Supporting Information

Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 (ARH3) reveals the basis of metal selectivity and different roles for the two Mg ions

Yasin Pourfarjam¹, Zhijun Ma¹, Igor Kurinov², Joel Moss³, and In-Kwon Kim^{1,*}

From the ¹ Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA; ² Cornell University, Department of Chemistry and Chemical Biology, NE-CAT APS, Building 436E, 9700 S. Cass Ave., Argonne, IL 60439; ³ Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892

Running title: Different roles of two metal ions in ARH3

* To whom correspondence should be addressed: In-Kwon Kim, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA; E-mail: kimiw@ucmail.uc.edu; Tel.: (513) 556-1909; Fax.: (513) 556-9239.

Supporting information contents:

- **Figure S1.** Heat of ADPR injection into the buffer.
- Figure S2. Ca²⁺-dependent inhibition of ARH3 activity.
- **Figure S3.** A close-up view into the active site of the ARH3^{WT}–ADPR–Mg²⁺ complex.
- **Table S1.** Calcium and Magnesium coordination parameters.
- **Table S2.** Crystallographic data statistics.

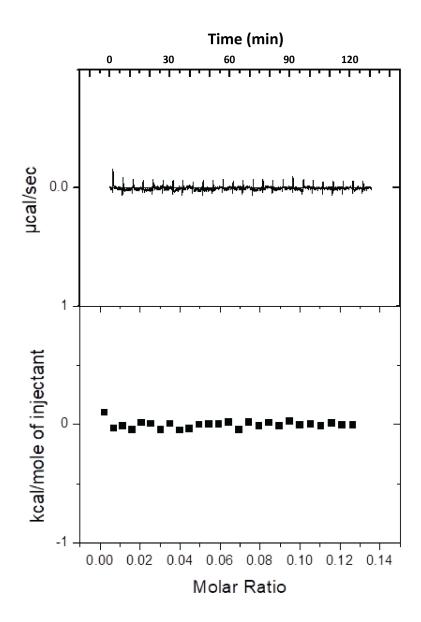
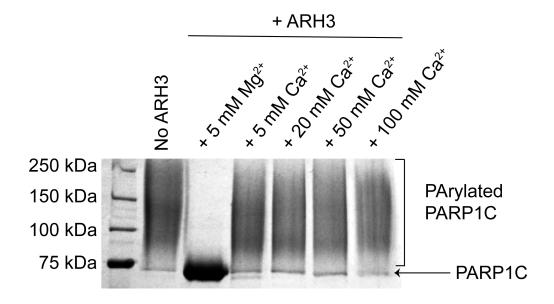
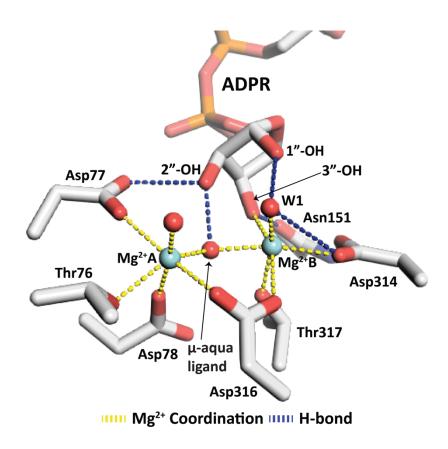




Figure S1. Heat of ADPR injection into the buffer. ADP-ribose (660 μ M) in syringe was injected into the cell containing a buffer (100 mM Tris pH 7.5, 150 mM NaCl, and 5 mM MgCl₂).

Figure S2. Ca²⁺-dependent inhibition of ARH3 activity. The PAR hydrolysis activity of ARH3 was monitored in the presence of Mg²⁺ and increasing concentrations of Ca²⁺. 5 mM Ca²⁺ was sufficient to effectively inhibit ARH3 activity and was used for ITC experiments.

Figure S3. A close-up view into the active site of ARH3^{WT}–ADPR–Mg²⁺ structure (1). Mg^A and Mg^B are bridged by a water molecule (μ aqua ligand), which is expelled upon substitution of magnesium cations by calcium. In addition, in contrast to Ca²⁺-bound structure in which Ca^B coordinates all three hydroxyl groups of the terminal ribose" (1"-OH, 2"-OH, 3"-OH), Mg^B is in direct interaction with only the 3"-OH group.

ARH3-ADPR-Ca ²⁺		ARH3-ADPR-Mg ²⁺	
Ca ²⁺ diameter (Å)	1.06	Mg ²⁺ diameter (Å)	0.72
Ca ^A -Ligands number	6	Mg ^A -Ligands number	6
Ca ^B -Ligands number	7	Mg ^B -Ligands number	6
Ca ^A -Ligands distance (Å, Ave)	2.23	Mg ^A -Ligands distance (Å, Ave)	2.49
Ca ^B -Ligands distance (Å, Ave)	2.25	Mg ^B -Ligands distance (Å, Ave) 2.82	
Ca ^A -Ca ^B distance (Å, Ave)	3.3	Mg ^A -Mg ^B distance (Å, Ave)	3.1

Table S1. Comparision of coordination parameters between ARH3–ADPR–Ca $^{2+}$ and ARH3–ADPR–Mg $^{2+}$ complexes.

Table S2. Crystallographic data statistics. *Values in parentheses are for highest-resolution shell. Each dataset was collected from a single crystal.

	<i>h</i> ARH3 ^{WT} -ADPR-Ca ²⁺	hARH3 ^{D77A} -ADPR-Mg ²⁺	hARH3 ^{D314A} -ADPR-Mg ²⁺
Data collection			
Space group	P1	P1	P1
Cell dimensions a, b, c (Å) α, β, γ (°)	44.9, 71.4, 115.6 93.9, 96.3, 107.1	44,7, 71.6, 115.9 94.2, 94.6, 107.6	44.8, 71.4, 115.8 94.0, 94.6, 107.8
Wavelength (Å)	0.97	0.97	0.97
Resolution (Å)	67.88 - 1.75	61.29 - 1.85	67.64 – 1.8
R _{sym} (%)	2.8 (11.7)	7.8 (29.2)	12.1 (55.5)
1/σ1	20.0 (6.6)	8.3 (2.7)	4.6 (1.2)
Completeness (%)	91.5 (90.3)	89.5 (91.0)	89.8 (87.7)
Redundancy	2.2 (2.2)	1.9 (1.9)	1.9 (1.8)
Refinement			
Resolution (Å)	67.88 - 1.75	61.29 – 1.85	67.64 – 1.80
No. reflections	125,690	103,770	112,760
R_{work}/R_{free}	14.9/18.8	18.1/22.7	18.8/22.7
No. atoms Protein Ligand/ion Water	10014 152 1214	9845 148 909	9986 148 857
B-factors Protein Ligand/ion Water	20.4 21.6 60.6	22.1 20.2 30.1	22.3 24.5 28.8
R.m.s deviations Bond lengths (Å) Bond angles (°)	0.009 0.97	0.012 1.14	0.006 0.76

REFERENCES

1. Pourfarjam, Y., Ventura, J., Kurinov, I., Cho, A., Moss, J., and Kim, I. K. (2018) Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. *J Biol Chem* **293**, 12350-12359