CD13 is a Critical Regulator of Cell-cell Fusion in Osteoclastogenesis

Mallika Ghosh^{1*}, Tomislav Kelava², Ivana Vrhovac Madunic², Ivo Kalajzic² and Linda H Shapiro,¹

Centers for ¹Vascular Biology, ²Regenerative Medicine and Skeletal Development University of Connecticut Medical School, Farmington, Connecticut 06032, USA

*Corresponding authors:

Linda H Shapiro, PhD
Center for Vascular Biology
University of Connecticut Medical School
Farmington, CT 06030
Email: <u>lshapiro@uchc.edu</u>
Telephone: 860-679-4373
Fax: 860-679-1201

Mallika Ghosh, PhD Center for Vascular Biology University of Connecticut Medical School Farmington, CT 06030 Email: mghosh@uchc.edu Telephone: 860-679-1189 Fax: 860-679-1201

Conflict of interest: The authors have declared that no conflict of interest exists.

b

FIG S4. Osteoclast progenitors with osteoclastogenic potential are similar in WT and CD13^{KO} BM and periphery. Flow cytometric analysis of OCP profile of WT and CD13^{KO} mice indicated by CD3⁻, B220⁻, NK1.1⁻, CD11b^{-/IO}, CD115⁺, CD117⁺ in the BM (a), and CD3⁻, B220⁻, NK1.1⁻, CD11b⁺, Ly6G⁻, Ly6C⁺, CD115⁺ in spleen (b), and common myeloid progenitor population indicated by lin⁻ c-kit⁺ Sca⁻¹- CD34⁺ in the BM analyzed by FlowJo software version 9.9 (https://www.flowjo.com/) (c). Data represents +/- SEM of three independent experiments. N=6/genotype.

FIG S5. Representative histogram of dynamin, DCST1 and CD9 surface expression in osteoclast progenitors (OCP) and multinucleated OC isolated from WT and CD13^{KO} mice. Abundance at the surface was analyzed by staining with goat antirabbit dynamin2-Alexa 488 (a), rabbit anti-mouse DCST1-Alexa fluor 350 (b) and rat anti-mouse CD9-APC (c) followed by flow cytometry and analyzed by FlowJo software version 9.9 (https://www.flowjo.com/). Goat IgG-Alexa 488 (a) or rabbit IgG–AF350 (b) or rat IgG APC (c) was used as isotype control. N=3/genotype.

FIG S6. Full-length individual blots and cropped replicates of Fig. 5f.

FIG S7. Full-length individual blots of Fig. 7a.

FIG S8. Cropped replicates of Fig. 7a.

FIG S9. Full-length individual blots of Fig. 7c.

FIG S10. Full-length individual blots of Fig. 8b.

FIG S11. Cropped replicates of Fig. 8b.