Supporting Information Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 (ARH3) reveals the basis of metal selectivity and different roles for the two Mg ions Yasin Pourfarjam¹, Zhijun Ma¹, Igor Kurinov², Joel Moss³, and In-Kwon Kim^{1,*} From the ¹ Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA; ² Cornell University, Department of Chemistry and Chemical Biology, NE-CAT APS, Building 436E, 9700 S. Cass Ave., Argonne, IL 60439; ³ Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Running title: Different roles of two metal ions in ARH3 * To whom correspondence should be addressed: In-Kwon Kim, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA; E-mail: kimiw@ucmail.uc.edu; Tel.: (513) 556-1909; Fax.: (513) 556-9239. ## Supporting information contents: - **Figure S1.** Heat of ADPR injection into the buffer. - Figure S2. Ca²⁺-dependent inhibition of ARH3 activity. - **Figure S3.** A close-up view into the active site of the ARH3^{WT}–ADPR–Mg²⁺ complex. - **Table S1.** Calcium and Magnesium coordination parameters. - **Table S2.** Crystallographic data statistics. Figure S1. Heat of ADPR injection into the buffer. ADP-ribose (660 μ M) in syringe was injected into the cell containing a buffer (100 mM Tris pH 7.5, 150 mM NaCl, and 5 mM MgCl₂). **Figure S2.** Ca²⁺-dependent inhibition of ARH3 activity. The PAR hydrolysis activity of ARH3 was monitored in the presence of Mg²⁺ and increasing concentrations of Ca²⁺. 5 mM Ca²⁺ was sufficient to effectively inhibit ARH3 activity and was used for ITC experiments. **Figure S3.** A close-up view into the active site of ARH3^{WT}–ADPR–Mg²⁺ structure (1). Mg^A and Mg^B are bridged by a water molecule (μ aqua ligand), which is expelled upon substitution of magnesium cations by calcium. In addition, in contrast to Ca²⁺-bound structure in which Ca^B coordinates all three hydroxyl groups of the terminal ribose" (1"-OH, 2"-OH, 3"-OH), Mg^B is in direct interaction with only the 3"-OH group. | ARH3-ADPR-Ca ²⁺ | | ARH3-ADPR-Mg ²⁺ | | |--|------|--|------| | Ca ²⁺ diameter (Å) | 1.06 | Mg ²⁺ diameter (Å) | 0.72 | | Ca ^A -Ligands number | 6 | Mg ^A -Ligands number | 6 | | Ca ^B -Ligands number | 7 | Mg ^B -Ligands number | 6 | | Ca ^A -Ligands distance (Å, Ave) | 2.23 | Mg ^A -Ligands distance (Å, Ave) | 2.49 | | Ca ^B -Ligands distance (Å, Ave) | 2.25 | Mg ^B -Ligands distance (Å, Ave) 2.82 | | | Ca ^A -Ca ^B distance (Å, Ave) | 3.3 | Mg ^A -Mg ^B distance (Å, Ave) | 3.1 | Table S1. Comparision of coordination parameters between ARH3–ADPR–Ca $^{2+}$ and ARH3–ADPR–Mg $^{2+}$ complexes. **Table S2. Crystallographic data statistics.** *Values in parentheses are for highest-resolution shell. Each dataset was collected from a single crystal. | | <i>h</i> ARH3 ^{WT} -ADPR-Ca ²⁺ | hARH3 ^{D77A} -ADPR-Mg ²⁺ | hARH3 ^{D314A} -ADPR-Mg ²⁺ | |---|--|--|---| | Data collection | | | | | Space group | P1 | P1 | P1 | | Cell dimensions
a, b, c (Å)
α, β, γ (°) | 44.9, 71.4, 115.6
93.9, 96.3, 107.1 | 44,7, 71.6, 115.9
94.2, 94.6, 107.6 | 44.8, 71.4, 115.8
94.0, 94.6, 107.8 | | Wavelength (Å) | 0.97 | 0.97 | 0.97 | | Resolution (Å) | 67.88 - 1.75 | 61.29 - 1.85 | 67.64 – 1.8 | | R _{sym} (%) | 2.8 (11.7) | 7.8 (29.2) | 12.1 (55.5) | | 1/σ1 | 20.0 (6.6) | 8.3 (2.7) | 4.6 (1.2) | | Completeness (%) | 91.5 (90.3) | 89.5 (91.0) | 89.8 (87.7) | | Redundancy | 2.2 (2.2) | 1.9 (1.9) | 1.9 (1.8) | | Refinement | | | | | Resolution (Å) | 67.88 - 1.75 | 61.29 – 1.85 | 67.64 – 1.80 | | No. reflections | 125,690 | 103,770 | 112,760 | | R_{work}/R_{free} | 14.9/18.8 | 18.1/22.7 | 18.8/22.7 | | No. atoms
Protein
Ligand/ion
Water | 10014
152
1214 | 9845
148
909 | 9986
148
857 | | B-factors
Protein
Ligand/ion
Water | 20.4
21.6
60.6 | 22.1
20.2
30.1 | 22.3
24.5
28.8 | | R.m.s deviations
Bond lengths (Å)
Bond angles (°) | 0.009
0.97 | 0.012
1.14 | 0.006
0.76 | ## **REFERENCES** 1. Pourfarjam, Y., Ventura, J., Kurinov, I., Cho, A., Moss, J., and Kim, I. K. (2018) Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. *J Biol Chem* **293**, 12350-12359