
REVIEWER COMMENTS 

Reviewer #1, expert in high-grade serous ovarian cancer, metabolism and drug resistance (Remarks 

to the Author): 

The authors sought to determine the key phenotypic transcriptomic changes that evolve during 

chemotherapy due to selective pressure. They employed the Pareto optimization concept, to 

determine the tasks that dominate an organism’s fitness and identified a number and features of 

driver phenotypes “archetypical phenotypes” in cancer cells that evolve during tumor progression 

and therapy. The authors also evaluated the archetypes with genetic alterations to identify the 

potential link between somatic alterations and phenotypic state. The authors identifies 3 archetypes 

that characterize cancer cell phenotypes during cancer progression and chemotherapy. These 

included metabolism and proliferation (MAP), cellular defense response (CDR), and DNA damage 

repair (DDR). The manuscript is well written with comprehensive description of the methodology 

and analysis. However, I have the following concerns 

1. The sample size, though longitudinal over years is small and some patient variabilities cannot be 

generalized or linked to as specific somatic or germ-line mutation. In addition, the prognostic power 

of the findings to predict disease outcome (responders or resistance) to a given treatment, or 

development or recurrence is not addressed. 

2. The authors stated that the genes included in the second archetype cell defense response (CDR) 

include PI3K/AKT and MTORC1. These signatures are better included with Metabolism and 

proliferation (MAP) archetype as they represent the main pathways linking cell proliferation to 

metabolic programing. The authors should revisit their statements and re-assign these pathways. 

3. In lines 196-198, there is discrepancy of patients/ samples numbers of the validation cohort. 

4. While the data from the scRNA of longitudinal samples in the pilot and validation cohorts 

identified malignant cell tendency to cluster into 3 archetypes, the tendency of enrichment of the 

MAP archetype with development of chemo-resistance is already established. Thus this study is at 

best validation of enrichment of the MAP as well as of PI3K/AKT/MTORC1 in resistant disease, and of 

the utility of scRNA Seq in longitudinal patient samples to provide data consistent with the already 

available data. 

5. The functional bioenergetics assay relied only on ATP production through OXPhos and glycolysis. 

The authors should also show ATP production from fatty acid oxidation that has been reported to be 

unique for HGSC. 

Reviewer #2, expert in evolution and archetypal analysis (Remarks to the Author): 

I very much enjoyed reading this article which addresses the evolutionary tradeoffs faced by single 

ovarian cancer cells before and through therapy. The authors propose that evolutionary trade-offs 

between 3 tasks - metabolism&proliferation, cell defense response, DNA repair - account for much 

of transcriptional heterogeneity in ovarian cancer. 

The importance of these findings changes as cancer develops resistance to therapy, with therapy 

selecting for metabolism and proliferation and less for cell defense and DNA repair. 

Different driver mutations support re-specialization of cells into different tasks. 

The work is of high significance for the cancer field because it addresses transcriptional 

heterogeneity. This transcriptional heterogeneity facilitates tumor progression and the emergence 



of resistance to therapy. While descriptions of this heterogeneity have been done in past years, we 

lack an interpretative framework of the selection factors driving heterogeneity before and through 

adaptation to treatment. The present study addresses this gap. 

Most of the conclusions are supported by the work, and the methods are sound in general. But I 

have some methodological concerns, especially about the connection with clonality and 

specialization into tasks which need to be addressed. 

Specific points: 

1. When introducing the Pareto framework, the authors write "which states that there is a 

combination of tasks that dominate an organism’s fitness (20). The approach defines a polygon, 

where the number of vertices reflects the number of tasks describing the data" A more precise 

description should be preferred: "which states that, when a combination of tasks dominate an 

organism’s fitness but the organism cannot be optimal at all tasks at once due to trade-offs, optimal 

phenotypes should fall on low-dimensional shapes called polyhedra. The number vertices reflects 

the number of tasks essential to the fitness of the organism." 

2. Some small changes could be made to make this manuscript more accessible to scientists the field 

of ovarian cancer. After all, Nature Communications is a transdisciplinary journal. For example, in the 

beginning of the results, the authors mention "malignant ascites and pleural effusion", none of 

which are defined prior in the article. These two terms should be defined what these are for people 

who don't know this specific cancer type. To this reader, pleural effusion evokes the mucus secreted 

by lung epithelium- the connection to ovarian cancer is not obvious. This reader also never heard of 

ascites before. 

To fix this, when first introducing HGSOC, explain something like "HGSOC mostly initiates in the 

epithelium and advances to create compact anatomical substructures called ascites. These ascites 

then progress to malignancy by invading the mesenchyme and by shedding into the fallop tubes. 

Following shedding, cancer cells are found in pleural effusion which can be sampled by [name of 

clinical procedure here]." 

3. Statistical validation of the found polyhedra would be appropriate here, which are readily 

available in the Pareto Task Inference method used by the authors. Mainly, why did the authors 

choose 3 archetypes, not 2, not 4? To address this, a supplementary figure could show the % of 

variance explained by 2, 3, 4, ... archetypes, showing that adding a 4th archetype doesn't help 

explain variance more than 3 archetypes do. At the minimum, the t-ratio test (Hart et al., Nature 

Methods 2015) should be used to test the statistical significance of fitting a triangle to the data. 

4. In the Pareto framework, all tasks contribute to fitness, albeit in different importance depending 

on the environment. While it's obvious that metabolism&proliferation is fitness enhancing, the 

authors should briefly discuss how cell defense and DNA repair contribute to the cellular fitness of 

cancer cells. 

5. I find Fig. 7 to be in contradiction with earlier results: the authors previously show that the 

importance of MAP increases over time, through acquiring resistance to treatment. But they also 

show that acquiring mutations decreases the importance of MAP in tumors. Because acquiring 

resistance and acquiring mutations should both follows time, MAP should both increase and 

decrease with time, a contradiction. To fix this, the authors should comment on this in the discussion 



or re-phrase and clarify the paragraphs or legend of Fig. 7. 

6. In Fig. 8a and 8b, instead of writing 'cluster', write 'clone', which is more specific and more 

consistent with the message of the figure. 

7. The result that task specialisation is largely clonal is very interesting. But I have an issue with the 

potentially circular reasoning that supports this claim. Circular reasoning could come about because 

the authors use gene expression to determine both the position of cells on the Pareto front and the 

clone through InferCNV. Because of this, the only possible result of this analysis is that clones and 

task specialization are associated. 

To resolve this, another source of evidence than gene expression should be used to determine the 

clones. One option could be to use mutational signatures from scRNAseq data, if feasible given 

sequencing depth and seq error rate. There are methods for this, see 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1863-4 

Alternatively, the authors should provide a convincing argument that the position of single cancer 

cells on gene expression space is not necessarily determined by the clone as inferred by InferCNV. 

Reviewer #3, expert in single cell sequencing (Remarks to the Author): 

The manuscript by Nath et al describes a longitudinal scRNA-seq and WGS analysis of ovarian cancer, 

using ascites and pleural effusion samples. The goal is to understand the diversity of cellular states, 

the changes in these states over time and with respect to response and resistance to treatments, 

and the relationship between these changes and genetic diversity. To analyze the single cell data, 

the authors rely almost exclusively on a specific framework that is driven by an evolutionary 

perspective, which defines archetype cellular states and describes the diversity as a function of these 

archetypes. Three such archetypes are defined, relating to metabolism and proliferation (MAP), 

cellular defense response (CDR) and DNA damage repair (DDR). With some exceptions, the 

archetypes generally do not show consistent associations with genetics or with development of drug 

resistance, and hence the analysis does not provide clarity to the origin or consequences of the 

archetypes. 

The main strength of this work is the unique dataset that has been generated. Longitudinal single 

cell analysis of cancer is currently a major goal in the field and the dataset produced in this work is 

very impressive. The limitation of the work is that despite the impressive dataset, the results are 

limited and do not appear to provide an important conceptual advance or to change our 

understanding of tumor heterogeneity, drug resistance or tumor progression. The analysis is 

somewhat shallow, focusing with results that are difficult to interpret, and ultimately it is not clear 

what is the take home message. 

Specific comments: 

1. The analysis is almost exclusively based on a single computational framework that defines three 

archetypes and proceeds with the analysis entirely through the lens of these archetypes. This 

framework is valid and has been used previously, although it might be more specifically suited for 

other contexts than to cancer cells; this is because in these cancer cells many of the changes reflect 

immediate responses to the environment as well as genetic drift, which might not fit a framework 



that ascribes all effects to adaptation and division of labor between cells. Regardless, the restricted 

focus on these archetypes feels like an oversimplification that may hide additional aspects of the 

cellular diversity and hinder a more complete description and understanding of the heterogeneity. It 

is difficult to fully appreciate the cellular meaning of the archetypes, the degree to which they 

capture the patterns of cellular diversity and their consistency between patients and time points. I 

would suspect that more detailed analysis through orthogonal approaches might provide a better 

description of cellular diversity and perhaps additional results. Below are several suggestions for 

such additional analysis. 

(i) Which genes are correlated (positively or negatively) with progression, as defined by distinct time 

points, in each individual patient? and what are the overlaps of such genes between patients? This 

would seem to me like the first step in an unbiased analysis aimed at relating the dataset to tumor 

progression, which is currently lacking. 

(ii) When traditional approaches are used to cluster the malignant epithelial cells in each patient, 

what are the resulting clusters and their differential expression? How consistent are these patterns 

of clusters with the archetype analysis and do they uncover additional aspects of cellular diversity? 

(iii) When a single archetype is associated with multiple processes (such as proliferation and 

metabolism in the case of the MAP archetype) are these processes coupled throughout the dataset, 

or could they be separated in some cases such that MAP values in some cases reflect metabolism 

and in others reflect cell cycle? In the case of metabolism, could glycolysis, TCA, ox.phos and possibly 

other aspects be distinguished and compared over patients and time points? In general, the view 

that these processes are entirely coupled seems like an oversimplification and should examined 

further to show the degree of coupling. 

(iv) When archetypes reflect a particular process, which genes reflect that process in that archetype, 

do the relevant genes differ between patients and time points, and what are the exact patterns of 

those functionally-relevant sets of genes (as opposed to the entire archetype expression profile)? 

For example, in the case of proliferation, could the current vague definition (i.e. cells belonging to an 

archetype with multiple aspects including proliferation) be replaced by a concrete classification of 

single cells into non-dividing and dividing cells, and possibly further classified into phases of the cell 

cycle? In the case of cellular defense responses, could intereferon response be distinguished from 

other aspects of that archetype? 

(v) In terms of visualization, heatmaps that show the archetype-associated genes across single cells 

would be helpful for evaluating the primary data, the consistency between those distinct genes, and 

their differences between time-points and patients. 

2. The abstract suggests a significant role of MAP in development of resistance, with the statements 

“The metabolism and proliferation archetype evolved during treatment…” and “…consistent 

enrichment of subclones with the metabolism archetype as resistance is acquired”. Accordingly, 

Figure 4 argues for a progression-related increase in the proportion of specialists for the MAP 

archetype. However, this result seems inconsistent with the main dataset. Specifically, in Figure 8, 

there is only one patient (7) in which there appears to be a robust longitudinal increase in the MAP 

archetype, while most patients show other patterns; these include no substantial changes in MAP 

proportions (patients 5 and 9), changes that are not consistent with time, for example with highest 

MAP proportion in time point 2 compared to 1 and 3 (patients 6 and 8), and an opposite pattern 

(patient 4). Accordingly, the data may support an association of MAP with tumor burden (as 

reflected by CA-125) rather than with tumor progression and drug resistance. This distinction seems 

to explain the discrepancy between the two analyses (figure 4 and 8) as CA-125 is not always highest 

in the last time point, while drug resistance is thought to gradually increase and would be expected 

to be highest at the last time point. An association of metabolism and proliferation expression 



profiles with tumor burden seems quite expected, likely reflecting the fact that an increased tumor 

burden implies more dividing cells and increased energetic demands. Thus, a likely explanation is 

that increased tumor burden by definition implies an increase in MAP proportion and that MAP is 

only reflective of proliferating cells and not of a unique cellular state that is being selected for by 

specific drug treatments. 

3. EMT is noted in the discussion as part of the MAP archetype, but this is the first time that EMT is 

mentioned in the text of the paper (as opposed to the figures). Given the lack of description of EMT 

patterns in the results, the discussion about EMT seems as if it is coming out of nowhere. It is not 

clear which EMT-related genes are part of the MAP archetype, how strong is the EMT-related signal, 

how does it vary between samples and time points and whether it correlates with the proliferation 

and metabolism aspects of the MAP archetype. 

4. Inference of CNAs: 

First, in the Methods it is stated that malignant cells were separated from normal cells by CNAs, but 

this should be shown with a figure that shows CNA profiles of both malignant and normal cells. 

Second, the separation into distinct subclones of malignant cells by CNA inference, as shown in 

figure S12, does not seem to be robust, and the exact method by which subclones are defined is not 

specified. Even if there is variability in CNA patterns it does not seem trivial to define the exact 

subclonal structure and there is no explanation for how this is done. The patterns of CNAs and the 

degree to which they support a specific definition of subclones should be better defined and 

demonstrated. 

5. Most claims are made without a proper testing of significance. Statistical tests and associated p–

values should be included for all claims. 

6. Figures 6 and 7 are not very informative in their current version and might fit better in the 

supplement. 

7. The standard HGSOC abbreviation (which is defined at the top) is then replaced by many instances 

of HGSOV. 

8. The color schemes used in several figures makes it hard to differentiate between patients and cell 

types and should be replaced. 



We sincerely thank the reviewers for their thorough assessment and insightful suggestions for improving our work. 
We have performed additional experiments and analyses as requested and have addressed the reviewers' 
concerns in the point-by-point responses below.  
 
REVIEWER COMMENTS 
 
Reviewer #1, expert in high-grade serous ovarian cancer, metabolism and drug resistance (Remarks to the 
Author): 
 
The authors sought to determine the key phenotypic transcriptomic changes that evolve during chemotherapy due 
to selective pressure. They employed the Pareto optimization concept, to determine the tasks that dominate an 
organism’s fitness and identified a number and features of driver phenotypes “archetypical phenotypes” in cancer 
cells that evolve during tumor progression and therapy. The authors also evaluated the archetypes with genetic 
alterations to identify the potential link between somatic alterations and phenotypic state. The authors identifies 3 
archetypes that characterize cancer cell phenotypes during cancer progression and chemotherapy. These included 
metabolism and proliferation (MAP), cellular defense response (CDR), and DNA damage repair (DDR). The 
manuscript is well written with comprehensive description of the methodology and analysis. However, I have the 
following concerns 
 
We appreciate the reviewer’s helpful comments and suggestions. We have revised information on the key 
pathways associated with archetypal phenotypes and performed additional experiments to demonstrate the 
contribution of fatty acid oxidation to the metabolic shifts.  
 
1. The sample size, though longitudinal over years is small and some patient variabilities cannot be generalized or 
linked to as specific somatic or germ-line mutation. In addition, the prognostic power of the findings to predict 
disease outcome (responders or resistance) to a given treatment, or development or recurrence is not addressed. 
 
We agree with the reviewer that the current study is not designed to develop a biomarker and is underpowered to 
link specific mutations with the observed longitudinal phenotypes or to determine prognostic implications. Due to 
the nature of this cohort, we refrained from claiming specific mutations (germline or somatic) were associated 
with HGSOC subclone and archetypes. Of note, while not large in the number of patients, this is the first time that 
serial samples collected during long-term therapy have been analyzed. 
 
Despite the small sample size, we did observe an interesting correlation between MAP and the overall survival of 
the patients (see figure below). We found a negative correlation (r = -0.69) between the proportion of the MAP 
archetype specialists (relative to the proportion of all specialists) at the final time point and the overall survival of 
the patients. This observation suggests that understanding the emergence and the biology of the MAP archetype is 
relevant for HGSOC progression.   
 

 
Scatterplot showing a correlation between the relative proportion of MAP specialists at the last time point (Y-axis) vs. overall 
survival of the patient in days since primary surgery was performed. 



 
2. The authors stated that the genes included in the second archetype cell defense response (CDR) include 
PI3K/AKT and MTORC1. These signatures are better included with Metabolism and proliferation (MAP) archetype 
as they represent the main pathways linking cell proliferation to metabolic programing. The authors should revisit 
their statements and re-assign these pathways.  
 
We appreciate the reviewer's concerns with the assignment of pathways such as PI3K/AKT/MTORC1 to the CDR 
archetype. We have revised our statements to reflect that the CDR archetype was defined based on the interferon-
gamma and IL6/JAK/STAT3 signaling pathways, as was originally shown in Figure 2b.   
 
We have also performed additional analyses to demonstrate the contribution of individual signaling pathways to 
each archetype. As the classification of the archetypes using the lasso approach shrinks the coefficients of several 
pathways to zero, we also evaluated the contribution of individual signaling pathways to each archetype using 
regression analysis. We analyzed the association between KEGG pathway enrichment scores in single cells against 
the archetype scores of three archetypes across all cells (shown in Supplementary Table 5). The classification of the 
MAP archetype was supported by the positive associations with enrichment (positive coefficients and FDR < 0.05) 
of pathways including cell cycle, DNA replication, glycolysis, and OXPHOS. The CDR archetype was supported by 
positive associations with key immune response pathways, including NK cell-mediated cytotoxicity, TLR receptor 
signaling, RIG-I like receptor signaling, NOD-I-like receptor signaling, and T-cell/B-cell receptor signaling. 
Interestingly, the CDR archetype scores were also positive correlated with metabolism pathways of glycolysis and 
OXPHOS, but not with proliferation as indicated by cell cycle and DNA replication, suggesting a decoupling of these 
two phenotypes in the CDR cells and supporting the separate classification of this cell state from MAP. 
Furthermore, similar to the classification of the PI3K/MTOR and WNT pathways in the CDR archetype in the group 
lasso analysis, the CDR cells were again associated with the KEGG MAPK and WNT signaling pathways, suggesting 
activation of these pathways contributed to the CDR archetype over MAP. 
 
We have added this new information to the section on the classification of archetypes (see Page 10).  
 
 
3. In lines 196-198, there is discrepancy of patients/ samples numbers of the validation cohort. 
 
Thank you for pointing out the confusion created by the description in lines 196-198. The validation cohort 
consisted of “unmatched” patient samples obtained from 8 pre-treatment and 7 post-treatment patients. We have 
modified the sentence to include this information.  
 
 
4. While the data from the scRNA of longitudinal samples in the pilot and validation cohorts identified malignant 
cell tendency to cluster into 3 archetypes, the tendency of enrichment of the MAP archetype with development of 
chemo-resistance is already established. Thus this study is at best validation of enrichment of the MAP as well as of 
PI3K/AKT/MTORC1 in resistant disease, and of the utility of scRNA Seq in longitudinal patient samples to provide 
data consistent with the already available data. 
 
We appreciate the reviewer’s comment. We have now performed additional analyses with the scRNA-seq data to 
provide a more detailed insight into the phenotypes that encompass the archetypes. As we have discussed in 
response to the reviewer’s comment #2, we found that the MAP and CDR archetypes are inherently decoupled, 
despite sharing key metabolic phenotypes. We have also found that MAPK or WNT signaling pathways are 
associated with the CDR archetype, rather than the MAP cells, suggesting their contributions to cells impacted by 
immune surveillance over cells undergoing active proliferation. At the last time point, we observed a significant 
negative correlation between the CDR and MAP cells (Supplementary Figure 15d). Thus, we observed an overall 
shift from CDR to MAP specialists at later time points along the course of progression, while the shift towards MAP 
specialists at the last time point indicated a link with poor survival. Together with the association of archetypal cell 
populations with specific subclones, our results suggest that the MAP cells are a distinct population of cells that 
should be further evaluated to identify their origins and to develop strategies to combat their evolution.  



5. The functional bioenergetics assay relied only on ATP production through OXPhos and glycolysis. The authors 
should also show ATP production from fatty acid oxidation that has been reported to be unique for HGSC. 
 
As suggested by the reviewer, we have performed additional assays to characterize the contribution of fatty 
oxidation to the ATP production in the HGSOC cells over time. We determined the metabolic capacity of the cell 
lines derived from patients 4 and 8 at the early and late time points in the presence or absence of a fatty acid 
oxidation (FAO) inhibitor. Our results indicate that the inhibition of FAO resulted in a significant decrease in the 
total ATP production of the cells. However, this reduction was consistent over time, suggesting the contribution of 
FAO did not change over time (see figure below).  
 
These results were added to the results section on Page 15:  
“We also evaluated the contribution of fatty acid oxidation by comparing the contribution to ATP production in the 
presence of a fatty acid oxidation inhibitor. We found a significant decrease in ATP production, but this reduction 
was consistent over time (Supplementary Figure 16).” 

 
Supplementary Figure 16. Barplots showing the mean and SEM (n = 3) of percentage total oxygen consumption rate in cell lines 
treated with fatty acid oxidation inhibitors. The left panel shows data from cell lines from patient 4 derived at the first and last 
time points, and the right panel shows data from cell lines from patient 8 at three time points. The horizontal bars above the 
plot show pairwise comparisons and results of t-tests (n.s. = not significant, p > 0.05). 

  



Reviewer #2, expert in evolution and archetypal analysis (Remarks to the Author): 
 
I very much enjoyed reading this article which addresses the evolutionary tradeoffs faced by single ovarian cancer 
cells before and through therapy. The authors propose that evolutionary trade-offs between 3 tasks - 
metabolism&proliferation, cell defense response, DNA repair - account for much of transcriptional heterogeneity 
in ovarian cancer. The importance of these findings changes as cancer develops resistance to therapy, with therapy 
selecting for metabolism and proliferation and less for cell defense and DNA repair. Different driver mutations 
support re-specialization of cells into different tasks. The work is of high significance for the cancer field because it 
addresses transcriptional heterogeneity. This transcriptional heterogeneity facilitates tumor progression and the 
emergence of resistance to therapy. While descriptions of this heterogeneity have been done in past years, we lack 
an interpretative framework of the selection factors driving heterogeneity before and through adaptation to 
treatment. The present study addresses this gap. Most of the conclusions are supported by the work, and the 
methods are sound in general. But I have some methodological concerns, especially about the connection with 
clonality and specialization into tasks which need to be addressed. 
 
We thank the reviewer for their time and insight while reviewing this research, as well as for their encouraging 
comments and for pointing out the methodological concerns. In particular, we are grateful for the advice on how 
to most effectively communicate our findings. We have addressed these concerns by providing the relevant 
analyses that support the selection of number of archetypes and details of the subclonal analyses.  
 
Specific points: 
 
1. When introducing the Pareto framework, the authors write "which states that there is a combination of tasks 
that dominate an organism’s fitness (20). The approach defines a polygon, where the number of vertices reflects 
the number of tasks describing the data" A more precise description should be preferred: "which states that, when 
a combination of tasks dominate an organism’s fitness but the organism cannot be optimal at all tasks at once due 
to trade-offs, optimal phenotypes should fall on low-dimensional shapes called polyhedra. The number vertices 
reflects the number of tasks essential to the fitness of the organism." 
 
We sincerely appreciate this suggestion and have modified the sentence as recommended by the reviewer in the 
introduction on Page 5.  
 
 
2. Some small changes could be made to make this manuscript more accessible to scientists the field of ovarian 
cancer. After all, Nature Communications is a transdisciplinary journal. For example, in the beginning of the results, 
the authors mention "malignant ascites and pleural effusion", none of which are defined prior in the article. These 
two terms should be defined what these are for people who don't know this specific cancer type. To this reader, 
pleural effusion evokes the mucus secreted by lung epithelium- the connection to ovarian cancer is not obvious. 
This reader also never heard of ascites before. To fix this, when first introducing HGSOC, explain something like 
"HGSOC mostly initiates in the epithelium and advances to create compact anatomical substructures called ascites. 
These ascites then progress to malignancy by invading the mesenchyme and by shedding into the fallop tubes. 
Following shedding, cancer cells are found in pleural effusion which can be sampled by [name of clinical procedure 
here]." 
 
As suggested, we have now included a brief description in the introduction on Page 3: “A majority of HGSOCs arise 
from the epithelium of fallopian tubes (8), often resulting in detection of malignant cells that escape into the fluids 
accumulating in the peritoneal cavity (ascites) or in the lung pleural effusions following late-stage extra-abdominal 
metastases (9).” 
 
 
3. Statistical validation of the found polyhedra would be appropriate here, which are readily available in the Pareto 
Task Inference method used by the authors. Mainly, why did the authors choose 3 archetypes, not 2, not 4? To 
address this, a supplementary figure could show the % of variance explained by 2, 3, 4, ... archetypes, showing that 



adding a 4th archetype doesn't help explain variance more than 3 archetypes do. At the minimum, the t-ratio test 
(Hart et al., Nature Methods 2015) should be used to test the statistical significance of fitting a triangle to the data. 
 
We agree with the reviewer that the choice of selecting 3 archetypes should be explained for each archetype 
analysis performed in this study. As suggested, we have provided the variance explained by varying number of 
archetypes from 3-8 in all the analyses we have performed. We have also provided the gain in variance explained 
by the model with increment in the number of archetypes from 3-8. Specifically, we have provided this information 
for the integrated longitudinal cohort data in Supplementary Figure 4, integrated validation cohort data in 
Supplementary Figure 10 and individual longitudinal cohort data in Supplementary Figure 12.  
 
We have also added the following description in the main text in the results section on Pages 8-9: 
“To determine the shape of a polygon that can best enclose the data, we performed simulations with a varying 
number of vertices ranging from 3 to 8 (Supplementary Figure 4). There was a minimal gain in the variance 
explained by the models with >3 archetypes, showing that a triangle was enough to enclose the data. Moreover, 
any gain in variance explained by the models with >3 archetypes was at the cost of increased uncertainty in the 
position of vertices, and a decrease in the ratio of the volume of the polytope to the convex hull (t-ratio) confirmed 
that the 3-vertex triangle reliably enclosed the data (Figure 2a).”

 
Supplementary Figure 4. Simulations with 3-8 archetypes comparing variance explained by each number of archetypes (left 
panel), variance in position of the archetypes (middle panel) and the ratio of volume of the polytope to the convex hull or t-ratio 
(right panel). The results show a minimal gain in variance explained upon increasing the number of archetypes, at the cost of 
increased variance in the position of the archetypes and a reduction in t-ratio.   

 
4. In the Pareto framework, all tasks contribute to fitness, albeit in different importance depending on the 
environment. While it's obvious that metabolism & proliferation is fitness enhancing, the authors should briefly 
discuss how cell defense and DNA repair contribute to the cellular fitness of cancer cells. 
 
Thank you for this important suggestion. Based on the reviewer’s suggestion and additional results from new 
analyses, we have updated the discussion section to include the following information on Pages 21-22:  
“We found that the metabolism and proliferation archetype (MAP) evolved later over the course of chemotherapy 
compared to early time points or treatment-naïve samples and, at the last time point, this was concomitant with a 
decrease in the CDR archetype and correlated with poor overall survival of the patients (Supplementary Figure 15). 
Our results support the clinical observation that exceptional long-term HGSOC survivors are associated with 
enrichment of immune response signatures while short-term survivors tend to be associated with proliferation 
signatures (39).  
     



Interestingly, pathways that are well known to contribute to cellular survival, metabolism, and proliferation from 
HGSOC bulk transcriptomes, such as MAPK (40) and WNT (41) signaling, were preferentially associated with non-
proliferating cells in the CDR archetype, instead of the proliferating cells of the MAP archetype. The pathways 
enriched in the CDR archetype like TLR signaling and NK-cells mediated cytotoxicity suggest that these cells are 
responsive to immune cells in the microenvironment (42). Thus, the prevalence of CDR cells could be indicative of 
active immune surveillance in the tumor, which has been linked to better prognosis and outcomes of ovarian 
cancers (43). Key metabolic pathways (OXPHOS, glycolysis) were also associated with the CDR archetype 
(Supplementary Table 5). Based on this, it is reasonable that a chemoresistant tumor would select metabolically 
active MAP cells that are actively proliferating, instead of metabolically active CDR cells that are subject to immune 
surveillance. This observation also supports the idea of multi-task evolution, where the progressive tumors select 
for cells specializing in proliferation over immune response, assuming both cell states have similar fitness costs as 
indicated by enrichment of metabolic pathways.”     
 
5. I find Fig. 7 to be in contradiction with earlier results: the authors previously show that the importance of MAP 
increases over time, through acquiring resistance to treatment. But they also show that acquiring mutations 
decreases the importance of MAP in tumors. Because acquiring resistance and acquiring mutations should both 
follows time, MAP should both increase and decrease with time, a contradiction. To fix this, the authors should 
comment on this in the discussion or re-phrase and clarify the paragraphs or legend of Fig. 7. 
 
We understand the confusion arising from Figure 7 and description of the results. We have evaluated the 
association between the presence of key somatic mutations in tumor samples across all time points and the 
likelihood that a particular archetype might be enriched in a tumor carrying the somatic mutation. As we have 
shown in Figure 7, most of the common mutations are not associated with a particular archetype. That said, it is 
very much possible that the emergence of the archetypes can be explained other somatic mutations or epigenetic 
changes that are not yet characterized to be associated with HGSOC progression. Unfortunately, our study is not 
statistically powered to identify new somatic mutations associated with progression. Thus, the data does not 
contradict the fact somatic variants are acquired over time and only highlights that known driver somatic variants 
are not associated with the emergence of archetypes.     
 
We have clarified this result in the text and updated the discussion section to reflect this information on Page 24: 
“We found that driver somatic mutations were not associated with the emergence of archetypes across the 
patients. We have evaluated the association between the presence of key somatic mutations in tumor samples 
across all time points and the likelihood that a particular archetype might be enriched in a tumor carrying the 
somatic mutation (Figure 7). While most of the common mutations are not associated with a particular archetype 
it is possible that the emergence of the archetypes can be explained by other somatic mutations changes that are 
not yet characterized to be associated with HGSOC progression. As our study is underpowered to discover new 
somatic variants, our results do not completely rule out the potential role of genetic mechanisms in archetypal 
evolution, as evidenced by the close association of archetype shits with specific subclones.” 
 
6. In Fig. 8a and 8b, instead of writing 'cluster', write 'clone', which is more specific and more consistent with the 
message of the figure. 
 
As suggested, we have updated Figure 8 to replace “cluster” with “subclone”.  
 
 
7. The result that task specialisation is largely clonal is very interesting. But I have an issue with the potentially 
circular reasoning that supports this claim. Circular reasoning could come about because the authors use gene 
expression to determine both the position of cells on the Pareto front and the clone through InferCNV. Because of 
this, the only possible result of this analysis is that clones and task specialization are associated.  
 
To resolve this, another source of evidence than gene expression should be used to determine the clones. One 
option could be to use mutational signatures from scRNAseq data, if feasible given sequencing depth and seq error 
rate. There are methods for this, see https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-



1863-4  
Alternatively, the authors should provide a convincing argument that the position of single cancer cells on gene 
expression space is not necessarily determined by the clone as inferred by InferCNV. 
 
We understand the reviewers concern regarding the analyses comparing scRNA-seq derived archetypes with 
subclonal population called using the InferCNV method which also relies on scRNA-seq data. While we agree that 
alternative approaches that utilize variant information could help support the subclonal structure, we have found 
that the 10X scRNA-seq data was sparse and not suitable for clustering-based resolution of subclonal structures 
using somatic mutations. Nevertheless, we believe that InferCNV is a suitable approach because it estimates the 
regions of gain and loss by applying a moving average over a sliding window across genes, sorted by their 
chromosomal locations.  Further, the default method reduces the expression values of outliers to a set threshold 
that minimize the impact of single genes on the moving average. Thus, the inferred regions of gain or loss and the 
resulting clusters are more likely to reflect genetic subclones based on regains of gain or loss than transcriptional 
clusters.  
 
As suggested by the reviewer, we have also provided additional details for our inference of the subclonal structure 
of the HGSOC tumors using the InferCNV method. Briefly, our approach to define the subclones utilized the 
InferCNV subclusters determined by a hidden markov model (HMM), followed by inspection of regions of copy 
number gain or loss in each predicted subcluster. In case of ambiguous regions of gain or loss, we also assessed the 
presence of these regions in our WGS data. Finally, we determined the branches of the clonal evolutionary tree 
based on the patterns of shared regions of gain or loss. We have provided a detailed description of the procedure 
and associated figures in a new supplement to the methods. As shown in the CNA figures for each patient, the 
subclusters/subclones are clearly defined by regional copy number alterations. Please see “Supplementary 
Methods” for a detailed description and figures showing CNA’s that were used to determine the subclones. 
  



Reviewer #3, expert in single cell sequencing (Remarks to the Author): 
 
The manuscript by Nath et al describes a longitudinal scRNA-seq and WGS analysis of ovarian cancer, using ascites 
and pleural effusion samples. The goal is to understand the diversity of cellular states, the changes in these states 
over time and with respect to response and resistance to treatments, and the relationship between these changes 
and genetic diversity. To analyze the single cell data, the authors rely almost exclusively on a specific framework 
that is driven by an evolutionary perspective, which defines archetype cellular states and describes the diversity as 
a function of these archetypes. Three such archetypes are defined, relating to metabolism and proliferation (MAP), 
cellular defense response (CDR) and DNA damage repair (DDR). With some exceptions, the archetypes generally do 
not show consistent associations with genetics or with development of drug resistance, and hence the analysis 
does not provide clarity to the origin or consequences of the archetypes. 
 
The main strength of this work is the unique dataset that has been generated. Longitudinal single cell analysis of 
cancer is currently a major goal in the field and the dataset produced in this work is very impressive. The limitation 
of the work is that despite the impressive dataset, the results are limited and do not appear to provide an 
important conceptual advance or to change our understanding of tumor heterogeneity, drug resistance or tumor 
progression. The analysis is somewhat shallow, focusing with results that are difficult to interpret, and ultimately it 
is not clear what is the take home message. 
 
We thank the reviewer for their critical insight and for taking the time to provide a thorough assessment of our 
work. Specifically, we appreciate the advice regarding additional orthogonal analyses, which have provided new 
insights into our data and helped mitigate the concerns raised by the reviewer.  
 
Specific comments: 
1. The analysis is almost exclusively based on a single computational framework that defines three archetypes and 
proceeds with the analysis entirely through the lens of these archetypes. This framework is valid and has been 
used previously, although it might be more specifically suited for other contexts than to cancer cells; this is 
because in these cancer cells many of the changes reflect immediate responses to the environment as well as 
genetic drift, which might not fit a framework that ascribes all effects to adaptation and division of labor between 
cells. Regardless, the restricted focus on these archetypes feels like an oversimplification that may hide additional 
aspects of the cellular diversity and hinder a more complete description and understanding of the heterogeneity. It 
is difficult to fully appreciate the cellular meaning of the archetypes, the degree to which they capture the patterns 
of cellular diversity and their consistency between patients and time points. I would suspect that more detailed 
analysis through orthogonal approaches might provide a better description of cellular diversity and perhaps 
additional results. Below are several suggestions for such additional analysis.  
 
(i) Which genes are correlated (positively or negatively) with progression, as defined by distinct time points, in 
each individual patient? and what are the overlaps of such genes between patients? This would seem to me like 
the first step in an unbiased analysis aimed at relating the dataset to tumor progression, which is currently lacking.  
 
(ii) When traditional approaches are used to cluster the malignant epithelial cells in each patient, what are the 
resulting clusters and their differential expression? How consistent are these patterns of clusters with the 
archetype analysis and do they uncover additional aspects of cellular diversity?  
 
(iii) When a single archetype is associated with multiple processes (such as proliferation and metabolism in the 
case of the MAP archetype) are these processes coupled throughout the dataset, or could they be separated in 
some cases such that MAP values in some cases reflect metabolism and in others reflect cell cycle? In the case of 
metabolism, could glycolysis, TCA, ox.phos and possibly other aspects be distinguished and compared over 
patients and time points? In general, the view that these processes are entirely coupled seems like an 
oversimplification and should examined further to show the degree of coupling. 
 
(iv) When archetypes reflect a particular process, which genes reflect that process in that archetype, do the 
relevant genes differ between patients and time points, and what are the exact patterns of those functionally-



relevant sets of genes (as opposed to the entire archetype expression profile)? For example, in the case of 
proliferation, could the current vague definition (i.e. cells belonging to an archetype with multiple aspects 
including proliferation) be replaced by a concrete classification of single cells into non-dividing and dividing cells, 
and possibly further classified into phases of the cell cycle? In the case of cellular defense responses, could 
intereferon response be distinguished from other aspects of that archetype? 
 
(v) In terms of visualization, heatmaps that show the archetype-associated genes across single cells would be 
helpful for evaluating the primary data, the consistency between those distinct genes, and their differences 
between time-points and patients. 
 
We agree with the reviewer’s comment that additional analyses can augment the results of the archetype analyses 
and appreciate the thoughtful suggestions. We believe that the reviewer raised an important concern, that the 
changes reflect immediate changes in the environment and genetic drift. We have shown in our analyses that key 
somatic variants acquired over time (Figure 6) are not associated with the emergence of archetypes (Figure 7). 
Additionally, we have found that the archetypes and the contributing pathways are consistent across patients and 
over time supported by the new analyses detailed below. 
 
Once again, we appreciate the reviewer’s advice and have performed several new analyses to further explore the 
genes and pathways that are differentially expressed over time, the relationship between transcriptional clusters 
and archetypes, and the relationship between the pathways that distinguish individual clusters and archetypes.  
 

1. We evaluated the temporal single cell expression patterns of the genes across all patients using a 
regression analysis of the batch-corrected genes from the 10X scRNA-seq profiles of the longitudinal 
cohort patients against time. We selected the top 100 upregulated and 100 downregulated genes ranked 
by FDR to study the overlap of temporally differentially expressed genes shared between patients 
(Supplementary Figure 3). Very few differentially expressed genes were commonly shared across the 
patients. Only 3 upregulated genes were shared by more than three patients, including LCN2 (4 patients), 
KRT18 (3 patients) and SAA1 (3 patients). None of the downregulated were shared by more than three 
patients. Given these observations, we adapted a pathway-centric approach to focus on the evolution of 
longitudinal phenotypes in the HGSOC single-cells instead of sparse individual genes.    



 
Supplementary Figure 3. Upset plots displaying the frequency of unique and overlapping differentially expressed genes between 
the patients. The top panel shows the overlap of the top 100 upregulated genes over time while the bottom panel shows top 100 
down regulated genes.  

 
 

2. As the classification of the archetypes using the lasso approach shrinks coefficients of several pathways to 
zero, we also evaluated the contribution of individual signaling pathways to each archetype using 
regression analysis. We analyzed the association between KEGG pathway enrichment scores in single cells 
against the archetype scores of three archetypes across all cells (Supplementary Table 5). The 
classification of the MAP archetype was supported by the positive associations with enrichment (positive 
coefficients and FDR < 0.05) of key pathways including cell cycle, DNA replication, glycolysis and OXPHOS. 
The CDR archetype was supported by positive associations with key immune response pathways, 
including NK cells-mediated cytotoxicity, TLR receptor signaling, RIG-I like receptor signaling, NOD-I-like 
receptor signaling and T-cell/B-cell receptor signaling. Interestingly, the CDR archetype scores were also 
positive correlated with metabolism pathways of glycolysis and OXPHOS, but not with proliferation as 
indicated by cell cycle and DNA replication, suggesting a decoupling of these two phenotypes in the CDR 
cells and supporting separate classification of this cell state from MAP. Furthermore, similar to the 
classification of the PI3K/MTOR and WNT pathways in the CDR archetype in the group lasso analysis, the 
CDR cells were again associated with the KEGG MAPK and WNT signaling pathways, suggesting activation 
of these pathways contributed to the CDR archetype over MAP. 

 
 

3. Across the single cells, the key pathways contributing to the MAP archetype (Supplementary Figure 7A) 
were positively intercorrelated (Pearson’s correlation coefficient > 0, FDR < 0.05) (Supplementary Figure 
7B), with subtle differences observed between subpopulations of cells classified based on cell cycle states 



(Supplementary Figure 7C) and between patients across time (Supplementary Figure 7D and 7E). For 
example, the MAP cells were more metabolically active in S and G1 cells compared to G2M cells, as 
expected. The MAP phenotypes on an average were largely consistent overtime, with some significant 
shifts observed within specific patients, like decreased glycolysis in patient 5, and increased glycolysis and 
OXPHOS in patient 8.  The key pathways contributing to the CDR pathways were also highly 
intercorrelated (Pearson’s correlation coefficient > 0, FDR < 0.05) (Supplementary Figure 8A), with some 
differences observed in specific patients over time (Supplementary Figure 8B). In particular, patients 5 
and 9 showed reduced enrichment of multiple immune response pathways over time. 

 

 



 
Supplementary Figure 7A. Heatmap displaying the gene set enrichment scores of key metabolism and proliferation KEGG 
pathways across single cells classified as MAP specialists. B. Correlation plot of key metabolism and proliferation KEGG 
pathways. The colors indicate magnitude of Pearson’s correlation between the enrichment scores. C-D Ridge plots showing 
distribution of pathway enrichment scores across phases of cell cycle (C) or time (D). The vertical bars annotated with * show 
pairwise comparisons that are statistically significant from TukeyHSD test following ANOVA. E. Violin plots showing comparison 
of pathway enrichment scores across time in each patient. * indicates statistically significant difference between time 3 and 
time 1 in the pairwise comparison from TukeyHSD test following ANOVA. A P < 0.05 is considered statistically significant.   

 

 
Supplementary Figure 8A. Correlation plot of key immune response related KEGG pathways across single cells classified as CDR 
specialists. The colors indicate magnitude of Pearson’s correlation between the enrichment scores. B. Violin plots showing 
comparison of pathway enrichment scores across time in each patient. * indicates statistically significant difference between 
time 3 and time 1 in the pairwise comparison from TukeyHSD test following ANOVA. A P < 0.05 is considered statistically 
significant.   

 
4. Next, we compared the distribution of the archetype specialists across single-cell transcriptional clusters 

of malignant cells and their distribution over time (Supplementary Figure 15A). The CDR specialists were 
largely associated with malignant cell cluster 0, while DDR specialists were associated with cluster 1 and 
MAP specialists with cluster 2 (Supplementary Figure 15B). Clusters 4 and 5 were small clusters with few 
cells, which were present transiently at time 1 or time 2. At the first time point, cluster 2 and MAP 
specialists were present at the lowest proportions compared to other archetypes, indicating that the 
cluster 2/MAP specialists were acquired along the course of progression (Supplementary Figure 15B). The 
proportion of specialists at the last time point relative to other archetypes were not the same across all 
the patients. Specifically, the proportion of the MAP and CDR archetypes showed strong negative 
correlation (Supplementary Figure 15C). This relative shift between the archetypes impacted the overall 
survival of the patients (time to death in days since primary surgery was performed). While this sample 
size is very small, we found a negative correlation between the proportion of MAP specialists in a patient 
and overall survival (Pearson’s correlation = -0.69, R2 = 0.48) (Supplementary Figure 15D). Thus, we 
observed an overall tendency of MAP specialists to evolve at later time points along the course of 



progression, while the shift towards MAP specialists at the last time point indicated a link with poor 
survival. 

 
 

 
Supplementary Figure 15A. UMAP projections of batch-corrected cancer cells colored by patient (top left), time (top right), 
Seurat clusters (bottom left) or archetype specialist type (bottom right). B. Barplots showing absolute number of archetype 
specialists in different Seurat clusters (left panel), with stacked barplots (middle and right panels) showing percentage of cells in 
each Seurat cluster or specialist cluster grouped by time. C-D Scatterplots comparing the relative portion of MAP specialists at 
the last time point with the relative proportion of CDR specialists at the last time point (C) or overall survival in days since 
primary surgery was performed (D).   

 
2. The abstract suggests a significant role of MAP in development of resistance, with the statements “The 
metabolism and proliferation archetype evolved during treatment…” and “…consistent enrichment of subclones 
with the metabolism archetype as resistance is acquired”. Accordingly, Figure 4 argues for a progression-related 
increase in the proportion of specialists for the MAP archetype. However, this result seems inconsistent with the 
main dataset. Specifically, in Figure 8, there is only one patient (7) in which there appears to be a robust 
longitudinal increase in the MAP archetype, while most patients show other patterns; these include no substantial 
changes in MAP proportions (patients 5 and 9), changes that are not consistent with time, for example with 
highest MAP proportion in time point 2 compared to 1 and 3 (patients 6 and 8), and an opposite pattern (patient 
4). Accordingly, the data may support an association of MAP with tumor burden (as reflected by 
CA-125) rather than with tumor progression and drug resistance. This distinction seems to explain the discrepancy 
between the two analyses (figure 4 and 8) as CA-125 is not always highest in the last time point, while drug 
resistance is thought to gradually increase and would be expected to be highest at the last time point. An 
association of metabolism and proliferation expression profiles with tumor burden seems quite expected, likely 
reflecting the fact that an increased tumor burden implies more dividing cells and increased energetic demands. 
Thus, a likely explanation is that increased tumor burden by definition implies an increase in MAP proportion and 
that MAP is only reflective of proliferating cells and not of a unique cellular state that is being selected for by 
specific drug treatments.  
 
We agree with the reviewer’s assessment that the emergence of the MAP proportions is likely indicative of tumor 
burden by definition. The CA-125 level at each time points of our study overlapping with sample collection for 
scRNA-seq were consistently much greater than 100 U/ml (Figure 1, Supplementary Table 3), suggesting the tumor 



burden indicative of poor prognosis was already very high at all time points, and also not necessarily correlated 
with overall survival of the patients (Supplementary Table 1). We appreciate this insightful comment and, given 
this discrepancy, we have revised our abstract and removed the discussion of CA-125 levels from the viewpoint of 
prognosis.  
 
Interestingly, the detailed analyses suggested by the reviewer in comment #1 have revealed a new insight that the 
metabolism phenotype is in fact associated with both the CDR and MAP archetypes; however, it is decoupled from 
proliferation in the CDR archetype. Moreover, the emergence of MAP specialists at the last time point is negatively 
correlated with CDR and appears to be associated with poor survival outcomes. Thus, it will be pertinent to study 
the difference in the biology of the MAP archetype and their mechanism of selection.  
 
Accordingly, we have added the following results on Page 14: 
“The proportion of specialists changed over time in patients. Specifically, the proportion of the MAP and CDR 
archetypes showed a strong negative correlation (Pearson’s correlation = -0.95, R2 = 0.9) (Supplementary Figure 
15C). This relative shift between the archetypes impacted the overall survival of the patients (time to death in days 
since primary surgery was performed). While this sample size is small, we found a negative correlation between 
the proportion of MAP specialists in a patient at the final time point and overall survival (Pearson’s correlation = -
0.69, R2 = 0.48) (Supplementary Figure 15D). Thus, we observed an overall tendency of MAP specialists to evolve 
at later time points along the course of progression, while the shift towards MAP specialists at the last time point 
indicated a link with poor survival.” 
 
We added the following paragraph to the discussion section on Pages 21-22: 
“We found that the metabolism and proliferation archetype (MAP) evolved later over the course of chemotherapy 
compared to early time points or treatment-naïve samples and, at the last time point, this was concomitant with a 
decrease in the CDR archetype and correlated with poor overall survival of the patients (Supplementary Figure 15). 
Interestingly, pathways that are well known to contribute to cellular survival, metabolism and proliferation from 
HGSOC bulk transcriptomes, such as MAPK and WNT signaling, were preferentially associated with non-
proliferating cells in the CDR archetype, instead of the proliferating cells of the MAP archetype. The pathways 
enriched in the CDR archetype, like TLR signaling and NK-cells mediated cytotoxicity suggest that these cells are 
responsive to immune cells in the microenvironment. Thus, the prevalence of CDR cells could be indicative of 
active immune surveillance in the tumor, which has been linked to better prognosis and outcomes of ovarian 
cancers. Key metabolic pathways (OXPHOS, glycolysis) were also associated with the CDR archetype 
(Supplementary Table 5). Based on this, it is reasonable that a chemoresistant tumor would select metabolically 
active MAP cells that are actively proliferating, instead of metabolically active CDR cells that are subject to immune 
surveillance. This observation also supports the idea of multi-task evolution, where the progressive tumors select 
for cells specializing in proliferation over immune response, assuming both cell states have similar fitness costs as 
indicated by enrichment of metabolic pathways.”   
 
 
3. EMT is noted in the discussion as part of the MAP archetype, but this is the first time that EMT is mentioned in 
the text of the paper (as opposed to the figures). Given the lack of description of EMT patterns in the results, the 
discussion about EMT seems as if it is coming out of nowhere. It is not clear which EMT-related genes are part of 
the MAP archetype, how strong is the EMT-related signal, how does it vary between samples and time points and 
whether it correlates with the proliferation and metabolism aspects of the MAP archetype.  
 
Thank you for this comment.  We have updated the results section on Page 9 to indicate that hallmark EMT 
pathway was one of the key predictors of the MAP archetype, as shown in the group-lasso cross-validation 
analyses with the hallmark pathways and archetype scores. Given the sparsity of individual genes, we have limited 
the discussion on the correlation between EMT pathway and the MAP archetype to the discussion section. 
Specifically, we have added “In addition to the metabolic and proliferation pathways, we also observed a 
consistent emergence of the epithelial to mesenchymal transition (EMT) pathway as one of the key hallmark 
predictors of the MAP archetype (Supplementary Figures 5, 6, 11, and 13)” on Page 23.  
 



 
4. Inference of CNAs:  
First, in the Methods it is stated that malignant cells were separated from normal cells by CNAs, but this should be 
shown with a figure that shows CNA profiles of both malignant and normal cells. 
 
Second, the separation into distinct subclones of malignant cells by CNA inference, as shown in figure S12, does 
not seem to be robust, and the exact method by which subclones are defined is not specified. Even if there is 
variability in CNA patterns it does not seem trivial to define the exact subclonal structure and there is no 
explanation for how this is done. The patterns of CNAs and the degree to which they support a specific definition 
of subclones should be better defined and demonstrated. 
 
We agree with the reviewer that it is difficult to define the exact subclonal structure of the tumors based on the 
CNA profiles. As suggested by the reviewer, we have provided a detailed description of the procedure we followed 
to determine the malignant cells, followed by a description of the method we followed to determine the subclonal 
structure of each patient. These analyses and results have been added to Supplementary Methods. 
 
“To identify malignant epithelial cells, we used a first-pass classification filter to separate epithelial cells from 
immune cells and stromal components. Since the samples were obtained from malignant pleural effusions and 
ascites, it was reasonably expected that the epithelial cells identified in the samples were malignant. These cells 
appeared in separate clusters in UMAPs and were verified with the expression of key marker genes 
(Supplementary Figure 2). To further affirm the classification of the epithelial cells, we used the fibroblasts 
obtained from an HGSOC tumor as reference to perform inferCNV analysis with the epithelial cells from individual 
HGSOC patients across all time points. The parameters for the inferCNV analysis were: cutoff = 0.1 (as 
recommended for 10X scRNA-seq data), min_cells_per_gene = 3, with default hidden markov model (HMM) and 
denoise set to true. The resulting profiles displayed the presence of CNAs in all epithelial cells compared to the 
normal reference, thus confirming the classification of malignant epithelial cells. The heatmaps on the subsequent 
pages also display the expression of key epithelial markers, such as EPCAM, KRT8 and KRT18 across the single cells, 
along with the absence of immune cell markers like CD45, THY1, CD3E and CD68. 
 
To construct the subclonal structure for each patient, we used the subcluster method with the HMM CNA profiles 
to first determine the number of subclones and distribution of the cells in each subclone. Next, we inspected the 
HMM and denoised CNA profiles to identify regions of copy number gains or losses that could verify the subclonal 
structure determined by the HMM subcluster method. We also used the whole genome sequencing profiles in case 
of patients where the regions of gain or losses that distinguished subclones were difficult to assign using the HMM 
or CNA profiles alone. After the subclonal structures were confirmed and individual cells assigned to each 
subclone, we derived the evolutionary tree as follows: First, the proportion of cells assigned to each subclone were 
used to determine the frequency of subclones at each time point. Then, the branches of the tree were assigned on 
the basis of shared regions of gain or loss. For example, in the case of Patient 4 (see figure on next page) the three 
subclones were first determined using the HMM subclusters. Then, Subclone 1 was distinguished from subclones 2 
and 3 by the presence of a unique region of gain on chromosomes 1 and 17. Subclones 2 and 3 shared a difference 
in region of gain on chromosome 17 seen in subclone 2, while subclone 3 was characterized by unique regions of 
loss on chromosomes 4 and X. These regions are encircled in black. Thus, we determined that subclone 3, which 
appears in samples collected at the second time point, evolved from subclone 2. Finally, the distribution of the 
cells in the three subclones were used to define the subclone frequencies at each time point. This procedure was 
followed for other samples, where the HMM subclusters were first confirmed by the presence of unique regions of 
gain or loss, followed by assignment of the evolutionary branching based on shared and acquired CNAs, and 
determination of subclone frequencies.”   
 
 
5. Most claims are made without a proper testing of significance. Statistical tests and associated p–values should 
be included for all claims.  
 
Thank you for pointing this error. We have provided results of statistical tests and revised claims accordingly.  



Specifically,  
1. We have provided regression coefficients, p-value and FDR for pathway associations with archetype 

scores. This is to support the classification of the archetypes based on group-lasso coefficients from cross-
validation analyses that we did not describe using conventional statistics (Supplementary Table 5).  

2. We modified the Figure 4b to display boxplots of proportions of the archetype specialists to replace the 
barplots displaying difference and annotated the plots to show p-values.   

3. We modified Figures 4c-d to show individual data points and added the p-values from pairwise t-tests for 
difference in mean metabolic activities adjusted for multiple comparisons. 

4. We annotated the new supplementary figures based on the reviewer’s suggestions with statistical tests. 
For correlations, we provided Pearson’s correlation coefficient, R2 and p-values. For analyses with multiple 
contrasts, we provided p-values from TukeyHSD posthoc test following ANOVA (Supplementary Figures 7, 
8 and 9).  

5. The associations between archetypes and subclones were evaluated with TukeyHSD following ANOVA, as 
indicated (Supplementary Figure 18).  

 
 
6. Figures 6 and 7 are not very informative in their current version and might fit better in the supplement. 
 
The somatic alterations reported in these analyses are likely of general interest to the ovarian cancer community, 
where they have been extensively studied for their role in chemoresistance. Thus, we believe this information 
might be important to share, especially to emphasize that these somatic alterations are not correlated with the 
emergence of phenotypic archetypes. 
 
 
7. The standard HGSOC abbreviation (which is defined at the top) is then replaced by many instances of HGSOV. 
 
Thank you for pointing this error. We have made corrections to keep the abbreviation consistent throughout the 
manuscript.  
 
 
8. The color schemes used in several figures makes it hard to differentiate between patients and cell types and 
should be replaced.  
 
As suggested, we have modified several figures to better reflect the key point behind the figure.  

1. We modified Figure 1c to show cells clustered on UMAP colored by cell types instead of patient ID. 
Several additional visualizations of the UMAP projections of the cancer cells are also provided in the new 
Supplementary Figure 15. 

2. We modified Figure 2a to show cells colored by archetype scores, as the coloring by patient ID did not 
provide any additional information.  

3. We modified Figure 2d to show the cell clusters prior to CCA normalization for easy visualization of 
sample clusters and small populations of normal cells. Further, we modified the color scheme for patients 
for easy visualization of the early and late cohorts in Figure 2e.  

 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors adequately addressed my concerns to my satisfaction. 

Reviewer #2 (Remarks to the Author): 

Reviewer 2: the authors have addressed all of my concerns and my suggestions diligently, except for 

point 3 of the original rebuttal letter. 

The choice of 3 archetypes now looks compelling and is well-supported by Fig S4A. 

But I can’t say that the authors convinced me that a polytope is a good fit for the data. Showing that 

a polytope is a good fit for the data statistically-speaking is important because the trade-off 

interpretation rests on the claim that the data fits a polytope. 

Specifically, I have 3 issues with the panel on the t-ratio test in Fig S4B: 

1. The authors represent the ratio of the volume of the best-fitting polytope over the volume of the 

convex hull (CH). Because the CH has more degrees of freedom and because no data point can be 

outside the polytope, the CH always fits the data better than a polytope. Thus, the volume of the CH 

is smaller than the volume of the polytope, so that the ratio shown on Fig S4B should be larger than 

1. Yet, in Fig S4B, this ratio is always smaller than 1. How can this be? 

2. I will assume that there was a labeling mistake in Fig S4B, and that the ratio represented is actually 

the volume of the CH over the volume of the best-fitting polytope. I will also assume that this ratio in 

many randomized datasets is represented as a probability density in Fig S4B, together with the t-

ratio in the non-randomized data as a vertical line (is this correct? If so, please specify in the legend). 

There, we see that the t-ratio is increased in randomized data compared to non-randomized data. 

This implies that a polytope fits the randomized data better than the original, non-randomized data. 

Such an observation that does not support that a polytope fits the data. 

3. Even if I assume that the densities and the line represented in the t-ratio panel of Fig S4B 

represent other ratios than the one I guessed, the p-values shown do not support the claim that a 

polytope is a better fit to the data compared to randomized data. The p-value for 3 archetypes is 

apparently 0.9, which is overwhelming evidence for accepting the null hypothesis (the polytope is a 

bad fit). A minimal p-value threshold to reject the null hypothesis and thus conclude that the 

polytope is a good fit would be 0.05. But even this threshold implies too large a type I error so that a 

threshold of 1% is recommended by statisticians (Ioannidis, PloS Medicine 2005). 

These points need to be addressed showing that a polytope is a statistically significant fit for the 

data underlies the trade-off interpretation. 

Perhaps the easiest way to do so is to use the ParTI software (Hart et al. Nature Methods 2015) with 

3 archetypes in order to compute the p-value of t-ratio test. Showing a significant p-value there 

(p<.05 or p<.01) would address these points. 



Reviewer #3 (Remarks to the Author): 

The revised manuscript by Nath et al. is significantly improved with extended analyses. However, I 

still have several concerns, as detailed below.  

1. Line 150-153: 

"As individual genes are variable and sparse in single-cell RNA sequencing data and therefore not 

commonly shared across patients (Supplementary Figure 2), we used pathway analysis 

for subsequent analyses." 

First, this should refer to Fig. S3 rather than S2. Second, the sentence is phrased in manner that 

makes it sound as if the lack of consistency between patients in the genes that correlate with time 

points is merely a technical effect rather than a real biological result; while there is certainly a 

technical component that makes it difficult to interpret the data, I think that ultimately this data 

points to an overall observation that progression looks differently in each patient, such that the vast 

majority of expression changes are patient-specific. with possibly some limited consistent patterns. 

While this could be conceived as a negative result (i.e. lack of a major consistent pattern), I think 

that the authors should better acknowledge and clarify this pattern. 

2. Line 297-298: 

"This relative shift between the archetypes impacted the overall survival of the patients." 

This sentence reflects misinterpretation of an observed correlation as indicating a causal effect. It is 

definitely possible that the archetypes only correlate with, but do not not cause (i.e. "impacted") the 

survival difference. 

3. Lines 299-301: 

"While this sample size is small, we found a negative correlation between the proportion of MAP 

specialists in a patient at the final time point and overall survival (Pearson’s correlation = -0.69, R2 = 

0.48) (Supplementary Figure 15D)." 

Fig. S15D shows that this result is associated with a p-value of 0.1 and hence cannot be considered 

as statistically significant. While the authors note the small sample size this was not clear from the 

main text and should be clarified. More importantly, this result is described and even emphasized in 

the abstract and discussion. Such emphasis of a statistically non-significant result seems problematic 

to me, especially when the lack of significance is somewhat hidden in a supplementary figure.  

4. Abstract (lines 35-37):  

"There was a selection for the metabolism and proliferation archetype and against the cellular 

defense response in cancer cells that received multiple lines of treatment." 

The authors refer to an increase in the proportion of a state as "selection" for that state, which 

implicitly assumes that the mechanism by which the state frequency increased is known and is 

related to increased fitness. However, there is no support for such hypothesis, and alternative 

models (e.g. cellular plasticity) cannot be ruled out.    



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors adequately addressed my concerns to my satisfaction. 
 
 
Reviewer #2 (Remarks to the Author): 
 
Reviewer 2: the authors have addressed all of my concerns and my suggestions diligently, except for point 3 of the 
original rebuttal letter. 
 
The choice of 3 archetypes now looks compelling and is well-supported by Fig S4A. 
 
But I can’t say that the authors convinced me that a polytope is a good fit for the data. Showing that a polytope is a 
good fit for the data statistically-speaking is important because the trade-off interpretation rests on the claim that 
the data fits a polytope. 
 
Specifically, I have 3 issues with the panel on the t-ratio test in Fig S4B: 
 
1. The authors represent the ratio of the volume of the best-fitting polytope over the volume of the convex hull 
(CH). Because the CH has more degrees of freedom and because no data point can be outside the polytope, the CH 
always fits the data better than a polytope. Thus, the volume of the CH is smaller than the volume of the polytope, 
so that the ratio shown on Fig S4B should be larger than 1. Yet, in Fig S4B, this ratio is always smaller than 1. How 
can this be? 
 
2. I will assume that there was a labeling mistake in Fig S4B, and that the ratio represented is actually the volume 
of the CH over the volume of the best-fitting polytope. I will also assume that this ratio in many randomized 
datasets is represented as a probability density in Fig S4B, together with the t-ratio in the non-randomized data as 
a vertical line (is this correct? If so, please specify in the legend). There, we see that the t-ratio is increased in 
randomized data compared to non-randomized data. This implies that a polytope fits the randomized data better 
than the original, non-randomized data. Such an observation that does not support that a polytope fits the data. 
 
3. Even if I assume that the densities and the line represented in the t-ratio panel of Fig S4B represent other ratios 
than the one I guessed, the p-values shown do not support the claim that a polytope is a better fit to the data 
compared to randomized data. The p-value for 3 archetypes is apparently 0.9, which is overwhelming evidence for 
accepting the null hypothesis (the polytope is a bad fit). A minimal p-value threshold to reject the null hypothesis 
and thus conclude that the polytope is a good fit would be 0.05. But even this threshold implies too large a type I 
error so that a threshold of 1% is recommended by statisticians (Ioannidis, PloS Medicine 2005). 
 
These points need to be addressed showing that a polytope is a statistically significant fit for the data underlies the 
trade-off interpretation.  
 
Perhaps the easiest way to do so is to use the ParTI software (Hart et al. Nature Methods 2015) with 3 archetypes 
in order to compute the p-value of t-ratio test. Showing a significant p-value there (p<.05 or p<.01) would address 
these points. 
 
We thank the reviewer for their assessment of our revised manuscript and for pointing out the issues with the t-
ratio calculation and p-values. We agree the calculation and presentation of t-ratio in the R-package ParetoTI are 
not well documented. Therefore, we have removed the panel with histogram of t-ratios from Supplementary 
Figure 4B.  As listed by the reviewer, we have now used the MATLAB implementation of the Pareto Task Inference 
software (ParTI) to confirm the number of archetypes and perform the t-ratio test to obtain a p-value. Our analysis 
confirmed the selection of 3 archetypes and showed that the t-ratio test has significant p-value below the 



threshold recommended by the reviewer (P < 0.01). These results support that a 3-vertex polytope is a statistically 
significant fit for the data. We have updated Supplementary Figure 4 with the result from ParTI analysis of our 
scRNA-seq data.  
 
The output from the MATLAB ParTI_lite and ParTI analysis are displayed below for reference.  
 
>> HGSOC_ParTI 
Converting discrete features to booleans 
Starting to perform PCA, for big data on slow computers this may take a while... 
Calculating explained variance with PCHA (Morup M, Hansen KL, 2011) 
Elbow method suggests 3 archetypes. 
Please indicate the desired number of archetypes (or press enter for using the suggestion):  
Calculating archetypes positions with SISAL (Bioucas-Dias JM, 2009) 
finished finding the archetypes 
Skipping enrichment analysis as no features were provided. 
Converting discrete features to booleans 
Starting to perform PCA, for big data on slow computers this may take a while... 
Calculating explained variance with PCHA (Morup M, Hansen KL, 2011) 
Elbow method suggests 3 archetypes. 
Please indicate the desired number of archetypes (or press enter for using the suggestion): 3 
Calculating archetypes positions with SISAL (Bioucas-Dias JM, 2009) 
finished finding the archetypes 
Now computing t-ratios. 
10% done 
20% done 
30% done 
40% done 
50% done 
60% done 
70% done 
80% done 
90% done 
100% done 
The significance of 3 archetypes has p-value of: 0.00000  
Now calculating errors on the archetypes. 
10% done 
20% done 
30% done 
40% done 
50% done 
60% done 
70% done 
80% done 
90% done 
100% done 
finished finding the archetypes error distribution 
Finished sorting data points. 
Finished computing discrete enrichments. 
Finished computing continuous enrichments. 
>> 
 
 
To reflect results from these additional analyses, we have added the following lines to the methods section on 
Page 36:  
“Additionally, we analyzed the CCA-normalized counts data to verify the number of archetypes using the ParTI 
package for MATLAB (25). We calculated the variance explained by increasing number of archetypes and 
confirmed that the three archetypes were optimal using the elbow method. A t-ratio test (P < 0.01) confirmed that 
the polytope was a statistically significant fit for the data.”   
 
 
  



Reviewer #3 (Remarks to the Author): 
 
The revised manuscript by Nath et al. is significantly improved with extended analyses. However, I still have several 
concerns, as detailed below.  
 
We thank the reviewer for their careful assessment. Based on their advice, we have tempered the statements in 
the manuscript as described below.   
 
1. Line 150-153: 
"As individual genes are variable and sparse in single-cell RNA sequencing data and therefore not 
commonly shared across patients (Supplementary Figure 2), we used pathway analysis for subsequent analyses." 
First, this should refer to Fig. S3 rather than S2. Second, the sentence is phrased in manner that makes it sound as 
if the lack of consistency between patients in the genes that correlate with time points is merely a technical effect 
rather than a real biological result; while there is certainly a technical component that makes it difficult to 
interpret the data, I think that ultimately this data points to an overall observation that progression looks 
differently in each patient, such that the vast majority of expression changes are patient-specific. with possibly 
some limited consistent patterns. While this could be conceived as a negative result (i.e. lack of a major consistent 
pattern), I think that the authors should better acknowledge and clarify this pattern. 
 
We agree with the reviewer’s interpretation. The observed lack of consistent pattern of single-gene changes over 
time was a motivation for us to perform the archetype analysis to project the scRNA-seq data in a low-dimensional 
space and study the evolution of phenotypes. Accordingly, we have added the following to lines 150-156: 
“We analyzed patterns of expression changes over time and found that few differentially expressed genes were 
commonly shared across patients (Supplementary Figure 3). This pattern could also reflect the sparsity of scRNA-
seq data that contributed to the observed lack of consistent changes across patients in the high-dimensional gene 
expression space. Therefore, we next adopted an approach to project the scRNA-seq data in a low-dimensional 
space and investigate the evolution of key phenotypes.” 
 
 
2. Line 297-298: 
"This relative shift between the archetypes impacted the overall survival of the patients." 
This sentence reflects misinterpretation of an observed correlation as indicating a causal effect. It is definitely 
possible that the archetypes only correlate with, but do not not cause (i.e. "impacted") the survival difference. 
 
The sentence has been modified to “This relative shift between the archetypes was correlated with the overall 
survival of the patients” 
 
3. Lines 299-301: 
"While this sample size is small, we found a negative correlation between the proportion of MAP specialists in a 
patient at the final time point and overall survival (Pearson’s correlation = -0.69, R2 = 0.48) (Supplementary Figure 
15D)." 
Fig. S15D shows that this result is associated with a p-value of 0.1 and hence cannot be considered as statistically 
significant. While the authors note the small sample size this was not clear from the main text and should be 
clarified. More importantly, this result is described and even emphasized in the abstract and discussion. Such 
emphasis of a statistically non-significant result seems problematic to me, especially when the lack of significance 
is somewhat hidden in a supplementary figure.  
 
We have duly noted this issue and modified lines 301– 303 “This relative shift between the archetypes was 
correlated with the overall survival of the patients (time to death in days since primary surgery was performed). 
We found a negative correlation between the proportion of MAP specialists in a patient at the final time point and 
overall survival (Supplementary Figure 15D). Although this correlation is not statistically significant in this small 
sample (P = 0.1), the observed effect size (Pearson’s correlation = -0.69, R2 = 0.48) calls for validation in a sample of 
larger size to assess clinical significance.” 



 
4. Abstract (lines 35-37):  
"There was a selection for the metabolism and proliferation archetype and against the cellular defense response in 
cancer cells that received multiple lines of treatment." 
The authors refer to an increase in the proportion of a state as "selection" for that state, which implicitly assumes 
that the mechanism by which the state frequency increased is known and is related to increased fitness. However, 
there is no support for such hypothesis, and alternative models (e.g. cellular plasticity) cannot be ruled out.    
 
We understand the confusion arising from the description of the shift in populations as “selection”. Therefore, we 
modified the sentence in the abstract to: 
“There was a shift in favor of the metabolism and proliferation archetype versus the cellular defense response 
archetype in cancer cells that received multiple lines of treatment.” 



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have addressed all my concerns. I recommend the manuscript for publication. 

Reviewer #3 (Remarks to the Author): 

The authors have now adequately addressed my concerns. 


