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Supplementary Fig.1 The knockout efficiency of PPDPF and plasma TG in mice.  

(a) PPDPF expression level in the liver of WT (n=4) and PPDPF-LKO (n=4) mice at 

8 months is measured by real-time qPCR and western blotting. The mRNA expression 

levels of the genes are normalized to that of 18s. Mean±SEM, **p=0.0019 by two 

tailed unpaired Student’s t-test. (b) H&E staining of liver sections from WT and KO 

mice at 6 months. Scale bars,100um.(c) Plasma triglyceride (TG) contents from WT 

(n=6) and LKO (n=6) mice at 8 months. Mean±SEM, ***p=0.0005 by two tailed 

unpaired Student’s t-test. All experiments were repeated 3 times independently. 

 

Supplementary Fig.2 The knockout efficiency of PPDPF and plasma TG in the 

mice fed HFD for 4months.(a) PPDPF expression level in the liver from WT and 

KO mice fed HFD for 4 months is measured by western blotting.(b) Results of plasma 

triglyceride (TG) tests of WT (n=6) and LKO (n=6) mice fed HFD for 4 months. 

Mean±SEM, ***p=0.0001 by two tailed unpaired Student’s t-test. All experiments 

were repeated 3 times independently. 
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Supplementary Fig.3 AAV8-mediated reintroduction of PPDPF rescues PPDPF 

-null phenotype in PPDPF-LKO mice fed HFD for 3 months.(a-d) The body 

weight(a), liver weight(b), TG(c) and NEFA(d) for each group (WT-AAV8-con (n=6), 

LKO-AAV8-con (n=6) and LKO-AAV8-PPDPF (n=6)) after 3 months HFD feeding. 

Mean±SEM, (a) **p=0.0045 (LKO+AAV-con Vs WT+AAV-con), ***p=0.0002 

(LKO+AAV-PPDPF Vs LKO+AAV-con); (b) ***p=0.0003 (LKO+AAV-con Vs 
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WT+AAV-con), ***p=0.0007 (LKO+AAV-PPDPF Vs LKO+AAV-con); (c) 

****p<0.0001; (d) ***p=0.0001 (LKO+AAV-con Vs WT+AAV-con), **p=0.0015 

(LKO+AAV-PPDPF Vs LKO+AAV-con) by two tailed unpaired Student’s t-test. 

(e)Representative images of H&E and Oil Red O staining of liver sections from the 

mice injected with indicated adenovirus fed HFD for 3 months. Scale bars, 100 

um.(f)The mRNA expression level of lipogenesis-related genes for each group 

(WT-AAV8-con (n=4), LKO-AAV8-con (n=4) and LKO-AAV8-PPDPF (n=4)) after 3 

months HFD feeding. Mean±SEM, SREBP1: ***p=0.0009 ***p=0.0002, FASN:  

***p=0.0009 **p=0.0014, ACLY: **p=0.0048 *p=0.0321, PPARG: **p=0.0061 

*p=0.0242, ME: *p=0.0353 **p=0.0012 by two tailed unpaired Student’s t-test. All 

experiments were repeated 3 times independently. 

 
Supplementary Fig. 4 Torin1 treatment reduces lipid deposition in PPDPF-LKO 

hepatocytes. (a) Oil Red O straining of primary hepatocytes upon Torin1 treatment. 

Scale bars, 100um.(b)Triglyceride (TG) detect of hepatocytes from WT (n=3) and 

LKO (n=3) mice treated with Torin1 for 24h. Mean±SEM, **p=0.0068 *p=0.011 by 

two tailed unpaired Student’s t-test. (c)The mRNA levels of lipid synthesis-associated 

genes are examined after 2 hours or 18 hours of Torin1 treatment, these cells from  

primary hepatocytes of WT (n=3) and LKO (n=3) mice. Mean±SEM. See 

Supplementary Data 3 for statistics. All experiments were repeated 3 times 

independently. 
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Supplementary Fig.5 Rapamycin treatment inhibits lipid synthesis in PPDPF 

-LKO mice at 8 months of age on chow diets. (a-d) The body weight(a), liver 

weight (b), TG (c) and NEFA (d) for each group: WT+Vehicle (n=4), LKO+Vehicle 
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(n=4), WT+Rapamycin (n=4), LKO+Rapamycin (n=4) under rapamycin treatment at 

8 months on chow diets. Mean±SEM, (a) *p=0.0138 ***p=0.0008, (b) ***p=0.0002 , 

(c) **p=0.0015, (d) **p=0.0032 by two tailed unpaired Student’s t-test.  (e) 

Representative images of H&E and Oil Red O staining of liver sections from the mice 

treated with rapamycin at 8 months. Scale bars, 100 um. (f) The mRNA expression 

level of lipogenesis-related genes for each group: WT+Vehicle (n=4), LKO+Vehicle 

(n=4), WT+Rapamycin (n=4), LKO+Rapamycin (n=4) at 8 months on chow diets.   

Mean±SEM, SREBP1: *p=0.0397 **p=0.0045, FASN: ***p=0.0008, ACLY:  

*p=0.0019, PPARG: *p=0.0172 ***p=0.0002, ME: *p=0.0131 by two tailed unpaired 

Student’s t-test. (g) Expression of p-S6K, S6K, SREBP1 and FASN in liver samples 

after rapamycin treatment. All experiments were repeated 3 times independently. 
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Supplementary Fig.6 Influence of PPDPF and PPDPF mut on Raptor 

ubiquitination and mTOR signaling pathway. (a) The ubiquitination of Raptor in 

HepG2 cells was examined. (b) The dynamic change of Raptor ubiquitination in 

HepG2 cells upon PA treatment. (c) The ubiquitination of Raptor in WT and LKO 

hepatocytes was examined. (d) Expression of p-S6K, S6K, SREBP1 and FASN in 

HepG2 cells upon PA stimulation. All experiments were repeated 3 times 

independently. 
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Supplementary Fig.7 AAV8-mediated reintroduction of PPDPF and PPDPF-mut 

in PPDPF-LKO mice. (a, b) The body weight(a) and liver weight(b) of WT+con, 

LKO+con, LKO+PPDPF and LKO+PPDPF mut mice(n=5 per group) at 8 months on 

chow diets. Mean±SEM, n.s (not significant), (a) ***p=0.0005 ***p=0.0008, (b) 
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****p<0.0001 by two tailed unpaired Student’s t-test.  (c) The mRNA expression 

level of lipogenesis-related genes of WT+con, LKO+con, LKO+PPDPF and 

LKO+PPDPF mut mice (n=5 per group) at 8 months on chow diets. Mean±SEM, n.s 

(not significant), see Supplementary Data 4 for statistics. (d, e) The body weight (d), 

liver weight (e) of WT+con, LKO+con, LKO+PPDPF and LKO+PPDPF mut mice 

(n=5 per group) at 3 months after HFD feeding. Mean±SEM, n.s (not significant), 

**p=0.0054 *p=0.0241 by two tailed unpaired Student’s t-test. (f) The mRNA 

expression level of lipogenesis-related genes of WT+con, LKO+con, LKO+PPDPF 

and LKO+PPDPF mut mice (n=5 per group) at 3 months after HFD feeding. 

Mean±SEM, n.s (not significant), see Supplementary Data 4 for statistics. All 

experiments were repeated 3 times independently. 

 
Supplementary Fig.8 The identification of E3 ligase of Raptor. (a) Silver straining 

of immunoprecipitates of 3xFlag-PPDPF in 293T cells. (b) DDB1-CUL4B E3 

ubiquitin-ligase complex. (c) PPDPF influences Rapor-DDB1 and Raptor-mTOR 

interaction in a dose-dependent manner. All experiments were repeated 3 times 

independently. 
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Supplementary Fig.9 PPDPF mutant can not influence DDB1-Raptor interaction. 

(a,b) Co-immunoprecipitation assay to examine the interaction between 

PPDPF/PPDPF mut and Raptor in 293T cells (a) and HepG2 cells (b). All 

experiments were repeated 3 times independently. 

 

 

Supplementary Fig.10 Overexpression of PPDPF reduces the lipid deposition in 

HepG2 cells. (a) Plasma triglyceride (TG) detection of WT (n=4) and WT+PPDPF 
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(n=4) mice on HFD diet for 3 months. Mean±SEM, *p=0.0346 by two tailed unpaired 

Student’s t-test. (b) Western blotting examining the overexpression of PPDPF in 

HepG2 cells. (c) Nile Red staining of HepG2 cells under PA treatment. Scale bars, 

100um. (d) Triglyceride tests to examine lipid accumulation in HepG2 cells under PA 

treatment of the control group (n=3) and overexpression group (n=3). Mean±SEM, 

*p=0.0346 (Vector Vs Flag-PPDPF), **p=0.0047 (Vector Vs Flag-PPDPF-PA),  

*p=0.0168 (Vector Vs Vector-PA) by two tailed unpaired Student’s t-test. (e) The 

relative mRNA levels of the indicated molecules in HepG2 cells of the control group 

(n=3) and overexpression group (n=3). Mean±SEM, SREBP1: *p=0.0234, FASN:  

*p=0.0356, ACLY: *p=0.0452, PPARG: *p=0.0242, ME: **p=0.005 by two tailed 

unpaired Student’s t-test. All experiments were repeated 3 times independently. 
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Supplementary Table 1. Primary antibodies for Western blotting assay. 
 

Antibody Cat No. Manufacturer Species   Dilution 
FASN 3180 CST Rabbit    1:1000 

SREBP1 
p-p70 S6K 

S6K 

sc-365514 
9234 
ab32359 

Santa Cruz 
CST 
Abcam 

Mouse    1:1000 
Rabbit    1:1000 
Rabbit    1:1000 

GAPDH 60004 Proteintech Mouse    1:3000 
Raptor 2280 CST Rabbit    1:1000 
DDB1 11380 Proteintech Rabbit    1:1000 
Flag 
HA 
Myc 

F3165 
3724 
sc-40 

Sigma 
CST 
Santa Cruz 

Mouse    1:5000 
Rabbit    1:1000 
Mouse    1:1000 

      Ubiquitin 
      PPDPF 
      GST 

sc-8017 
19912 
6g9 

Santa Cruz 
Proteintech 
Proteintech 

Mouse    1:1000 
Rabbit    1:500 
Rabbit    1:1000 

 
 
 
 
 

 
Supplementary Table 2. Primers for Real-Time PCR detection. 

Gene Sequence 5’→3’ 

Mouse SREBF1 
F： TGACCCGGCTATTCCGTGA 
R： CTGGGCTGAGCAATACAGTTC 

Mouse FASN 
F：GGAGGTGGTGATAGCCGGTAT 
R：TGGGTAATCCATAGAGCCCAG 

Mouse PPARG 
F：GGAAGACCACTCGCATTCCTT 
R：GTAATCAGCAACCATTGGGTCA 

Mouse ME 
F：GCCGGCTCTATCCTCCTTTG 
R：TTTGTATGCATCTTGCACAATCTTT 

Mouse ACLY 
F：ACCCTTTCACTGGGGATCACA 
R：GACAGGGATCAGGATTTCCTTG 

Mouse PPARA 
F：AACATCGAGTGTCGAATATGTGG 
R：CCGAATAGTTCGCCGAAAGAA 

Mouse EHHADH 
F：ATGGCTGAGTATCTGAGGCTG 
R：GGTCCAAACTAGCTTTCTGGAG 

Mouse MCAD 
F：CAAGTTTGCCAGAGAGGAGATTATC 
R：AACGGGTACTCCCCGCTTT 

Mouse ACOX1 
F：TAACTTCCTCACTCGAAGCCA 
R：AGTTCCATGACCCATCTCTGTC 
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Mouse ACAD1 
F：TCTTTTCCTCGGAGCATGACA 
R：GACCTCTCTACTCACTTCTCCAG 

Mouse ECH1 
F：AAGATAAGGACGCCATGCTGAA 
R：TCCAGGTGGCCATGTAGTCA 

Mouse CD36 
F：ATGGGCTGTGATCGGAACTG 
R：GTCTTCCCAATAAGCATGTCTCC 

Mouse FABP1 
F：ATGAACTTCTCCGGCAAGTACC 
R：GGTCCTCGGGCAGACCTAT 

Mouse APOB 
F：CGTGGGCTCCAGCATTCTA 
R：TCACCAGTCATTTCTGCCTTTG 

Mouse APOE 
F： GCTGGGTGCAGACGCTTT 
R：TGCCGTCAGTTCTTGTGTGACT 

Mouse APOA1 
F： GGCACGTATGGCAGCAAGAT 
R：CCAAGGAGGAGGATTCAAACTG 

Human SREBF1 
F：ACAGTGACTTCCCTGGCCTAT 
R：GCATGGACGGGTACATCTTCAA 

Human FASN 
F：AAGGACCTGTCTAGGTTTGATGC 
R：TGGCTTCATAGGTGACTTCCA 

Human ACLY 
F：TCGGCCAAGGCAATTTCAGAG 
R：CGAGCATACTTGAACCGATTCT 

Human PPARG 
F：GGGATCAGCTCCGTGGATCT 
R：TGCACTTTGGTACTCTTGAAGTT 

Mouse PPDPF 
F：CCACATTCTGCTCTCGTCTC 
R：AGGCGTCGCCGATAGT 

Mouse 18sRNA 
F：GTAACCCGTTGAACCCCATT 
R：CCATCCAATCGGTAGTAGCG 

Human 18sRNA 
F：GAGAAACGGCTACCACATCC 
R：CACCAGACTTGCCCTCCA 
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Supplementary Table 3. Primers for mouse generation. 
Gene Sequence 5’→3’ 

PPDPF 
F：     GGCCTTACTCTTGTACTGCTGTC 
R：    GAGAGGATCATGAGCCAGCTTCG 

 
 
 
 
 
 
 

Supplementary Table 4. Primers for plasmid construction. 
 

Plasmids 
Sequence 
Reference 

Species Sequence 5’→3’ 

P23-3xFlag-PPDPF NM_024299.4 Human 
F：CGGGGTACCATGGCGGCCATCCCCTCCAGCGGCT 
R：
CTAGTCTAGACTGGACGGGGGCCCAGCGCTGGCTGTG 

P23-3xFlag-Raptor NM_020761.3 Human 
F：CGGGGTACCATGGAGTCCGAAATGCTGCAATC 
R：TGCTCTAGAGGTCTGACACGCTTCTCCACCGAGTAC 

P23-3xFlag-DDB1 NM_001923.5 Human 
F：CGGGGTACCATGTCGTACAACTACGTGGTAACG 
R：TGCTCTAGAGCATGGATCCGAGTTAGCTCCTCCACA 

pcDNA3-HA-PPDPF NM_024299.4 Human 
F：CCGGAATTCATGGCGGCCATCCCCTCCAGC 
R：CGCGGATCCGGACGGGGGCCCAGCGCTGGCTGTG 

pcDNA3.1-MYC-PPDPF NM_024299.4 Human 
F：CGCGGATCCATGGCGGCCATCCCCTCCAGC 
R：CCGGAATTCGGACGGGGGCCCAGCGCTGGCTGTG 

 
 
 

https://www.ncbi.nlm.nih.gov/nuccore/NM_024299.4
https://www.ncbi.nlm.nih.gov/nuccore/NM_020761.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_001923.5
https://www.ncbi.nlm.nih.gov/nuccore/NM_024299.4
https://www.ncbi.nlm.nih.gov/nuccore/NM_024299.4

