporating quantification uncertainty. *Nat Methods*. 2017;14(7):687-690. doi:10.1038/nmeth.4324
- Knox C, Law V, Jewison T, et al. DrugBank 3.0: a comprehensive resource for 'Omics' research on drugs. *Nucleic Acids Res*. 2011;39(suppl_1):D1035-D1041. doi:10.1093/nar/gkq1126

- Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. *Nucleic Acids Res*. 2014;42(D1):D1091-D1097. doi:10.1093/nar/gkt1068
- Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. *Nucleic Acids Res*. 2006;34(suppl_1):D668-D672. doi:10.1093/nar/gkj067
- Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. *Nucleic Acids Res.* 2008;36(suppl_1):D901-D906. doi:10.1093/nar/gkm958
- Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res*. 2018;46(D1):D1074-D1082. doi:10.1093/nar/gkx1037
- Nelson MR, Wegmann D, Ehm MG, et al. An Abundance of Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 People. *Science*. 2012;337(6090):100-104. doi:10.1126/science.1217876
- Russ AP, Lampel S. The druggable genome: an update. *Drug Discov Today*.
 2005;10(23):1607-1610. doi:10.1016/S1359-6446(05)03666-4
- 14. Berg JS, Adams M, Nassar N, et al. An informatics approach to analyzing the incidentalome. *Genet Med*. 2013;15(1):36-44. doi:10.1038/gim.2012.112

- Blekhman R, Man O, Herrmann L, et al. Natural Selection on Genes that Underlie Human Disease Susceptibility. *Curr Biol*. 2008;18(12):883-889. doi:10.1016/j.cub.2008.04.074
- Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. *Mol Syst Biol*. 2014;10(7):733. doi:10.15252/msb.20145216
- Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. *Nucleic Acids Res*. 2011;39(suppl_1):D842-D848. doi:10.1093/nar/gkq1008
- Georgi B, Voight BF, Bućan M. From Mouse to Human: Evolutionary Genomics Analysis of Human Orthologs of Essential Genes. *PLOS Genet*. 2013;9(5):e1003484. doi:10.1371/journal.pgen.1003484
- Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: A Database of Human Nonsynonymous SNVs and Their Functional Predictions and Annotations. *Hum Mutat*. 2013;34(9):E2393-E2402. doi:10.1002/humu.22376
- MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). *Nucleic Acids Res*.
 2017;45(D1):D896-D901. doi:10.1093/nar/gkw1133
- 21. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. *Mutat Res Mol Mech Mutagen*. 2005;577(1):275-283. doi:10.1016/j.mrfmmm.2005.03.007

- Kang J, D'Andrea AD, Kozono D. A DNA Repair Pathway–Focused Score for Prediction of Outcomes in Ovarian Cancer Treated With Platinum-Based Chemotherapy. JNCI J Natl Cancer Inst. 2012;104(9):670-681. doi:10.1093/jnci/djs177
- Rehm HL, Berg JS, Brooks LD, et al. ClinGen The Clinical Genome Resource. N Engl J Med. 2015;372(23):2235-2242. doi:10.1056/NEJMsr1406261
- 24. Mainland JD, Li YR, Zhou T, Liu WLL, Matsunami H. Human olfactory receptor responses to odorants. *Sci Data*. 2015;2:150002. doi:10.1038/sdata.2015.2
- Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. *Nucleic Acids Res*.
 2014;42(D1):D980-D985. doi:10.1093/nar/gkt1113
- Hunter T. Signaling—2000 and Beyond. *Cell*. 2000;100(1):113-127.
 doi:10.1016/S0092-8674(00)81688-8
- Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The Protein Kinase Complement of the Human Genome. *Science*. 2002;298(5600):1912-1934. doi:10.1126/science.1075762
- Miranda-Saavedra D, Barton GJ. Classification and functional annotation of eukaryotic protein kinases. *Proteins Struct Funct Bioinforma*. 2007;68(4):893-914. doi:10.1002/prot.21444

- UniProt Consortium T. UniProt: the universal protein knowledgebase. *Nucleic Acids Res*. 2018;46(5):2699-2699. doi:10.1093/nar/gky092
- Alexander SP, Christopoulos A, Davenport AP, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors: THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors. *Br J Pharmacol.* 2017;174:S17-S129. doi:10.1111/bph.13878
- Harding SD, Sharman JL, Faccenda E, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. *Nucleic Acids Res.* 2018;46(D1):D1091-D1106. doi:10.1093/nar/gkx1121
- Dančík V, Seiler KP, Young DW, Schreiber SL, Clemons PA. Distinct Biological Network Properties between the Targets of Natural Products and Disease Genes. J Am Chem Soc. 2010;132(27):9259-9261. doi:10.1021/ja102798t
- Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. *Genet Med.* 2017;19(2):249-255. doi:10.1038/gim.2016.190
- Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 2015. *Nucleic Acids Res*. 2015;43(Database issue):D1079-D1085. doi:10.1093/nar/gku1071

- Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. *Nature*. 2016;536(7616):285-291. doi:10.1038/nature19057
- 36. Knowles DA, Burrows CK, Blischak JD, et al. Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes. *eLife*. 2018;7:e33480.