Supplementary Materials for

Gut-Liver physiomimetics reveal paradoxical modulation of IBDrelated inflammation by short-chain fatty acids

Martin Trapecar¹, Catherine Communal¹, Jason Velazquez¹, Christian Alexander Maass^{1,2}, Yu-Ja Huang¹, Kirsten Schneider¹, Charles W. Wright¹, Vincent Butty^{1,3}, George Eng^{4,5}, Omer Yilmaz⁴, David Trumper^{6,7}, Linda G. Griffith^{1,6,8*}

Correspondence to: griff@mit.edu

This file includes:

Figures S1 to S7 Table S1

Supplementary figures

Fig.S1

Gut donor of each MPS can be predicted with 100% accuracy by random forest analysis based on cytokines released during gut MPS-Treg/Th17 interaction. (A) Representative values of individual cytokines measured in media of UC and healthy epithelial monolayers, UC and healthy gut MPS and MPS co-cultures with Treg/Th17 cells (B) Concentration of TGF- β 1, TGF- β 2 and IL-17 in basal media of UC and helthy gut MPS during interaction with Treg/Th17 cells (A-B) *FDR<0.05; **FDR<0.001; ***FDR<0.001; ****FDR<0.0001. (C) List of top 10 differential gene expression pathway enrichments, ranked based on combined z and p score, by Wikipathway analysis of UC gut MPS over healthy control (D) Random forest analysis of cytokines shown under (A) during UC and helthy MPS interaction with Treg/Th17 cells. Confusion matrix indicates prediction accuracy. Each condition was tested in separate experiments with 3-5 biological replicates.

Platform operation, circulating CD4 T cell viability and schematic models to calculate SCFA metabolism and distribution. (A) Operational parameters of the 3XGL platform with the gut and liver MPSs. (B) Schematic overview of the utilized compartmental model to describe SCFA distribution, metabolism in the gut MPS; P_{gut} = permeability, A_{gut} = surface area of transwell, CL = metabolism. (C) Schematic overview of the four-compartmental model consisting of a gut, liver and mixing chamber MPS. In addition to gut-specific SCFA permeability and consumption, liver metabolism was implemented to describe the distribution.

SCFA distribution and its effect on global gene expression and functional parameters of gut and liver function during gut-liver interaction with or without SCFA and Treg/Th17 cells. (A) Apical concentrations of acetate, propionate and butyrate in UC gut MPS and their bioavailable concentrations in basal common medium during 96h of interaction. Far right: hepatic clearance of bioavailable SCFA. (B) Complete linkage and cluster heatmap of genes expressed by all tissues collected during the study. (C) Representative brightfield images of epithelial monolayers at day 0 of interaction, prior to basolateral seeding of MACs/DCs, and that of gut MPS monolayers with underlying MACs/DCs at day 2 and day 4 of interaction (D) TEER of UC gut MPS used in the interaction studies as well as the control. D0: at the beginning of the interaction, D2: TEER of the control gut MPS in isolation, D4: end of the interaction. ****FDR<0.0001. (E) Albumin concentrations produced by the liver MPS before, during and at the end of interaction measured in common medium.

Seed state: 3; Number of trees:100

Effect of SCFA on cytokine/chemokine expression during gut-liver interaction in the absence of Treg//Th17 cells. (A) log2 Fold changes of individual multiplexed cytokines/chemokines measured in the common medium of the gut-liver and gut-liver-SCFA interactions. p values indicate 2-Way ANOVA difference between SCFA treated and non-treated groups. (B) Concentrations of cytokines/chemokines identified by random forest analysis to be most predictive of condition. *FDR<0.05; **FDR<0.01; ***FDR<0.001; ***FDR<0.001. (C) Random forest analysis of all cytokines/chemokines measured. Top left: Number of trees required to complete confusion matrix. Bottom left: Confusion matrix indicating prediction accuracy. Right: Importance matrix of most predictive parameters.

Fig.S5

SCFA and systemic inflammation affect glucose metabolism and production of ketone bodies. (A-C) Scaled intensities of glucose, pyruvate and lactate at days 2 and 4 (A), aconitate (B), and BHBA (C) at day 2 for interactions among all 4 experimental conditions, MPS controls in isolation and common media. *p<0.05; **p<0.01.

Seed state: 3; Number of trees:100

Effect of SCFA on cytokine/chemokine expression during gut-liver interaction in the presence of Treg//Th17 cells (A) log2 Fold changes of individual multiplexed cytokines/chemokines measured in the common medium of the gut-liver-Treg/Th17 and gut-liver-Treg/Th17-SCFA interactions. p values indicate 2-Way ANOVA difference between SCFA treated and non-treated groups. (B) Concentrations of cytokines/chemokines identified by random forest analysis to be most predictive of condition. *FDR<0.05; **FDR<0.01; ***FDR<0.001; ***FDR<0.0001. (C) Random forest analysis of all cytokines/chemokines measured. Top left: Number of trees required to complete confusion matrix. Bottom left: Confusion matrix indicating prediction accuracy. Right: Importance matrix of most predictive parameters.

Effect of SCFA on inflammation related metabolic products during gut-liver interaction (A,B) Scaled intensities of tryptophan, kynurenine and kynurenate (A) as well as quinolinate, nicotinamide and nicotinamide riboside (B) at days 2 and 4 for interactions among all 4 conditions, MPS controls in isolation and common media. *p<0.05; **p<0.01.

Supplementary tables

Parameter name	Acronym	Value	Unit
Permeability	P _{gut}	Estimated	cm/min
Surface area	A _{gut}	0.33	cm ²
Metabolism gut	Cl _{gut}	Estimated	ml/min
Metabolism liver	Cl _{liv}	Estimated	ml/min
Media volume gut	V _{apical}	0.5	ml
	V _{basal}	1.5	ml
Media volume liver	V _{liv}	1.6	ml
Media volume mixer	V _{mix}	2.5	ml
Systemic flow rate	Q _{mix}	30	ml/day
Flow partitioning gut	Q _{gut}	0.75*Q _{mix}	ml/day
Flow partitioning liver	Q _{hep}	0.25*Q _{mix}	ml/day

Table S1. Overview of model parameters