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Supplementary Note 1

Delaunay triangulation

Based on a set of nodes in a three-dimensional space, the Delaunay triangulation (DT), tries to find

quadruples, fulfilling a specific condition: no other point must be within the circumscribed sphere of the

tetrahedron, which is defined by a specific quadruple. If the condition is met, all nodes of the quadruple

will be connected via edges. Finally, only these nodes are connected, fulfilling the criteria [1, 2].

First, we calculate the DT for each structure si using SciPy v1.3.1 [3]. Afterwards, we compute the

adjacency matrix m of size 20 × 20 (the number of natural amino acids). An edge e in this graph is

denoted as (aj , ak), i.e, the pair of amino acids, connected via the edge e. Since multiple occurrences

of e with different distances between aj and ak are possible, in total five aggregation functions were

implemented: average distance (average distance of equal edges), total distance (total sum of distances

of equal edges), number of instances (the count of equal edges), frequency of instances (the frequency of

equal edges), as well as cartesian product (the cartesian product between average distances and number

of instances) [1]. In this study, we excluded edges, where two amino acids, aj and ak, are more than 15

Å apart. This value has been chosen, owing to the fact, that most of the distances were below 15 Å and

due to an average distance of 10 Å of all edges.

Distance distribution

This StBE quantifies the distribution of distances between amino acid pairs aj and ak with certain

functional types, i.e, chemical properties [4, 2], namely hydrogen bond acceptor, hydrogen bond donor,

pi stacking centers, aliphatic and ambivalent donor-acceptor [4]. Note, that one amino acid could have

more than one functional type. For each combination aj , ak and every functional type, one calculates

the euclidean distance. Subsequently, we estimated the distribution with the kernel density estimator f ,

using a bandwidth of h = 1 and a Gaussian kernel K, denoted as

f =
1

nh

n∑
j=1

K

(
t− xj
h

)
(1)

K(t) =
1√
2π

exp

(
−1

2
t2
)

(2)

and evaluated a fixed set of points on f and append it to the final feature vector [4, 5]. Specifically,

we employed the function gaussian kde provided by the SciPy package [3].
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Distance frequency

For each input sequence si, the algorithm first replaces each amino acid ak with its respective chemical

group, that is, basic, hydrophobic, or others. Afterwards, si is split into three parts: N-terminal, middle

section and C-terminal [6]. Note, that owing to various sequence lengths, different split methods are used.

Refer to the original publication for the algorithmic details [6]. For each section, the distances are obtained

by counting the number of amino acids between two, for instance, basic amino acids. Afterwards, the

values are assigned to a distance class, hence distance frequencies, for each property group. Besides the

distance frequencies for each group and part, also the amino acid, as well as the di-peptide composition,

build up the final feature vector [6].

Electrostatic hull

A further StBE is the electrostatic hull (EH). First, the structure is optimized using the amber force field

and is standardized for further processing by employing the PDB2PQR v2.1.1 [7] command-line tool.

Afterwards, the solvent accessible surface (SAS) as well as the electrostatic potential (EP) is calculated

by means of the APBS v1.5 [8] package. The coordinates of the EH are now computed based on the

SAS. For the final feature vector, only these points from the hull are retained, where an EP has been

determined in the previous step. Since the sequence length can vary, a cubic spline interpolation to the

median length is conducted afterwards, utilizing the Interpol v1.3.1 package [9]. The general workflow as

well as the core algorithm has been adapted from Löchel et al. (2018) [10].

Fourier transform

The Fourier transform (FT) SeBE, decomposes a continuous-valued input signal into its frequency do-

main, such that previously unknown patterns might be observable [2]. We leverage this circumstance

by computing the discrete FT on ŝi. Specifically, a mapping ak 7→ âk is obtained from the AAindex

database [11]. Nagarajan et al. (2006) applied this encoding to predict antimicrobial activity [12].

Five level dipeptide compostion

The five-level di-peptide composition (FLDPC) SeBE [13], is based on five groups, i.e., the highest, high,

medium, low, and lowest values of a specific amino acid index [11]. The assignment of an amino acid to a

group occurs by employing the k-Means clustering algorithm, with k = 5. The final feature vector ŝi for

an input sequence si is composed of the sums of the frequencies of all di-peptides mapped to the same

group [13].
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Five level grouped composition

Exactly like the FLDPC, the five-level grouped composition (FLGC) is based on the five groups obtained

from a specific amino acid index [11]. In order to compose the final feature vector, the amino acid

composition is calculated for each sequence si and the frequencies of all amino acids from the same group

are added up [13].

N-gram

The n-gram encoding [14] encodes sequences based on the singular value decomposition (SVD). There

are several types of this encoding, depending on the according grouping of a specific amino acid: the

di-peptide or tri-peptide composition (A), the exchange (E) as well as the structural groups (S). The

latter encompasses amino acids, which have a tendency of an internal, ambivalent, or external configu-

ration in the three-dimensional conformation of a protein [14] and the E group refers to six amino acids

groups, computed from point-accepted mutations (PAM) [14, 15]. Furthermore, as the name suggests,

two different sizes of n are considered: two (bi-gram) and three (tri-gram).

For the E and S groups, the preprocessing is conducted as follows. First, the cartesian product of the

groups, i.e., E×E is calculated. Next, for all amino acids ak ∈ si, ak is mapped to its respective group,

leading to âk. Now we count the occurrences of a bi-gram âj , âk or tri-gram âj , âk, âl and compute the

total frequency with respect to the amount of all possible combinations ci [14].

The next step comprises the matrix factorization step, hence SVD, in the form of

X = T · S∗ · P (3)

In particular, X is the encoded dataset D̂i of size n ×m, where n is the number of features and m

is the number sequences. T is a matrix with the left singular components of size n × k, S∗ denotes a

diagonal matrix of size k × k and P refers to a matrix with the right singular components of size k ×m

[14]. Hereinafter, the SVD is employed as a feature reduction method, that is, the input feature space

will be reduced from a n-dimensional space into a k-dimensional space. Thus, the transpose of P , hence

PT , is used subsequently as the final feature matrix [14]. For predicting unknown sequences Xu, the

n-gram encoding requires to retain the matrices T and S∗. In the case of a prediction, the former and

the inverse of the latter is utilized to scale the unknown data Xu into the same feature space:

Pu = XT
u · T · S−1∗ (4)

3



Supplementary Material Spänig et al. (2021)

whereby Pu, the encoded matrix, has k columns as well as mu rows and XT
u , the transpose of the

non-classified input data, is of size mu × n.

Quantitative structure-activity relationship

The quantitative structure-activity relationship (QSAR) StBE, an encoding type relating molecular prop-

erties of the structure to a certain activity, e.g., antimicrobial efficiency, has been added [2]. In particular,

we adopted the QSAR-pipeline suggested by Haney et al. (2018) [16]. On each sequence si, a sliding

window approach is applied, using a window size of k, if |si| ≥ k. For each window wl, we construct

a molecule from the respective structure section utilizing RDKit v2020.03.4 (http://www.rdkit.org/).

Note, that if |si| < k, the complete sequence will be used instead. In the present study we set k = 20.

For each molecule, we used the Mordred v1.2.0 package, in order to calculate all molecular descriptors

[17]. For a comprehensive descriptor list, refer to the original publication [17]. If |si| < k, the descriptor

vector vl will be used as feature vector as it is, otherwise the column-wise average will be used.

Weighted amino acid composition

The weighted amino acid composition [13] SeBE weights the respective amino acid composition aac of

an amino acid ai in a sequence si with the accompanying amino acid index [11] f : ai 7→ âi : aac ∗ f(ai).
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Supplementary Note 2

Precision =
TP

TP + FP
(5)

Recall = Sensitivity =
TP

TP + FN
(6)

F1-score = 2 · Precision · Recall

Precision + Recall
(7)

Specificity =
TN

TN + FP
(8)

MCC = φ =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
(9)

with TP = true positives, TN = true negatives, FP = false positives, FN = false negatives, MCC =

Matthews Correlation Coefficient, and φ being the Phi coefficient.
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Supplementary Note 3

The final report is composed of three sections, namely Home, Single dataset, and Multiple datasets, which

fulfill specific, analytical purposes. The first provides a general overview of the study and the data, the

second sheds light on the performance across multiple datasets, and the third section introduces the results

for specific datasets. In general, all visualizations are interactive, hence including different mouse events

(mouse-over, click, double-click, and scrolling). We used the streamlit v0.70.0 (https://www.streamlit.io/)

framework to embed the graphics. Hereinafter, the respective visualizations are described in more detail.

Home

For the overview figure, the computation time vs. dataset size scatter plot (top-left) is connected with the

t-SNE based sequence embedding (top-right). In addition, it provides a small description of the dataset

and the link to the original publication (center). For download, a further link forwards the user to the loca-

tion of prepared data (bottom). For better separation, the scatter plot uses logarithmic axes. The dataset

name indicate where these data visualizations can be found at https://peptidereactor.mathematik.uni-

marburg.de/.

Multiple datasets

The Multiple dataset section includes the Overview, the Ranks, Clustering, Embedding, and Time visual-

ization, in order to investigate the performance all datasets

• Overview. The overview plot shows the performance of all encoding groups across all datasets.

The figure is divided into two heatmaps. The upper one focuses on the grade of dataset imbalance

compared to sequence- and structure-based encodings (SeBEs and StBEs, respectively) and the

bottom one puts emphasis on the biomedical domain, i.e., the datasets are sorted accordingly. The

respective groups are visually separated by horizontal and vertical bars. For the the top figure, a

ratio of 0.35, i.e., positive : negative class, has been used for separation.

• Ranks. This figure visualizes the encoding performance as ranks across all datasets [18]. The

encodings are grouped by SeBEs and StBEs. In addition, the datasets are sorted by imbalance.

The respective groups are visually separated by horizontal and vertical bars.

• Clustering. The result of the automated clustering is shown here. Encoding groups and datasets

are arranged according to the hierarchical clustering, further highlighted by row and column den-

drograms.

• Embedding. The t-SNE based embedding of the sequences of the positive class. All datasets are

arranged as a 3 × 4 scatter plot matrix. All sub-plots are sorted by cluster area ascending. In
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addition, using the menu in the bottom-left allows to display additional datasets with a higher

cluster area.

• Time. The total computation time of all datasets is visualized as a bar plot (top). Moreover, the

scatter plot compares the computation time with the dataset size (bottom-left) and a further scatter

plot relates the mean sequence length with the overall computing time (bottom-right).

Single dataset

More detailed information about specific datasets and the respective performance of all encodings reports

the Single dataset section. It includes the Overview, Metrics, Curves, Similarity, Diversity, Difference,

Composition, Correlation, as well as the Time sub-sections.

• Overview. This section summarizes the CV runs by means of the median of all splits and the

resulting overall median. The encodings are grouped into sequence- and structure-based encodings

(SeBEs and StBEs, respectively). Moreover, parameterized encodings have been aggregated into

single groups. The number of encodings per group corresponds to the circle size. The range of

medians per split and group is highlighted as a shaded area and the height of the line is determined

from the best encoding per group.

• Metrics. The particular metrics are shown here. That is, the left chart shows the median per-

formance across all cross-validation splits of all encodings. In addition, the top 20 encodings are

highlighted with 100 % opacity. For more fine-grained insights, the CV results of the top encodings

are shown in the box plot (right).

• Curves. Receiver-operation characteristic (ROC) as well as the Precision-Recall (PR) curves are

plotted are visualized in this section. The top row shows the respective curves for the overall top 6

encodings, whereas the bottom row shows the top 3 SeBEs and StBEs, respectively.

• Similarity. The similarity of encodings is visualized as heat maps, with the Phi correlation φ being

visualized in the top row and the disagreement measure D is visualized in the bottom row. For

the latter, higher values indicate a greater diversity, whereas lower values are preferred for the Phi

correlation.

• Diversity. The next section contains the pairwise similarity of selected encodings. The x- and the

y-axis are showing the predicted probabilities of the classifiers trained with the respective encodings

picked due to their grade of disagreement. The left column shows encodings with a high diversity and

the right column visualizes the encodings with the best single performance. The middle section, i.e.,

from the second to the fourth panel, shows encodings with an ascending disagreement. Moreover,
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the top row compares sequence- and structure-based encodings and the bottom row all versus all

encodings. In addition, the cluster quality is denoted as the Davis-Bouldin score, where lower values

indicate a better separation of the clusters [19].

• Difference (CD). A statistical comparison of all encodings can be found in the CD section. Critical,

i.e., significantly, different classifiers are colored in black. The heat map shows the respective CDs

for all encodings. The right bar chart counts the critical different encodings per group and the lower

part converts the heat map data into a one-dimensional space by grouping encodings according to

the CD. The circle size denotes the number of encodings per group.

• Composition. Meta information about the dataset at hand is visualized in this section. The top

chart shows the overall class distribution. The positive class is green colored and the negative class

accordingly purple. The plot in the middle visualizes the number of sequences per length for the

respective class. Finally, the bottom row shows the relative composition of amino acids as a bar

chart (left) and the sequence similarity based on a t-SNE embedding (right).

• Correlation. The dataset correlation is visualized as a circular dendrogram, which aggregates more

related datasets into the same branches. The relatedness is based on adjusted RV-coefficient.

Encodings from the same group are highlighted in the same color.

• Time This section deals with the required execution time of every task. In particular, the scatter

charts compares the median performance of the encoding groups with their respective calculation

time. The top-left corner shows the groups with the preferred properties, i.e., fast computation

and high performance. Moreover, the scatter chart shows the execution time for each step on a log

scale. Each meta node type is colored accordingly.
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Supplementary Note 4

PseKRAAC encoding

This SeBE takes four parameters, leading to hundreds or even thousands, in general k’s of encoded

datasets {D̂i1 , . . . , D̂ik}. In order to reduce this vast amount of data, i.e, to find a representative subset

of encoded datasets Θ∩{D̂i1 , . . . , D̂ik}, the filtering is conducted as follows: first, the datasets are grouped

according to their descriptor type, i.e., for each D̂ij ∈ Θ of the same descriptor type, the datasets are

interpolated to the same dimension using a one-dimensional linear interpolation. The Pearson correlation

coefficient R is calculated on the vectorized matrices D̂ix and D̂iy , denoted as X and Y , respectively:

RX,Y =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2
(10)

n is the length of the vectorized matrices, Xi and Yi are data points from the respective datasets X

or Y and X as well as Y being the respective mean. Next, for each descriptor type and based on the

Pearson correlation coefficients from the previous step, a distance matrix m is calculated. m is used as the

pre-computed distance matrix for the successive t-distributed Stochastic Neighbor Embedding (t-SNE,

default parameters) [20] in order to embed m into a two-dimensional space. Finally, the representative

dataset for each of the 19 descriptor types (see Supplementary Table 4) is determined by computing the

cluster center by means of the k-Medoids algorithm [21].

Amino acid index correlation

Some amino acid indices (AAI) are highly correlated [11]. Hence, let X be a matrix of size 20 × k with

20 rows for the corresponding natural amino acids and k columns for each AAI. First, we computed the

pairwise Pearson correlation coefficient for each column in X, i.e., the AAI, using Equation 10. Next,

we utilized principal component analysis (PCA) [22] to compute the first principal component, that is,

to reduce the size of X to a one-dimensional matrix X̂. By regarding X̂ as distances, we observed that

AAIs with a high separation after PCA also have a high correlation and conversely, AAIs with a low

separation after PCA also have a low correlation. Hence, we only keep those indices with a correlation

closely at 0.0± 0.3. Finally, only those encoded datasets based on low correlated AAIs are used for the

later benchmark.
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Supplementary Figures

Supplementary Figure 1: Encoding group performance, sorted by biomedical domains and
encoding type. Color coding corresponds to the max F1-score of a group. The x-axis is organized by
sequence- and structure-based encodings. The y-axis is sorted by biomedical application. Groups are
separated by gaps.
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Supplementary Figure 2: t-SNE-based embedding of sequences part of the positive class. The
ordering of datasets corresponds to the respective cluster area. Ranks 1 to 12 are shown.

Supplementary Figure 3: Sequence similarity based on the t-SNE embedding. The embedding
is based on the amino acid composition (AAC). The graphic shows exemplary the amp gonzales (left),
cpp sanders (center), and hiv ddi (right) datasets with a median F1-score for the AAC encoding of 0.89,
0.86, and 0.72, respectively.
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Supplementary Figure 4: Median performance of encoding groups. The min/max range is visualized
by the shaded area and the circle size corresponds to the number of encodings per group. Circle heights
depict scores of best performing encoding within a group. The graphic shows the example of the hiv ddi
dataset.
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Supplementary Figure 5: Detailed metrics and distribution for the F1-score, MCC, and Pre-
cision. Detailed metrics for each encoding (left) including the F1-score, MCC, and Precision. The box
plots on the right show the respective distribution of the repeated cross-validations. The graphic shows
the example of the hiv ddi dataset.
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Supplementary Figure 6: Detailed metrics and distribution for the Recall (Sensitivity) and
Specificity. Detailed metrics for each encoding (left) including the Recall (Sensitivity) and Specificity.
The box plots on the right show the respective distribution of the repeated cross-validations. The graphic
shows the example of the hiv ddi dataset.
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Supplementary Figure 7: ROC and PR curves of the top encodings. ROC (receiver operating
characteristic, left) and PR curve (Precision/Recall, right) for top 6 encodings (top) and top 3 sequence-
and top 3 structure-based encodings (bottom), based on the F1-score. The graphic shows the example
of the hiv ddi dataset.
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Supplementary Figure 8: The similarity of classifier outputs. Similarity of the classifier outputs
between all encodings (left) and sequence- vs. structure-based encodings (right), based on correlation
(top) and disagreement (bottom). The higher the diversity value, the higher the similarity (Phi cor-
relation). Accordingly, the lower the diversity, the higher the similarity (Disagreement measure). The
graphic shows the example of the hiv ddi dataset.
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Supplementary Figure 9: Pairwise predicted probabilities and class separation for two datasets.
Predicted probabilities for the respective class labels applied on the x- and y-axis. Encodings are selected
with respect to their level of disagreement (div) and cluster quality, depicted as the Davis-Bouldin score
(dbs, lower is better). The graphic shows the example of the ace vaxinpad (left) and the hiv ddi dataset
(right) for sequence- vs. structure-based encodings (top) and all vs. all encodings (bottom).
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Supplementary Figure 10: Pairwise predicted probabilities and class separation. Predicted prob-
abilities for the respective class labels applied on the x- and y-axis. Encodings are selected with respect
to their level of disagreement (div) and cluster quality, depicted as the Davis-Bouldin score (dbs, lower is
better). The graphic shows the example of the hiv ddi dataset for sequence vs. structure based encodings
(top) and all vs. all encodings (bottom).
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Supplementary Figure 11: Statistical assessment of classifier outputs. Statistical comparison (criti-
cal difference) of model performance per fold for all vs. all encodings (top-left), within an encoding group
(top-right) and the binned counts distribution of differences for all comparisons (bottom-left). Black
values refer to critical, hence statistically significant, different classifier outputs. The graphic shows the
example of the hiv ddi dataset.
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Supplementary Figure 12: Total computation time. Total computation time per dataset (top), the
number of sequences vs. computation time (bottom-left), and mean sequence length per dataset vs.
computation time (bottom-right).
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Supplementary Figure 13: Encoding group performance vs. computation time. Median of encod-
ing group performance vs. elapsed time. The graphic shows the example of the hiv ddi dataset.
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Supplementary Tables

Supplementary Table 1: Datasets collected for this study. Biomedical applications are separated via a
horizontal rule.

Dataset Size # Positive # Negative Reference
ace vaxinpad 688 303 385 [23]
acp anticp 450 225 225 [24]
acp iacp 344 138 206 [25]
acp mlacp 585 187 398 [26]
afp amppred 2768 1384 1384 [27]
afp antifp 2916 1459 1457 [28]
aip aippred 1049 420 629 [29]
aip antiinflam 2124 863 1261 [30]
amp antibp 861 431 430 [31]
amp antibp2 1993 999 994 [32]
amp csamp 256 128 128 [33]
amp fernandes 231 115 116 [34]
amp gonzales 129 27 102 [35]
amp iamp2l 3284 879 2405 [36]
amp modlamp 2579 1225 1354 [37]
atb antitbp 492 246 246 [38]
atb iantitb 492 246 246 [39]
avp amppred 1478 739 739 [27]
avp avppred 1047 599 448 [40]
bce ibce 2518 1110 1408 [41]
cpp cellppd 1614 807 807 [42]
cpp cellppdmod 1462 732 730 [43]
cpp cppredfl 924 462 462 [44]
cpp kelmcpp 1003 504 499 [45]
cpp mixed 128 97 31 [46]
cpp mlcpp 1903 738 1165 [47]
cpp mlcppue 374 187 187 [47]
cpp sanders 145 111 34 [48]
hem hemopi 1104 522 582 [49]
hiv 3tc 624 195 429 [50]
hiv abc 619 179 440 [50]
hiv apv 702 424 278 [50]
hiv azt 621 322 299 [50]
hiv bevirimat 155 43 112 [51]
hiv d4t 621 336 285 [50]
hiv ddi 623 306 317 [50]
hiv dlv 718 455 263 [50]
hiv efv 721 447 274 [50]
hiv idv 758 384 374 [50]
hiv lpv 501 223 278 [50]
hiv nfv 775 303 472 [50]
hiv nvp 733 415 318 [50]
hiv protease 947 149 798 [52]
hiv rtv 728 349 379 [50]
hiv sqv 761 457 304 [50]
hiv v3 1351 200 1151 [53]
isp il10pred 1242 394 848 [54]
nep neuropipred 1750 875 875 [55]
pip pipel 3228 833 2395 [56]
tce zhao 203 36 167 [57]
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Supplementary Table 2: Descriptive statistics on the datasets used in this study. s+ and s−: se-
quences of the positive and the negative class, respectively. [s+] and [s−]: length interval, i.e., min
and max sequence length per class. s and s̃: mean and median of the respective class. Also refer to
https://peptidereactor.mathematik.uni-marburg.de/ for according visualizations.

Dataset # (s+, s−) [s+] [s−] s+, ± std s−, ± std s̃+ s̃−

ace vaxinpad 303, 385 3, 30 4, 30 11.01, 6.47 12.63, 7.33 9.0 12.0
acp anticp 225, 225 5, 113 5, 54 23.51, 14.68 28.86, 13.94 21.0 30.0
acp iacp 138, 206 11, 97 11, 39 25.91, 14.44 25.2, 7.1 24.0 25.0
acp mlacp 185, 398 11, 47 11, 50 23.36, 8.91 27.96, 9.09 24.0 27.0
afp amppred 1381, 1384 10, 255 10, 94 37.98, 33.97 26.9, 13.11 29.0 24.0
afp antifp 1459, 1457 4, 100 4, 100 55.24, 25.06 54.93, 25.06 55.0 55.0
aip aippred 420, 629 11, 25 11, 22 17.23, 2.94 15.79, 1.89 16.0 15.0
aip antiinflam 863, 1261 8, 30 7, 30 16.36, 4.15 15.98, 2.86 16.0 15.0
amp antibp 431, 430 30, 30 30, 30 30.0, 0.0 30.0, 0.0 30.0 30.0
amp antibp2 981, 994 6, 94 6, 94 29.66, 13.78 29.74, 13.78 27.0 27.0
amp csamp 121, 128 16, 79 28, 119 36.98, 9.74 84.77, 23.82 35.0 85.0
amp fernandes 113, 116 12, 99 11, 100 36.56, 16.72 57.95, 23.26 35.0 54.0
amp gonzales 27, 102 14, 37 11, 84 21.59, 4.48 32.44, 14.87 23.0 32.0
amp iamp2l 878, 2405 5, 103 11, 100 31.98, 17.92 69.51, 25.31 29.0 76.0
amp modlamp 1225, 1354 30, 100 30, 50 45.4, 17.82 40.53, 5.69 39.0 40.0
atb antitbp 246, 246 5, 61 5, 60 15.83, 10.12 16.59, 10.28 12.0 13.0
atb iantitb 246, 244 5, 61 5, 56 15.83, 10.12 15.69, 10.41 12.0 13.0
avp amppred 738, 739 10, 255 10, 46 30.3, 29.25 22.9, 8.47 25.0 21.0
avp avppred 599, 447 6, 107 6, 58 24.42, 10.62 18.23, 8.13 20.0 15.0
bce ibce 1110, 1408 11, 24 11, 49 16.65, 3.21 15.92, 3.59 16.0 15.0
cpp cellppd 807, 807 3, 61 5, 49 16.14, 6.98 21.06, 9.84 15.0 21.0
cpp cellppdmod 563, 695 3, 38 3, 41 16.94, 7.3 17.04, 7.27 16.0 16.0
cpp cppredfl 462, 462 10, 58 10, 61 20.52, 8.57 20.4, 8.43 18.0 18.0
cpp kelmcpp 483, 499 11, 33 8, 49 17.93, 5.14 23.14, 7.95 17.0 23.0
cpp mixed 94, 31 5, 38 7, 27 17.98, 6.31 14.58, 5.41 18.0 15.0
cpp mlcpp 737, 1165 5, 48 5, 46 18.73, 8.11 21.41, 7.23 17.0 20.0
cpp mlcppue 181, 187 5, 61 5, 36 15.75, 7.26 15.27, 6.13 15.0 15.0
cpp sanders 111, 34 5, 43 8, 36 18.68, 6.84 16.91, 5.94 18.0 16.0
hem hemopi 522, 582 5, 98 4, 86 20.21, 8.51 20.71, 10.55 18.0 18.0
hiv 3tc 195, 429 141, 249 170, 249 240.56, 7.79 241.0, 4.3 241.0 240.0
hiv abc 179, 440 170, 249 31, 249 240.87, 5.65 240.4, 11.49 241.0 241.0
hiv apv 423, 278 99, 107 99, 106 99.76, 1.35 99.68, 1.11 99.0 99.0
hiv azt 322, 299 170, 249 141, 249 241.08, 4.39 240.65, 6.73 241.0 240.0
hiv bevirimat 43, 112 19, 21 20, 21 20.53, 0.55 20.87, 0.34 21.0 21.0
hiv d4t 336, 285 170, 249 31, 249 241.06, 4.29 239.91, 14.21 241.0 240.0
hiv ddi 306, 317 170, 249 141, 249 240.92, 4.41 240.82, 6.6 240.0 241.0
hiv dlv 455, 263 240, 253 170, 250 241.67, 2.19 240.66, 5.18 241.0 240.0
hiv efv 447, 274 170, 253 74, 250 241.51, 4.03 240.14, 11.39 241.0 240.0
hiv idv 382, 374 99, 107 99, 106 99.7, 1.27 99.72, 1.21 99.0 99.0
hiv lpv 223, 278 99, 107 99, 106 99.68, 1.14 99.8, 1.29 99.0 99.0
hiv nfv 300, 472 99, 107 99, 106 99.79, 1.35 99.64, 1.15 99.0 99.0
hiv nvp 414, 318 240, 253 170, 250 241.72, 2.22 240.76, 4.77 241.0 240.0
hiv protease 149, 798 8, 8 8, 8 8.0, 0.0 8.0, 0.0 8.0 8.0
hiv rtv 348, 379 99, 107 99, 106 99.74, 1.29 99.73, 1.22 99.0 99.0
hiv sqv 456, 304 99, 107 99, 106 99.71, 1.26 99.7, 1.21 99.0 99.0
hiv v3 200, 1151 32, 37 32, 38 34.71, 0.94 34.86, 0.46 35.0 35.0
isp il10pred 394, 848 8, 42 8, 27 16.8, 4.72 15.24, 1.52 15.0 15.0
nep neuropipred 875, 875 4, 100 4, 100 28.19, 21.86 28.64, 21.81 20.0 20.0
pip pipel 833, 2395 11, 25 11, 25 16.57, 2.78 15.3, 1.47 15.0 15.0
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tce zhao 36, 167 10, 10 10, 10 10.0, 0.0 10.0, 0.0 10.0 10.0

Supplementary Table 3: Description of datasets used in this study.

Dataset Description Reference
ace vaxinpad Prediction of peptides for modulating antigen presenting cells

(modulating/non modulating).
[23]

acp anticp Prediction of peptides with cytotoxic efficiency against cancer cells
(cytotoxic/non-cytotoxic).

[24]

acp iacp Prediction of peptides with cytotoxic efficiency against cancer cells
(cytotoxic/non-cytotoxic).

[25]

acp mlacp Prediction of peptides with cytotoxic efficiency against cancer cells
(cytotoxic/non-cytotoxic).

[26]

afp amppred Prediction of peptides with anti-fungal efficiency (anti-fungal/not
anti-fungal).

[27]

afp antifp Prediction of peptides with anti-fungal efficiency (anti-fungal/not
anti-fungal).

[28]

aip aippred Prediction of therapeutic peptides against inflammatory diseases
(anti-inflammatory/not anti-inflammatory).

[29]

aip antiinflam Prediction of therapeutic peptides against inflammatory diseases
(anti-inflammatory/not anti-inflammatory).

[30]

amp antibp Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[31]

amp antibp2 Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[32]

amp csamp Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[33]

amp fernandes Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[34]

amp gonzales Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[35]

amp iamp2l Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[36]

amp modlamp Prediction of peptides with anti-microbial efficiency (anti-
microbial/not anti-microbial).

[37]

atb antitbp Prediction of peptides with anti-mycbacterial efficiency (anti-
tubercular/not anti-tubercular).

[38]

atb iantitb Prediction of peptides with anti-mycbacterial efficiency (anti-
tubercular/not anti-tubercular).

[39]

avp amppred Prediction of peptides with anti-viral efficiency (anti-viral/not
anti-viral).

[27]

avp avppred Prediction of peptides with anti-viral efficiency (anti-viral/not
anti-viral).

[40]

bce ibce Prediction of B-cell epitopes (B-cell epitope/no B-cell epitope). [41]
cpp cellppd Prediction of peptides with penetration capability of cell mem-

branes (cell-penetrating/non cell-penetrating).
[42]

cpp cellppdmod Prediction of peptides with penetration capability of cell mem-
branes (cell-penetrating/non cell-penetrating).

[43]

cpp cpppredfl Prediction of peptides with penetration capability of cell mem-
branes (cell-penetrating/non cell-penetrating).

[44]

cpp kelmcpp Prediction of peptides with penetration capability of cell mem-
branes (cell-penetrating/non cell-penetrating).

[45]

cpp mixed Prediction of peptides with penetration capability of cell mem-
branes (cell-penetrating/non cell-penetrating).

[46]
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cpp mlcpp Prediction of peptides with penetration capability of cell mem-
branes (cell-penetrating/non cell-penetrating).

[47]

cpp mlcppue Prediction of uptake efficiency of cell-penetrating peptides (high
uptake/low uptake).

[47]

cpp sanders Prediction of peptides with penetration capability of cell mem-
branes (cell-penetrating/non cell-penetrating).

[48]

hem hemopi Prediction of peptides with hemolytic susceptibility (suscepti-
ble/resistant).

[49]

hiv 3tc Prediction of HIV-1 subtype B drug resistance against Lamivudine
(susceptible/resistant).

[50]

hiv abc Prediction of HIV-1 subtype B drug resistance against Abacavir
(susceptible/resistant).

[50]

hiv apv Prediction of HIV-1 subtype B drug resistance against Ampre-
navir (susceptible/resistant).

[50]

hiv azt Prediction of HIV-1 subtype B drug resistance against Zidovudine
(susceptible/resistant).

[50]

hiv bevirimat Prediction of HIV-1 drug resistance against Bevirimat (suscepti-
ble/resistant).

[51]

hiv d4t Prediction of HIV-1 subtype B drug resistance against Stavudine
(susceptible/resistant).

[50]

hiv ddi Prediction of HIV-1 subtype B drug resistance against Didanosin
(susceptible/resistant).

[50]

hiv dlv Prediction of HIV-1 subtype B drug resistance against Delavirdine
(susceptible/resistant).

[50]

hiv efv Prediction of HIV-1 subtype B drug resistance against Efavirenz
(susceptible/resistant).

[50]

hiv idv Prediction of HIV-1 subtype B drug resistance against Indinavir
(susceptible/resistant).

[50]

hiv lpv Prediction of HIV-1 subtype B drug resistance against Lopinavir
(susceptible/resistant).

[50]

hiv nfv Prediction of HIV-1 subtype B drug resistance against Nelfinavir
(susceptible/resistant).

[50]

hiv nvp Prediction of HIV-1 subtype B drug resistance against Nevirapin
(susceptible/resistant).

[50]

hiv protease Prediction of cleavage by HIV-1 protease (cleavage/no cleavage). [52]
hiv rtv Prediction of HIV-1 subtype B drug resistance against Ritonavir

(susceptible/resistant).
[50]

hiv sqv Prediction of HIV-1 subtype B drug resistance against Saquinavir
(susceptible/resistant).

[50]

hiv v3 Prediction of HIV-1 V3 loop co-receptor tropism (R5/X4). [53]
isp il10pred Prediction of peptides activating interleukin production

(activating/non-activating).
[54]

nep neuropiprede Prediction of neuropeptides from insects (neuropeptide/no neu-
ropeptide).

[55]

pip pipel Prediction of peptides activating an proinflammatory immune re-
sponse (activating/non-activating).

[56]

tce zhao Prediction of T-cell epitopes (T-cell epitope/no T-cell epitope). [57]
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Supplementary Table 4: Encodings used in this study accompanied by the parameters. The number of
parameters is stated in brackets and the total space covered is shown in the adjacent column. Note, that
the numbers denote the maximum amount of parameters. However, for particular datasets this number
is different, due to the sequence length. Please refer to [2], [58], and Supplementary Note 1 for details on
the algorithms. Structure-based encodings are marked with †.

Group Description Paramters (#)
Total

param.
space

Ref.

aac
Amino Acid Composi-
tion

– 1 [58]

aaindex Amino Acid Index
amino acid index
(531)

531 [58]

apaac
Amphiphilic Pseudo-
Amino Acid Composi-
tion

lambda (30) 30 [58]

asa†
Accessible Solvent Ac-
cessibility

– 1 [58]

binary Binary – 1 [58]
blomap Blomap – 1 [58]
blosum62 Blosum62 – 1 [58]

cgr
Frequency Matrix
Chaos Game Repre-
sentation

Resolution (4), s-
factor (2)

8 [50]

cksaagp
Composition of k-
Spaced Amino Acid
Group Pairs

gap (30) 30 [58]

cksaap
Composition of k-
spaced Amino Acid
Pairs

gap (30) 30 [58]

ctdc
Composition/ Tran-
sition/ Distribution
composition

– 1 [58]

ctdd
Composition/ Transi-
tion/ Distribution dis-
tribution

– 1 [58]

ctdt
Composition/ Tran-
sition/ Distribution
transition

– 1 [58]

ctriad Conjoint Triad – 1 [58]

dde
Dipeptide Deviation
from Expected Mean

– 1 [58]

delaunay†
Delaunay triangula-
tion

type (5) 5 [1]

disorder† Disorder – 1 [58]

disorderb† Disorder binary – 1 [58]

disorderc† Disorder content – 1 [58]

distance distribution† Distance distribution – 1 [4]

distance frequency Distance frequency
n-terminal (5), c-
terminal (5)

25 [6]

dpc
Di-Peptide Composi-
tion

– 1 [58]

eaac
Enhanced Amino Acid
Composition

window (30) 30 [58]
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egaac
Enhanced Grouped
Amino Acid Composi-
tion

window (8) 8 [58]

electrostatic hull† Electrostatic hull distance (5) 5 [10]

fft
Fast-Fourier-
Transform

amino acid index
(531)

531 [12]

fldpc
Five Level Di-Peptide
Composition

amino acid index
(531)

531 [13]

flgc
Five Level Grouping
Composition

amino acid index
(531)

531 [13]

gaac
Grouped Amino Acid
Composition

– 1 [58]

gdpc
Grouped Di-Peptide
Composition

– 1 [58]

geary Geary correlation n-lag (30) 30 [58]

gtpc
Grouped Tri-Peptide
Composition

– 1 [58]

ksctriad
k-Spaced Conjoint
Triad

gap (30) 30 [58]

moran Moran correlation n-lag (30) 30 [58]
ngram N-gram type (6), dim (7) 42

nmbroto
Normalized Moreau-
Broto Autocorrelation

n-lag (30) 30 [58]

paac
Pseudo-Amino Acid
Composition

lambda (30) 30 [58]

psekraac
48 pseudo K-tuple
reduced amino acids
composition

type (19), sub-
type (2), raac-type
(20), k-tuple (3),
g-lambda (3)

3420 [58]

qsar†
Quantitative
Structure-Activity
Relationship

– 1 [16]

qsorder Quasi-sequence-order n-lag (30) 30 [58]

socnumber
Sequence-Order-
Coupling Number

– 1 [58]

sseb†
Secondary Structure
Elements Binary

– 1 [58]

ssec†
Secondary Structure
Elements Content

– 1 [58]

ta† Torsion angle – 1 [58]

tpc
Tri-Peptide Composi-
tion

– 1 [58]

waac
Weighted Amino Acid
Composition

amino acid index
(531)

531 [13]

zscale Z-Scale – 1 [58]
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[18] Wiwie, C., Baumbach, J., and Röttger, R. (nov, 2015) Comparing the performance of biomedical

clustering methods. Nature Methods, 12(11), 1033–1038.

[19] Davies, D. L. and Bouldin, D. W. (1979) A Cluster Separation Measure. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227.

[20] Van Der Maaten, L. and Hinton, G. (2008) Visualizing Data using t-SNE. Journal of Machine

Learning Research, 9, 2579–2605.

[21] Schubert, E. and Rousseeuw, P. (2019) Faster k-Medoids Clustering: Improving the PAM, CLARA,

and CLARANS Algorithms. Amato G., Gennaro C., Oria V., Radovanović M. (eds) Similarity
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