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SUPPLEMENTARY NOTES

1. Iterative detection of DGR in IMG public genomes and metagenomes
Overall, up to 3 rounds of DGR detection were performed for both genomes and metagenomes. The

first round of detection was based on known HMM profiles of DGR RTs, while after each round, new
profiles were generated from the DGR RT sequences collected, and used as references for the next
searches (see Methods). For whole genome shotgun sequences (i.e., “IMG isolates”), the first round of
searches identified 2,793 candidate DGR sequences, the second 442 candidates, while the third yielded
only one candidate that was identified as a false-positive, hence no further searches were performed.
For metagenomes, the first round identified 45,704 candidates, the second 10,964 candidates, while the
third round provided seven candidates which were all identified as false-positives. Overall, DGRs were
detected across 1,129 genomes and 2,684 metagenomes.

For  both  genomes  and  metagenomes,  false-positive  detections  were  mostly  associated  with  RTs
encoded  on  eukaryote  genomes,  especially  in  regions  containing  multiple  imperfect  repeats  with
seemingly random mismatches and both repeats within predicted CDS, as opposed to the A bias and
one intergenic repeat of typical DGRs. When included in a phylogenetic tree based on RT protein
sequences,  these  candidates  formed  a  clade  outside  of  all  known RTs,  and  in  particular  branched
outside of the known DGR clade. Because these sequences are likely not representing genuine DGRs
despite the presence of nearby repeats, the choice was made to only retain sequences with a typical
DGR mismatch profile (i.e., enriched in A mismatches) or branching within the known DGR clade,
while all other candidates were excluded.

While a majority of DGR-encoding contigs could only be affiliated to the phylum or class rank, a
total  of  4,755 were  affiliated  up  to  the  genus  rank,  distributed  across  369 bacterial  genera  and 9
archaeal  genera.  Even  though  48%  of  these  affiliations  were  to  only  3  genera  (Bacteroides,
Pseudomonas, and Prevotella), both because of a high prevalence of DGRs in these taxa and an over-
representation of these sequences in the metagenomes mined, the less common genera revealed new
DGR-encoding taxa  (Supplementary  Data  2).  These  included notably  members  of  the  Fibrobacter
genus, key actors in the degradation of cellulose compounds in ruminant animals, for which DGRs
have not yet been described and explored. This dataset also included additional examples of DGR for
ecologically-relevant  genera  within  the  phyla  Chlorobi (e.g.  Pelodictyon,  Chlorobaculum,  and
Chlorobium), Actinobacteria (e.g. Bifidobacterium, Colinsella, and Gardnerella), and Nitrospirae (e.g.
Candidatus Magnetobacterium), for which only a handful of examples have been reported. Within the
Archaea  domain,  DGRs were  associated  with various  members  of  the  Euryarchaeota  phylum and
DPANN supergroup. 

For this taxonomic affiliation, viral-encoded DGRs were associated with the taxon of their host when
available, based on the detection of an integrated provirus or matches to known CRISPR spacers (see
Methods). However, the viral genomes encoding these DGRs can also be classified in a separate viral
taxonomic framework. When affiliated, nearly all DGR-encoding viruses (n=3,218) were classified in
the  Caudovirales  order (either affiliated to an existing  Caudovirales genus or connected to the main
Caudovirales component in vContact2 network). Notably, while many giant viruses have been recently
identified from metagenome assemblies1, no DGR were detected in these genomes or co-localized with
an NCLDV marker gene, suggesting that DGRs are rare or absent from these large eukaryotic viruses
despite their ability to exchange genes with bacteriophages. The only exceptions were two sequences
(Meta_3300029305_Ga0307249_1003718615  and  Meta_3300018430_Ga0187902_100048955)
identified  as  putative  inoviruses  because  of  the  presence  of  an  inovirus  ATPase  marker  nearby2.
However, in both cases, the metagenome contig was too short to distinguish whether the DGR was
encoded by the inovirus genome or by a neighboring Caudovirales prophage, as previously observed2.
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Hence, overall, the available affiliations of DGR-encoding virus contigs suggest that these elements are
mostly, and maybe exclusively, encoded by Caudovirales.

2. Homogeneity of DGR OTUs and Clusters
DGR  OTUs  were  defined  based  on  a  95%  AAI  clustering  of  the  RT  sequences,  and  were

homogeneous in terms of taxon, biome, and genome type (i.e., viral vs cellular). Specifically, 99%,
91%, and 94% of non-singleton DGR OTUs were associated with a single taxon, biome, and genome
type,  respectively  (Supplementary  Fig.  2).  A majority  (60%)  of  DGR RT sequences  remained  as
singletons after this 95% AAI clustering, and >88% of DGR RTs were found in OTUs comprising less
than 5 sequences, illustrating how large the DGR RT sequence space is.

A similar pattern was observed for DGR clusters (≥50% AAI groups), of which 99%, 85%, and 96%
were associated with a consistent taxon, biome, and genome type, respectively (Supplementary Fig. 2).
The  lower  percentage  of  consistency  for  the  biome  feature  was  due  in  part  to  overlap  between
connected environments, e.g. “Landfill” and “Groundwater”, as well as the detection of DGR clusters
with a broad ecological distribution such as Meta_3300009658_Ga0116188_10269693, which includes
members from wastewater treatment plants, biogas reactors, saline and freshwater lakes, elephant gut
microbiome and moose rumen microbiome (Supplementary Data 4). While an exception, this suggests
that at least some DGR clusters are broadly distributed in the environment. Conversely to the OTU
clustering, most DGR RTs were found in a cluster comprising 2 or more sequences, and only 52% of
DGRs were found in clusters including less than 5 sequences. In addition, the 11 largest clusters alone
gathered >36% of all sequences, illustrating how this dataset enabled the detection of the predominant
groups of  DGRs in the environment.  Consistently,  the 11 largest  clusters  all  included at  least  one
reference sequence (Supplementary Fig. 1).

3. Definition of major DGR clades
In order to partition the large RT phylogeny into meaningful clades, we sought to leverage the key

features  of  each  DGR  cluster  including  genome  type,  taxon,  and  biome.  We  first  mapped  each
parameter to  the RT phylogeny rooted on non-DGR RTs and verified that  the distribution of each
parameter across the tree was statistically structured and not random (non-weighted Unifrac  p-value
<1E-03). Then, we reconstructed ancestral states for each parameter at each node throughout the tree,
and identified deep-branching clades with ancestral states predicted with ≥95% confidence as the main
groups of DGRs. Taken together, the different features mapped onto the tree suggest the successive
emergence of 6 major DGR clades from a single origin (Fig. 1A & B). 

Based on these ancestral state reconstructions, the deepest-branching clade of DGRs (DGR clade 1)
was found primarily in host-associated microbiomes (>99% confidence) and encoded on viral genomes
(>99% confidence)  infecting mostly  Bacteroides and  Firmicutes hosts. DGR clade 4 showed similar
characteristics  with  a  clear  association  with  host-associated  microbiomes  (>99%  confidence)  and
Firmicutes  (>99% confidence),  and most sequences found in a viral  genome. Two large groups of
cellular-encoded DGRs (DGR clades 2/3 and DGR clade 5) branched next to DGR clade 4 suggesting
two potentially distinct horizontal DGR transfer events from viruses to bacteria/archaea. In the group
including clades 2 and 3, the deep-branching nodes are associated with aquatic (>99% confidence)
cellular-encoded DGRs (>99% confidence) affiliated to the CPR (Candidate Phyla Radiation) taxon
(>96% confidence). However, another type of DGR is nested within these CPR-encoded DGRs, also
originally associated with aquatic environments (>99% confidence) but affiliated to other bacteria taxa,
especially Proteobacteria. The deep-branching CPR-associated DGRs were identified as “DGR Clade
2”, while the latter clade was identified as “DGR Clade 3”. The other group of cellular-encoded DGRs,
“DGR clade 5” branched separately from clades 2 and 3 but was also predicted to originally represent

3



aquatic (>99% confidence) cellular-encoded (>98% confidence) DGRs. A single clade of viral-encoded
(>99% confidence) DGRs branched within it however, suggesting a secondary transfer this time from
cellular to viral genomes. This latter clade was identified as “DGR Clade 6”.

While the diversity of DGR RTs was vastly expanded by metagenome-derived sequences, each of the
6 DGR clades included at  least  one reference and/or laboratory-characterized DGR sequence3.  The
original DGR identified in Bordetella virus BPP14 was affiliated in DGR Clade 6, along with other
reference DGRs mostly identified in prophages from Proteobacteria and Firmicutes genomes, targeting
viral  structural proteins  (Target  PC_0002  and  PC_00010,  Fig.  2,  Supplementary  Fig.  9).  The
Treponema DGR5 was  affiliated  to  DGR  Clade  5,  along  with  DGR  sequences  identified  in
Spirochaetes,  Cyanobacteria, as well as  Archaea and associated archaeoviruses6. Consistent with the
majority of DGR Clade 5 sequences, these reference sequences represented the main clade of cellular-
encoded DGRs associated with membrane-bound target proteins (Target PC_00001).  DGR Clade 4
included  another  set  of  DGRs  previously  identified  on  prophages,  mostly  from  Firmicutes and
Actinobacteria,  and targeting viral  structure proteins.  The  Legionella DGR7 was  affiliated in  DGR
clade 3, along with other references from Proteobacteria and Bacteroidetes targeting uncharacterized
proteins  gathered  in  Target  PC_00009.  Interestingly,  a  number  of  these  references  correspond  to
prophage-encoded DGRs, while others, such as the  Legionella DGR, are encoded on regions of the
cellular chromosome that are predicted as “putative mobile genetic element”. This suggests that this
DGR may have been frequently exchanged between cellular and viral genomes, or may have originated
from a provirus and retained on cellular genomes while the rest of the provirus decayed. DGR Clade 2
gathered sequences identified in the CPR group8 and associated with various uncharacterized targets
including Targets PC_00019, PC_00020, PC_00024, PC_00027, PC_00029, and PC_00040. Finally,
DGR  clade  1  included  references  from  Bacteroidetes,  Firmicutes,  and  Actinobacteria prophages,
targeting mostly viral structural proteins (Target PC_00002, Fig. 2, Supplementary Fig. 9).

4. Distinguishing prediction errors from genuine atypical TR-VR sequences
While our detection approach did not rely on the typical mutational bias of DGRs, i.e., mutations

associated  with  A residues,  nearly  all  (99%)  DGR  clusters  displayed  a  strong  bias  towards  A
mismatches (Fig. 1C). The few TR-VR pairs which did not show this pattern could arise either from
different mispredictions of the TR-VR regions or from a genuine DGR not constrained by the typical A
mutation  bias.  Upon  manual  inspection,  different  scenarios  leading  to  mispredicted  TR-VRs were
identified:

• Errors in the predicted CDS in the VR region can lead to an incorrect “T” bias, i.e., most of the
mismatches correspond to “T” in the TR because the putative target gene is predicted on the
opposite strand of the real target gene. This is especially common for VR regions situated near
the edge of a contig (i.e., within the first or last ~ 200bp), and we thus discarded such mutation
bias profiles based on partial target genes predicted on the edge of a contig.

• In other cases, the CDS prediction overlapping the VR region seemed correct, however it is
unlikely to be a genuine DGR target based on functional annotation and a lack of similarity to
any other DGR target (known or predicted). In this case, it is most likely that the TR-VR pair
was wrongly identified, and the associated mutations biases were also excluded.

• For TR-VR with a plausible target gene and not on the edge of a contig, several cases were
identified for which the blast hit used to define the TR-VR region likely extended past these
regions. While the TR-VR initially identified did not display an A bias, an internal subset of the
alignment could be identified upon manual inspection with (near-)exclusively A mismatches.
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Most likely in these cases, near-identical regions next to the TR-VR led to this misprediction,
and the bias was corrected to reflect the one of the “inner” TR-VR.

• Finally, some TR-VR pairs were associated with a plausible target gene and did not include any
subset with an A bias. No other mutation bias was apparent in any of these TR-VR pairs, i.e.,
the mismatches observed did not show any enrichment in a specific nucleotide either in the TR
or the VR sequence. These could represent either TR-VR sequences that accumulated mutations
beyond the  ones  introduced  by the  DGR RT,  or  DGR RTs for  which  the  incorporation  of
random nucleotides  is  not  strictly  associated  with  A residues.  The  small  numbers  of  such
“atypical”  DGRs  and  their  sparse  distribution  across  the  tree  indicates  however  that  the
tendency of DGR RTs to incorporate random nucleotide specifically at template A-residues is
both ancestral and conserved, thus most likely associated with biochemcial and/or structural
constraints of the RT enzyme itself9.

5. Interpretation of phylogenetic logistic regression between DGR distribution and biomes
We used a phylogenetic  logistic  regression on two trees  as described in  ref.  10,  one for cellular-

encoded DGRs and one for viral-encoded DGRs, to further disentangle phylogenetic and ecological
signal in DGR distribution. While both trees showed significant phylogenetic and ecological signals
(Supplementary Data 1), there were substantial  differences in the results  obtained for cellular-  and
viral-encoded  DGRs.  For  the  viral  tree,  all  significant  correlations  with  a  biome  type
(“Engineered:Landfill”,  “Host-associated:Human-fecal”,  “Host-associated:NonHuman-fecal”,  “Host-
associated:Other”)  were positive correlations,  i.e.,  highlighting environments  where viruses tend to
encode  more  DGRs  than  expected.  Two additional  biome  types  show  positive  correlation  which,
although not considered significant here, still had p-values of 0.006 and 0.003 (“Aquatic:Saline-lakes”
and “Engineered:Anaerobic-incubation”). These environments are consistent with the ones highlighted
in Fig. 1E as including a high average number of DGRs per genome, and the positive correlations
suggest that a set of diverse viruses encode DGRs in these environments. The diversity of these DGR-
encoding  viruses  may  be  due  to  a  relatively  high  frequency  of  horizontal  gene  transfer  in  viral
genomes11 and/or to viral-encoded DGRs providing a broad fitness advantage in these environments
regardless of the virus’ evolutionary history or taxonomy. Notably, this signal would also be consistent
with  DGR  fitness  advantage  being  associated  with  specific  host  characteristics  (e.g.  high  host
population diversity), since individual bacterial populations are typically infected by a diverse set of
phages12.

In contrast,  the only significant correlation in the cellular tree was a negative correlation for the
“Aquatic:Other” biome, while all other environments displayed correlation coefficients not statistically
different from 0 (Supplementary Data 1). It is notable that this result was obtained while clades of
cellular-encoded DGRs (DGR clade 2 and 5) primarily  include sequences  from only two types  of
environment (“Aquatic:Freshwater” and “Aquatic:Groundwater”, Fig. 1C). We interpret this result as
reflecting a situation where DGR-encoding microbes in these two environments tend to be concentrated
in a few specific monophyletic clades, while many other microbes from the same environments do not
encode  DGR.  The  narrow phylogenetic  distribution  of  cellular  DGRs  in  these  environments  may
reflect: (i) a limited opportunity for horizontal transfer and/or acquisition of DGR for many taxa, for
instance if some genomic background are not able to support DGR mutagenic retrohoming, and/or (ii) a
limited  set  of  lifestyles  and/or  metabolisms  in  which  cellular-encoded  DGRs  provide  a  selective
advantage.

6. DGR targets:   de novo   clustering process, results, and benchmarking  
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To avoid over-estimating the diversity of target proteins, we applied the  de novo protein clustering
pipeline to “high-quality” (HQ) targets only, i.e., predicted target genes longer than 300 nucleotides and
not within 50bp of the edge of the contig. This selection was designed to limit the inclusion of incorrect
targets due to partial and/or mispredicted CDS from metagenome contigs. Dereplication (99% AAI) of
these high-quality targets led to a dataset of 15,559 non-redundant targets used as input in the two-step
clustering process (see Methods). This resulted in 151 protein clusters (PCs) with 2 or more members,
designated here as “PC_00001” to “PC_00151”. Most (92.18%) high-quality targets clustered in 1 of
the 24 largest PCs, which were all associated with plausible functional annotation for DGR targets, and
thus further considered as likely genuine DGR targets. Other HQ target sequences found in smaller PCs
and/or singletons could be either genuinely rare types of targets or cases for which the target cds or TR-
VR regions are misidentified. Because these sequences are mostly originating from short contigs for
which genes and DGR features prediction are challenging, we opted to consider these targets as “Rare”
and not analyze them further. Non-HQ target sequences were then mapped to HMM profiles derived
from these clusters and affiliated to individual PCs if a significant sequence similarity was detected (see
Methods).

While  the  two-step  clustering  used  to  establish  target  PCs  enables  the  identification  of  remote
similarity, which is often required when analyzing viral sequences13, it may be seen as risking “over-
clustering” sequences, i.e., artificially gathering most input sequences in only a handful of PCs. To
verify that this was not the case for either viral or cellular proteins, we applied the same two-step
clustering  pipeline  to  two  “benchmark”  datasets:  (i)  24,753  random  proteins  from  Caudovirales
genomes in NCBI Viral RefSeq R20114, and (ii) 24,987 random proteins from DGR-encoding bacterial/
archaeal genomes (Supplementary Data 5). Two clusterings were run for each set of protein sequences,
one including the full set, and one including only a random subset of 15,599 sequences (i.e., the same
number as HQ target sequences used in our analysis, see above).

In all cases, input sequences were grouped into a much higher number of PCs than the HQ DGR
targets,  and none of the test  clusterings yielded the same pattern of most  sequences  gathered in a
handful of PCs, as observed for HQ DGR targets. Specifically, while >92% of proteins were gathered
in only 24 PCs for HQ DGR targets, the 20 largest PCs never included more than 10.2% (for microbial
genomes) or 5.6% (for  Caudovirales) of the input sequences in the benchmarks (Supplementary Fig.
6). Accordingly, Shannon’s Entropy calculated from the number of sequences across all PCs was much
higher for benchmark clustering (6.69 for microbial genomes, and 7.10 for Caudovirales proteins for
subsampled benchmarks) than for the DGR targets (4.12), again indicating that the distribution of PC
size  was  much  more  uneven  in  the  case  of  DGR  targets,  with  a  few  PCs  encompassing  a
disproportionate  amount  of  input  sequences.  Finally,  we manually  inspected  the  annotation  of  PC
members for these two benchmark datasets, and verified that these PCs only gathered sequences with
consistent  functional  annotation  (Supplementary  Data  5).  Hence  the  observation  of  DGR  targets
clustering in a handful of PCs is not a methodological artifact but reflects a genuinely low sequence
and functional diversity of DGR targets.

7. Examination of putative Ig-like VR domains
Wu  et  al.3 previously  reported  two  ‘categories”  of  VRs  which  were  predicted  to  adopt  an

Immunoglobulin-like (Ig-like) fold (Ig1 and Ig2). These included respectively 36 and 9 non-redundant
targets, with 3 types of domain organization: 25 displayed a C-terminal VR within a short (≤250 aa)
protein, 4 included a C-terminal VR with a long (>250 aa) uncharacterized N-terminal part, and 17 had
a N-terminal VR followed by a long (>250aa) uncharacterized C-terminal region3. As typical for DGR
targets, despite the similarities observed between the VR regions, most of these sequences could not be
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annotated. Wu et al. however noted that a structure prediction with Phyre 2 suggested that some of
these VRs (3 Ig1 and 5 Ig2) may overlap with an Ig-like domain.

In our analysis, Ig1 and Ig2 targets were found in two different PCs, PC_00003 (24 Ig1, 8 Ig2) and
PC_00008 (12 Ig1), with one exception (one Ig2 target was clustered in PC_00062, considered a “rare”
target in our analysis). Both PC_00003 and PC_00008 are clearly associated with viral-encoded DGRs,
which is consistent with previous analysis of Ig1 and Ig2 VRs3. Both PCs are also predicted to include
a  majority  of  structural  (likely  tail)  proteins  (Fig.  2A).  However,  with  PC_00003  and  PC_00008
including  1,770  and  416  non-redundant  high-quality  sequences  respectively,  this  extended  dataset
provided  a  unique  opportunity  to  further  understand  the  putative  link  between  VRs  and  Ig-like
domains.

When these targets were annotated using hhblits,  members of PC_00003 and PC_00008 did not
display any conserved domain overlapping the VR region (Supplementary Data 5). Both members of
PC_00003 and PC_00008 had hits to functional domains related to carbohydrate binding outside of the
VR regions however, including several with Ig-like domains (Supplementary Data 5). Several types of
phage tail fiber proteins have been previously shown to harbor similar Ig-like fold domains15, which is
consistent  with  expected  function  of  DGR targets.  To  further  confirm  that  Ig-like  domains  were
commonly  found  on  tail  proteins,  we  annotated  250,209  non-redundant  protein  sequences  from
Caudovirales genomes in NCBI Viral RefSeq R20114 using the same pipeline as the one applied to the
DGR targets. We identified 1,035 proteins matching an Ig-like domain, including 80.4% annotated as
tail- or capsid-related (excluding hypothetical proteins, Supplementary Data 5). This confirmed that
proteins containing Ig-like domains are not uncommon in Caudovirales, and are for the overwhelming
majority structural proteins, most frequently tail fibers.

Ig-like-containing tail fibers have been shown to vary in length, especially through the addition and
removal of one or several Ig-like domains in the C-terminal region of the protein15. We confirmed this
was the case here as well by building a phylogeny of target sequences from PC_00003 and mapping the
domain organization of these targets to the tree, two large clades of sequences longer than average and
typically  including  one  or  several  Ig-like  domains  immediately  downstream to  the  conserved  VR
domain can be observed (Supplementary Fig. 8 & 9). This would be consistent with the original target
displaying  a  typical  C-terminal  VR  region,  and  progressively  increasing  in  length  through  the
downstream  addition  of  additional  carbohydrate-binding  domains,  including  Ig-like  domains,  that
would not be targeted by DGR retrohoming but located immediately next to the VR (Supplementary
Fig. 9). 

We further wondered whether these Ig-like domains immediately next to VR regions could lead to
structure  predictions  including  an  erroneous  overlap  between  VR and  Ig-like  domains.  When  we
repeated the structural prediction of Ig1 and Ig2 proteins using Phyre2, we observed that all cases for
which an Ig-like fold was predicted as overlapping a VR region corresponded to sequences for which
multiple Ig-like domains were identified (both by hhblits and Phyre2) downstream from the VR, and
found in one of the two clades of sequences longer than average (Supplementary Fig. 9). The structures
obtained were also of relatively low quality (as also noted by Wu et al.3), and based on templates often
consisting of multiple successive Ig-like domains. Conversely, for all Ig1 and Ig2 sequences with a C-
terminal VR or with a VR without nearby Ig-like domain, no prediction of an Ig-like fold was obtained.
These Ig1/Ig2 sequences are thus most likely phage tail fibers with a non-Ig-like conserved VR domain
for which no characterized fold can be identified, but erroneously predicted as an Ig-like fold due to
nearby Ig-like domains.

8. DGR targets: Functional annotation of non-VR regions
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To evaluate the expansion of DGR target space obtained in our expanded DGR catalog compared to
previous studies, we compared the functional annotation obtained on the 24 largest target PCs with the
functions of DGR targets previously reported3.  In addition to conserved domains already detected on
reference  sequences,  23  domains  were  newly  identified  on  >5  predicted  target  sequences.  These
included  conserved  domains  within  S-Layer-containing  proteins  (PDB  4QVS_A),  PEGA domains
(Pfam PF08308),  putative bacterial  lipoproteins (Pfam PF05643),  putative glutamyl endopeptidases
(PDB 1WCZ_A), serine proteases (PDB 3STI_A and 6BQM_A), and other types of viral structural
proteins  (PDB 4V96_AG,  Pfam PF03906).  Overall  these  confirm that  DGR targets  are  extremely
diverse, but are mainly associated with carbohydrate-binding proteins embedded in virions and cell
membranes. Notably, among viral-encoded DGR targets, several members of  PC_00012 included an
atypical eukaryotic-like serine/threonine kinase (CotH-like domain), previously linked to extracellular
phosphorylation of membrane proteins16,17. While these kinase domains are typically located distantly
from the VR, structural predictions suggested both regions may be in close contact, perhaps directly
interacting with each other, once the protein is folded (Supplementary Fig. 9). This suggests a potential
role  beyond  host  recognition  for  some  of  these  viral-encoded  DGRs,  possibly  in  host  membrane
modification upon attachment.

For a comprehensive annotation of phage structural proteins,  we relied on two approaches  more
sensitive than sequence similarity: DeepCapTail18 and PhANNs19. PhANNs has been extensively tested
and benchmarked19, and we leveraged these tests to select a threshold of score ≥0.2, which maximizes
recall while maintaining a precision and F1-score >0.85. For DeepCapTail, we performed a sensitivity
analysis by annotating a set of 250,209 non-redundant set of Caudovirales proteins from NCBI RefSeq
(Supplementary Data 5). We observed that, even at a conservative threshold of score ≥0.9, a relatively
high percentage of sequences (36%) were predicted as likely tail proteins. These included nearly all
sequences annotated as “tail”, “tail fiber”, or “tail structure”, in addition to a number of hypothetical
proteins and sequences annotated as other functions, which we interpreted as some extent of “over-
prediction” (i.e., Type I error) from DeepCapTail. The impact of this marginal over-prediction could be
mitigated when DeepCapTail results were considered at the PC level. Specifically, when we clustered
the non-redundant RefSeq Caudovirales proteins using our two-step clustering pipeline and analyzed
DeepCapTail predictions for the 269 PCs with ≥100 members, only 74 PCs included ≥60% of members
predicted as capsid or tail proteins by DeepCapTail, and nearly all of these were annotated in RefSeq as
structural or virion-related proteins (Supplementary Data 5). Eventually, we combined both predictions
for  annotating  phage-encoded  Target  PCs  as  follows  (Supplementary  Data  5).  First,  7  PCs  were
considered as “tail proteins” because they had ≥60% of their members predicted as a tail structure
protein by either or both tools. Specifically, 6 PCs included 54-98% of their members predicted as tail
structure proteins across both tools, while 1 PC (PC_00023) included 61% of members predicted as tail
structure proteins by DeepCapTail and 39% by PhANNs (Supplementary Data 5). The two other PCs
(PC_00009 and PC_00007) were considered as non-structural/unknown, since in both cases PhANNs
predicted  only  a  small  minority  of  the  sequences  as  structural  (15.8%  and  1.6%,  respectively,
Supplementary  Data  5).  Since  our  knowledge  of  viral  structural  proteins  is  still  partial19,  it  is
nevertheless possible that these target PCs currently lacking a functional annotation represent so-far-
uncharacterized structural proteins.

Finally, since most of the cellular-encoded DGR targets were predicted to be associated with the cell
membrane,  we further  evaluated targets  from bacterial  taxa with  fundamentally  distinct  membrane
architectures, i.e., monoderm (~ gram-positive) and diderm (~ gram-negative) taxa. We reasoned that,
if cellular-encoded DGR targets were indeed membrane-anchored, taxa with different membrane types
should encode distinct target PCs. Accordingly, cellular-encoded target PCs partitioned near-perfectly
with membrane types (Supplementary Fig. 9). For the 6 target PCs annotated as membrane bound, 5
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included ≥95% diderm members, while the sixth (PC_00041) was associated with 100% monoderm
members.  While  a broad range of mechanisms exist  to  anchor  proteins to  monoderm cell  surface,
PC_00041  was  annotated  as  a  membrane-bound  PC  based  on  the  detection  of  N-terminal
transmembrane helix(ces) in >80% of members, suggesting these targets are likely anchored to the
cytoplasmic  membrane  rather  than  to  the  cell  wall  as  would  be  e.g.  lipoproteins  or  LPXTG-like
proteins.  Meanwhile,  target  PCs  not  annotated  as  membrane-bound  were  associated  with  atypical
bacteria from the candidate phyla radiation (CPR), or with archaea. This is consistent with previous
studies suggesting these two types of organisms include DGRs with atypical target proteins6,8.  The
cellular localization and function of these target proteins remains undetermined at  this point,  since
prediction of membrane localization for these taxa is known to be challenging.

9. Comparison of potential host range between DGR-encoding and non-DGR-encoding viruses
Some viral-encoded DGRs are known to play a role in phage’s adaptation to host tropism switching

based on experimental studies  in  Bordetella bacteriophages4.  In this  instance,  DGR-induced hyper-
diversification is used by the phage to cope with the highly dynamic cell surface of its host. Beyond
adaptations to change in a single host however,  diversification of host recognize proteins could also
enable some DGR-encoding phages to attach to a broad diversity of host cells, and possibly expand
their  host  range  compared  to  their  non-DGR-encoding  counterparts.  To  test  this  hypothesis,  we
connected viruses encoding DGRs (DGR+ viruses) to prokaryotic host genomes using a comprehensive
database of 6.7 million CRISPR spacers derived from 576,561 prokaryotic reference genomes, and
estimated host range by counting the number of distinct host species connected to each virus. As a
control  we  performed  the  same  procedure  for  viruses  lacking  DGRs  (DGR-  viruses)  that  were
identified from the same metagenomes. To avoid sampling issues, we calculated host range per virus
using exactly 50 protospacers, and discarded viruses with fewer than 50 matched CRISPR spacers.

On average, DGR+ viruses were connected to 1.8x as many host species as DGR- viruses (averages
= 9.53 and 5.33,  respectively,  Wilcoxon rank-sum test  p-value = 5.3x10-96).  A similar  pattern  was
observed using Shannon’s Entropy as the measure of host  diversity  (Supplementary Fig.  10).  One
potential confounding variable is the number of spacers derived from each host species in the database,
since a large pool of spacers from an individual species could result in the appearance of narrow host
range. However, to the contrary, DGR- viruses were associated to hosts with smaller spacer pools,
ruling out this possibility (Supplementary Fig. 10).

Critically  however,  connections  based  on CRISPR spacer  matches  between  a  phage  and a  host
species does not mean that this phage is able to successfully infect members of this species. In fact, the
integration  of  a  new  CRISPR  spacer  in  a  host  genome  is  a  sign  that  the  corresponding  phage
successfully entered into this host cell,  but then saw its infection aborted by the host cell  defense
system. Hence, the higher number and diversity of CRISPR connections for DGR-encoding phages
should  not  be  interpreted  as  necessarily  a  broader  host  range  for  these  phages,  but  rather  as  the
indication that, on average, diversification of host recognition proteins does give these DGR-encoding
phages the opportunity to attach to and attempt infecting a broader diversity of host cells than non-
DGR-encoding ones.

10. Analysis of DGR-encoding metagenome bins
Two analyses were conducted based on DGR identified in IMG genomes bins (see Methods). First,

genome bins  were used  to  evaluate  whether  DGR-encoding viruses  infected  dominant  and/or  rare
genomes in human gut samples. A total of 124 human gut metagenomes were selected which included
at  least  10  MQ/HQ bins,  at  least  1  DGR-encoding  bin,  and for  which  coverage  information  was
available.  While  these  metagenomes  included  10 to  37  bins,  DGR-encoding  bins  were  frequently
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among the most abundant genomes observed. Specifically, DGRs were identified in one of the 3 most
abundant bins for 68 of these 124 metagenomes (55%). While this pattern may be potentially biased by
the fact that genome bins with higher coverage may have a higher completeness than bins with lower
coverage,  importantly,  it  was  not  observed  across  other  biomes.  Specifically,  when evaluating  the
number of metagenomes for which a DGR was identified in one of the 3 most abundant bins, these
only represented 17 of the 66 qualified metagenomes (26%) from other host-associated samples (i.e.,
non-human gut), 44 of the 139 qualified metagenomes (32%) from aquatic samples, and 17 of the 67
qualified metagenomes (25%) from engineered samples, compared to 55% for human gut samples.
Hence, this pattern is likely not associated with a systematic genome binning bias, and DGRs seem to
be specifically associated with abundant members of the community in human gut microbiomes.

Next, we used genome bins to evaluate differences in gene content between DGR-encoding and non-
DGR-encoding  genomes  for  Clade  5  DGRs,  which  are  primarily  identified  in  aquatic  biomes.
Compared to MQ/HQ genome bins from the same metagenomes that do not encode a DGR, genome
bins encoding a Clade 5 DGRs displayed a significant enrichment in key COG categories associated
with copiotrophic and/or particle-associated lifestyle. Specifically, genome bins which included a Clade
5 DGR showed a higher percentage of genes assigned to COG category N “Cell motility”, T “Signal
transduction  mechanisms”,  and  V “Defense  mechanisms”  compared  to  other  bins  from the  same
metagenomes (ks-test p-value ≤1E-5, Cohen’s effect size ≥0.2), all categories previously highlighted as
enriched in copiotrophs20. Importantly, the same pattern, i.e., significant enrichment in COG categories
N, T, and V, was observed for bins including the other main clade of cellular-encoded DGRs, DGR
clade 3, but not for any other clade. This indicates that these patterns are not a systematic bias of
genome binning, but instead reflect key features in terms of gene content of micro-organisms encoding
DGRs of clade 3 and 5. Given that the target genes of DGR clade 5 are typically membrane-bound, it is
tempting to speculate that at least some of the DGRs in these clades drive hyper-diversification of
surface protein directly involved in particle binding, and would thus broaden the range of particles and/
or other microbial cells to which a microbe could bind. 

11. Evaluating DGR activity from read mapping
Because of the high number of SNVs concentrated in a short  region, mapping pipelines for VR

sequences must use specific parameters to allow more mismatches and avoid under-recruiting short
reads to the hypervariable reference. To achieve this, we used here a two-step mapping process. First,
all reads were mapped using bwa to recruit all reads matching, even partially, to the reference sequence
(i.e., based on local alignment). Then, reads which were locally aligned on at least 50% of their length
were mapped against the same reference using bbmap with parameters tuned toward optimization of
the read global alignment and tolerating mismatches (see Methods). We verified whether most reads
from VR regions were likely recovered by comparing the read depth of VR regions to the one of
surrounding  genes  from the  same contig  (Supplementary  Fig.  11).  Since  some metagenomes  will
display variable read coverage along a single contig, e.g. due to PCR amplification of the library21, we
established a 95% confidence interval for coverage along each contig based on the average coverage of
non-target genes minus 2 standard deviations, and considered as “low coverage” cases in which the VR
coverage was below this cutoff. Pragmatically, we considered VR region with a coverage below the
average minus 2 standard deviations cutoff as unexpectedly low, and likely reflecting an incomplete
recruitment of VR reads. Overall, >91% of VR regions displayed a coverage above the 95% confidence
interval lower bound, confirming that most reads coming from these VR regions had been recovered.

To further verify that SNVs could be robustly called in VR regions, we compared the number of
SNVs detected by two different tools: bcftools mpileup/call and freebayes (see Methods). Overall, both
SNV calling approaches produced very similar result (Supplementary Fig. 11), resulting in a Pearson
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correlation  coefficient of  0.873 (95% confidence  interval:  0.868-0.879,  p-value  <2.2e-16)  between
SNV densities for individual VR regions. We thus proceeded using only one of these SNV sets, and
opted to use the more conservative one given the parameters used here, i.e., bcftools (Supplementary
Fig. 11).

In order to measure the selective constraints exerted on individual genes and/or VR regions, we first
relied on the known pN/pS metric, calculated as in Schloissnig et al.22. For non-target genes, this pN/pS
ratio was on average 0.16 (95th percentile=0.60), as expected for microbial genes evolving under long-
term purifying selection. By contrast, pN/pS ratio average was 2.83 for target genes. Notably, pN/pS
calculations were sometimes impossible  to calculate because of an absence of synonymous SNVs.
While in the case of non-target genes, the absence of synonymous SNVs was mostly (>90% of the
time) associated with an absence of non-synonymous SNVs, this was not the case for VR regions, of
which 51% displayed ≥1 non-synonymous SNVs but 0 synonymous SNVs. In order to include these
sequences  in  the  activity  estimation,  we opted  to  use  an  “enrichment  in  non-synonymous  SNVs”
statistics comparing the density of non-synonymous SNVs in a VR region to the one in surrounding
non-target genes. The two approaches were largely congruent, as for cases in which both could be
calculated, the 296 sequences without an enrichment in non-synonymous SNVs all had low pN/pS
(median=0.39), while the 2,417 sequence with an enrichment in non-synonymous SNVs had a high pN/
pS (median=2.48).

Finally, we searched for time-series datasets that could provide insights into the population diversity
of DGR loci through time. We first identified time series among our metagenome set, and linked each
sample to its “subject/location”, i.e.,  individual patient for human cohorts, individual bioreactor for
laboratory incubations, individual water body and/or depth layer for lakes (Supplementary Data 6).
Individual  water  layers  were  used  as  subject/location  when  they  represented  distinct  ecological
conditions,  or were grouped as a single subject/location otherwise to avoid duplicate  observations.
Candidate  DGRs  for  time  series  analysis  were  identified  based  on  DGR  OTUs  which  included
members  assembled  from multiple  datasets  of  a  single  subject/location.  For  these,  reads  from all
datasets  associated  with  the  subject/location  were  mapped  to  the  same  DGR OTU  representative
sequence, and the longitudinal analysis was conducted if the median coverage of this sequence was
≥10x in ≥2 time points. Overall, 563 DGR OTUs were analyzed this way across 130 time series, and
covered all DGR clades (the lowest number of DGR OTUs was for DGR clade 2, with 47 OTUs).

12. Definition of activity categories for time series
The activity of DGR analyzed as part of a time series were evaluated based on single amino acid

variants23 called using Anvi’o (see Methods), i.e., for each position of interest and each sample, a vector
of frequency of amino acid alleles was determined by Anvi’o based on read mapping. For each TR-VR
pair, all amino acid residues in the VR for which at least one of the position in the codon corresponded
to an A in the TR were evaluated, along with 10 randomly chosen positions upstream in the target
protein sequence which were used as control. 

Three complementary metrics were computed from these amino acid alleles frequency vectors. First,
the entropy calculated by Anvi’o was used as a measure of the populations diversity at a given position
in a given sample. Based on the overall distribution of entropy values across VR and control positions,
we established three categories of positions: low entropy for values ≤0.25, medium entropy for values
>0.25 and ≤0.5,  and high entropy for values >0.5.  Next,  we calculated for each position a cosine
similarity  between the  allele  frequency  vector  of  a  sample  and  the  allele  frequency  vector  of  the
previous sample in the time series. Again, based on the overall distribution of cosine similarities across
consecutive time points for VR and control positions, we defined cosine similarity values ≥0.9 as “high
similarity”,  values  ≥0.75  and  <0.9  as  “medium similarity”,  and  values  <0.75  as  “low similarity”.
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Finally, we calculated the number of changes in the dominant (i.e., majority) allele throughout the time
series for each position.

Four categories of DGR activity were then defined based on a combination of these 3 metrics. First,
if the entropy of position was always high, i.e., >0.5 for all time points, the position was considered as
“constant diversity”, i.e., it is likely that the corresponding DGR is active enough to counteract any
purifying selection. If instead a position included in the same time series included both samples with
low (i.e., ≤0.25) and high (i.e., >0.5) entropy, it was considered as “alternating”, i.e., these changes
were  interpreted  as  a  series  of  DGR-driven  diversification  events  followed  by  diversity  reduction
through  purifying  selection  and/or  drift.  Alternatively,  if  at  least  one  dominant  allele  change  was
observed during the time series with a low cosine similarity (i.e., <0.75), the corresponding DGR was
also considered as “alternating”. In this case, we interpreted the change in dominant allele associated
with a high distance between allele frequency vectors as evidences suggesting some unsampled DGR
diversification event between the time points. The cutoff on distance between allele frequency vectors
enabled us to distinguish cases with genuine changes in the amino acid composition of a position, from
cases with multiple co-dominant alleles of nearly equal proportion, for which a change in dominant
allele could be observed by chance without the need for any diversification or selection event. Positions
not considered as “constant diversity” or “alternating” were then classified as “constant selection” if the
minimum entropy was at least medium (i.e., >0.25). These are cases for which few to no change in the
dominant allele are observed, however all samples show significant population diversity suggesting a
continuous DGR-driven diversity likely controlled by purifying selection. Finally, other positions with
either all  samples with entropy ≤0.25 (low entropy) or all  similarities between samples ≥0.9 (high
similarity) were considered as “inactive”. We chose to interpret these as sign that the corresponding
DGR was not active, although similar allele frequency profiles could be obtained from active DGR
associated with very strong purifying selection if the fitness of different variants was constant across
the time series. 

Overall,  >97% of the “control” positions (i.e.,  positions from the target gene but not in the VR
region)  were  classified  as  “inactive”,  as  would  be  expected  for  positions  under  strong  purifying
selection. In contrast, only 43% of the VR positions were classified as “inactive”, despite the fact that
the VR regions were determined automatically and likely include non-VR positions in 5’ and 3’ of the
actual  TR-VR  repeat.  The  other  VR  positions  distributed  between  “constant  diversity”  (35%),
“alternating”  (15%),  and  “constant  selection”  (7%).  This  is  consistent  with  the  high  rate  of  non-
synonymous SNV identified from individual metagenome mapping (Fig. 3A & B), and confirms that
the population diversity observed at VR locus is fundamentally different from the one observed at other
positions even in the same target gene and the same samples.

13. Estimation of the contribution of DGRs to overall amino acid changes in viral genomes
To conservatively estimate the contribution of DGRs to overall amino acid turnover in viral genomes,

we first selected DGRs from clades 1, 4, and 6 for which longitudinal data was available, and excluded
data  from  laboratory  incubations  (Supplementary  Data  6).  For  each  type  of  dataset
(“Temperate_Lakes”,  “Antarctic_Lakes”,  “Human_microbiome”,  “Human_microbiome_perturbed”),
the total number of changes in dominant allele observed on VR and control positions (see above) was
tallied and divided by the total number of observation for each group to obtain a “frequency of change”
for  each  group.  Based  on  an  average  genome  size  of  ~50kb  and  coding  density  of  ~90%  for
Caudovirales  (based on genomes in NCBI Viral RefSeq v93), we estimated an average number of
position per genome of 15,000 (45,000 nucleotide positions in protein-coding gene leading to 15,000
codons/amino acid residues). For VR positions, we used the average number of VR positions predicted
by DGR, i.e., 17. For each dataset, the average frequency of change for each group (background and
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VR) was thus multiplied by the estimated number of positions for each group in an average genome
(15,000 and 17) to obtain estimates of total number of changes for each group. The ratio between the
number  of  changes  in  VR and the  total  number  of  changes  was  then  used  as  an  estimate  of  the
contribution of DGRs to amino acid turnover in an average DGR-encoding viral genome.

The  estimated  proportions  of  amino  acid  changes  associated  with  DGRs  were  6.14%  in
“Human_microbiome”, 7.32% in “Human_microbiome_perturbed”, 9.67% in “Temperate_Lakes”, and
16.35% in “Antarctic_Lakes”.  Importantly,  we consider these estimates as conservative because all
positions randomly selected as ‘control’ were taken from outside the predicted VR but within the same
DGR target gene. These genes are likely to experience more frequent changes even outside of the VR
region  than  other  housekeeping  genes  because  most  of  them are  directly  involved  into  virus-host
interactions. Hence, these estimated proportion of DGR-driven amino acid changes should be seen as
lower boundaries of the actual value.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. Size distribution of the 100 largest RT OTUs (top panel) and RT Clusters
(bottom panel). The bars are colored according to the presence/absence of reference sequences in the
corresponding OTU/Cluster. 
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Supplementary Figure 2.  Characteristics of DGR RT OTUs and Clusters. Each bar chart indicates
the consistency of one feature (taxonomic classification, biome, or genome type) across members of a
DGR RT OTU (A) or DGR RT Cluster (B). For OTUs with ≥2 members (i.e., non-singletons) with
inconsistent values for a feature, a majority rule was applied: if a majority of an OTU members had the
same value,  this  value was used for the OTU (“Mixed values: solved”).  In case of tie (i.e.,  equal
number of members associated to different features), the OTU feature was considered as unknown
(“Mixed values: irreconcilable”). For Clusters, a similar approach was used with a 2/3rd majority rule.
All Clusters for which ≥2/3rd of the members had the same value were considered as “Consistent
value” and the value was assigned to the cluster. Cases in which the majority value in the cluster was
associated with <2/3rd of the members were considered as “Mixed values: irreconcilable”.
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Supplementary Figure 3.  Phylogeny of isolate and metagenome-binned genomes encoding one or
more DGRs and associated with human gut samples. Nodes with support <50 were collapsed, and
nodes with support ≥80 are noted with a black circle. For each genome, the different clades of DGRs
detected  in  the  genome  is  indicated  next  to  the  tree  as  a  colored  heatmap.  The  genome  relative
abundance is then indicated next to the heatmap: isolate genomes are highlighted with grey squares,
genome bins ranked as one of the 5 most abundant genomes within a metagenome are highlighted with
black squares.
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Supplementary Figure 4.  Examples of predicted DGRs with atypical (non-A) mutation bias. For
each DGR, the clade, genome type, taxonomic classification, biome, and primary target affiliation are
indicated  when available.  The genome maps are  colored  based on each predicted  CDS functional
annotation:  the  DGR reverse-transcriptase  in  red,  target  gene  in  green,  other  genes  in  blue,  and
“hypothetical protein” in grey.
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Supplementary Figure 5. Link between estimated total number of genomes (x-axis) and number of
DGRs  detected  (y-axis)  for  metagenomes  across  different  biomes. For  each  biome,  a  linear
regression line is indicated in color, with the 95% confidence interval outlined in gray. Zoomed plots
are displayed on the right panel, and the zoomed-in region is highlighted with a dashed black square on
the full plot on the left panel.
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Supplementary Figure 6. Comparison of de novo protein clustering for DGR targets and random
microbial and/or viral sequences. The bar chart displays the number of proteins included in each of
the  20  largest  PCs  for  5  clustering:  high-quality  DGR targets,  random selection  of  Caudovirales
proteins (full dataset or subsampled to the same number as the HQ DGR targets), random selection of
Bacteria/Archaea proteins (full dataset or subsampled to the same number as the HQ DGR targets). For
each clustering, the Shannon’s Entropy calculated from the entire set of clusters is also indicated in the
legend box.
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Supplementary Figure 7. Average residue conservation in predicted targets. A. Example of average
residue  conservation  in  35-residues  windows  along  the  multiple  alignment  of  PC_00008.  An
“extended” VR region (200 residues upstream and 20 residues downstream of the average predicted
VR region) is  highlighted in grey,  which corresponds to the variable residues and the surrounding
conserved domain. B. Distribution of residue conservation in “extended VR” and non-VR regions for
the 24 largest  target  clusters.  All  distribution  were significantly  different  (two-sided Kolmogorov–
Smirnov test  p-value <2E-16). The magnitude of the difference between VR and non-VR region is
indicated through Cohen’s d effect size (star symbols on the x-axis). All target PCs showed a higher
average conservation in VR compared to non-VR regions except for PC_00012, which is highlighted
with a black circle.  The boxplot lower and upper hinges correspond to the first and third quartiles,
respectively, and the whiskers extend no further than ±1.5 times the interquartile range. The numbers of
observations used in the K-S tests for each PC were as follow: PC_00001: 19,082; PC_00002: 18,550;
PC_00003:  11,356;  PC_00007:  1,288;  PC_00008:  3,467;  PC_00009:  13,570;  PC_00010:  3,722;
PC_00012:  11,000;  PC_00019:  1,911;  PC_00020:  1,130;  PC_00021:  8,714;  PC_00023:  2,150;
PC_00024:  766,  PC_00026:  731,  PC_00027:  3,318;  PC_00029:  968;  PC_00033:  748;  PC_00038:
1,831; PC_00039: 1,096; PC_00040: 421; PC_00041: 3,507; PC_00042: 980; PC_00044: 1,878; and
PC_00047: 1,518.
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Supplementary  Figure  8.  Phylogeny  and domain organization  of  target  sequences  clustered in
PC_00003. Nodes with support <50 were collapsed, and nodes with support ≥80 are indicated with a
black circle. For each sequence or clade, a schematic of the domain organization is indicated to the
right of the tree, with a black line proportional to the sequence length, VR domains indicated with a red
circle,  and other domains indicated with colored rectangles. Monophyletic clades with a consistent
domain organization were collapsed. The two clades of sequences displaying an internal VR region
typically followed by one or several Ig-like folds in C-terminal are highlighted with a black dashed
square. Reference sequences identified in the “Ig1” and “Ig2” domains are noted with a star symbol
next to the sequence name.
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Supplementary Figure 9. Taxonomic and biome distribution of DGR OTUs associated with the 24
largest target PCs, and predicted structure for atypical viral target. A. PCs are ordered according
to the 4 main categories of targets, as on Fig. 2. Target PCs for which the VR region was not identified
as a putative C-Lec fold are highlighted in red. The proportion of DGR OTUs associated with specific
taxa  (left)  or  biomes  (right)  was  calculated  independently  for  each  target  PC.  White  cells  in  the
heatmap  correspond  to  an  absence  of  DGR  for  the  corresponding  taxa/biome  and  target  PC
combination. For cellular-associated bacteria, the ratio of monoderm taxa to all monoderm and diderm
taxa is indicated when available, based on ref.  24. Taxa for which this membrane-based classification
does not apply and/or is not available, e.g. archaea or CPR bacteria, were excluded from the analysis.
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For several  target  PCs,  this  meant  that  almost  no  taxa  encoding this  target  could  be classified  as
“diderm bacteria” or “monoderm bacteria”, and these are indicated with “NA” (<2 DGRs in taxon
classified as diderm or monoderm). These target PCs were either associated with members of the CPR
group  or  with  archaea  (indicated  next  to  the  “NA”).  CPR:  Candidate  Phyla  Radiation.  FCB:
Flavobacteria,  Fibrobacteres, Chlorobi,  Bacteroides. B. Predicted structure of a viral-encoded target
sequence  from  PC_00012  displaying  similarity  to  a  eukaryotic-like  kinase  domain  (CotH).  The
structure is colored with a blue-red rainbow gradient from the N- to C-terminal end and predicted
variable residues in the VR (i.e.,  corresponding to TR adenines) are highlighted with grey spheres.
Because of the large size of the protein (2,284 aa), structure prediction was run on a subset of the
sequence  from position  786 to  2,284,  i.e.,  without  the  N-terminal  region.  The  model  quality  was
assessed based on the TM-score estimated by I-TASSER (a TM-score >0.5 indicates a model with a
likely correct  topology).  C. Predicted structure of a  viral-encoded target  sequence from PC_00003
displaying similarity to Ig-like domains. The structure is colored with a blue-red rainbow gradient from
the N- to C-terminal end and predicted variable residues in the VR (i.e., corresponding to TR adenines)
are highlighted with grey spheres. The model quality was assessed based on the TM-score estimated by
I-TASSER.
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Supplementary  Figure  10.  Potential  indications  of  DGR-mediated  host  range  expansion. A.
Species-level  Shannon’s  Entropy  of  connected  hosts  based  on  a  random  subset  50  matched
protospacers per virus.  Only viral  genomes matching at  least  50 CRISPR spacers were considered
(DGR+, n=822; DGR-, n=1,182). B. Total number of protospacers matching each type of virus with at
least 1 protospacer (DGR+, n=2,566; DGR-, n=7,704). C. Number of spacer per array for connected
host. For each host species, we calculated the size of the CRISPR spacer pool. For each virus, we then
calculated the average of this value across all host connections, which is shown in the boxplot. DGR-
viruses tend to be connected to hosts with fewer CRISPR spacers. A large pool of CRISPR spacers per
species could give the appearance of narrow how range by artificially inflating the count of connections
to a single species. Here instead the group with the narrower host diversity (DGR-) was associated with
fewer spacers per species, suggesting this specific bias is not responsible for the lower host diversity
observed for DGR- here and in Fig. 2B. For all panels, the boxplot lower and upper hinges correspond
to the first and third quartiles, respectively, and the whiskers extend no further than ±1.5 times the
interquartile range.
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Supplementary  Figure  11.  Read  mapping  and  SNV calling  on  VR  regions. A.  Comparison  of
coverage  between  VR regions  and  non-target  genes  for  individual  TR-VR pairs.  Only  cases  with
coverage ≥20x are displayed, and both x- and y-axis are displayed as log10 scale. The 1-to-1 line is
indicated in black.  A lower bound for a  95% confidence interval was calculated from the average
coverage of non-target genes from the same contig minus 2 standard deviations. If the VR coverage
was below this cutoff, it was considered as significantly lower than expected, the TR-VR was colored
in blue in this plot, and flagged as “low coverage” if no SNVs were detected in Fig. 3A. B. Comparison
of SNV density for individual VR regions obtained from Mpileup (x-axis) vs Freebayes (y-axis). A
linear regression curve is plotted in blue, and the associated equation is indicated on the plot (p-value
<2e-16).
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Supplementary Figure 12. Distribution of active-vs-inactive DGRs across genome type, clade, and
targets, for different ranges of coverage. Groups (i.e., DGRs of the same genome type, DGR clade,
or target) with a significantly lower proportion of active sequences compared to the average of the
corresponding coverage category (Chi-squared test of independence) are highlighted with star symbols
(Bonferroni-corrected p-values: *<1E-03, **<1E-05, ***<1E-10).
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Supplementary  Figure  13.  Schematic  of  the  different  categories  of  positions  defined  based  on
population diversity across time series. Each example represents an individual position observed
across 5 samples. The population diversity in each sample is represented as a heatmap, and the two
metrics used to define the DGR activity categories are plotted underneath, either for each sample for
the entropy, or between pairs of consecutive samples for the cosine similarity. 
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Supplementary Figure 14. Examples of DGR target positions with changes in dominant amino acid
between samples and low diversity within sample (“Alternating” pattern in Fig. 3D). For each
position (y-axis), the corresponding amino acid is indicated in the main heatmap with its frequency
within the population indicated in color for each sample (x-axis). The right panel indicates the category
of the position based on within-sample entropy,  between-samples  cosine distances,  and number of
amino acid changes in the time series (see Supplementary Note 12), colored as in Fig. 3D. The top
panel indicates the median coverage of all positions in each sample. For reference purposes, 10 random
positions from the same protein but outside of the predicted VR are included in the heatmap. 
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Supplementary Figure 15.  Percentage of positions with ≥1 change(s) in dominant allele  among
positions considered as “Constant diversity” or “Alternating” for different types of DGR across
major  biomes. For  each  biome,  the  percentage  in  “Viral  structural  –  Clades  1/4/6”  DGRs  was
compared  to  the  percentage  in  other  DGR  categories  combined  using  a  Chi-square  test  of
independence.  Groups  with  a  significantly  higher  proportion  of  positions  with  ≥1  change(s)  are
highlighted  with  star  symbols  (Bonferroni-corrected  p-values:  *<1E-03,  **<1E-05,  ***<1E-10).  †
Counts for DGRs associated with viral structural proteins in temperate lakes are based on only 5 DGRs,
while all other environments had >10 DGRs associated with viral structural proteins.
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Supplementary  Figure  16.  Comparison  of  DGR  activity  between  infant,  perturbed,  and  non-
perturbed human microbiome samples. Left panels display the distribution of activity categories for
VR  positions  between  infant,  perturbed,  and  non-perturbed  human  gut  microbiome  DGRs.  The
conditions under which each dataset was collected are indicated at the bottom of the figure. The right
panel bar graph indicates the number of observations (i.e., total number of DGRs covered in at least 2
time points across all subjects) for each dataset. Panel A includes all relevant DGRs, while panel B and
C include  only  viral-  or  cellular-encoded  DGRs,  respectively.  Statistically  significant  comparisons
(Chi-square  of  independence)  are  highlighted  with  star  symbols  (Bonferroni-corrected  p-values:  🞄
<5E-02 *<1E-03, **<1E-05, ***<1E-10).
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Supplementary Table

Cellular DGRs 
(GEM dataset) – 
rpoB tree

mean 95% CI p-value Note

Phylogenetic signal a parameter (=-log(α)) -2.359 -1.969;1.115 < 0.002

bootstrap mean: -
1.045 so possible 
downward bias

Biome signal Aquatic:Groundwater -0.222 -0.597;0.344 0.502
Aquatic:Inlet -0.269 -0.957;0.284 0.541
Aquatic:Other -1.591 -2.219;-0.519 2.33E-05
Aquatic:Saline-lakes -0.161 -0.791;0.359 0.704
Engineered:Anaerobic-incubation -0.434 -0.678;0.084 0.123
Engineered:Landfill -0.716 -1.376;0.152 0.231
Engineered:Other -1.745 -2.472;-0.224 0.005
Host-associated:Human-fecal 0.410 0.005;0.937 0.201
Host-associated:NonHuman-fecal -0.257 -0.665;0.397 0.498
Host-associated:Other -0.472 -0.776;0.031 0.121
Terrestrial:Other -1.101 -1.715;-0.121 0.008
Terrestrial:Soil-peat -0.306 -0.963;0.666 0.657

Viral DGRs 
(IMG/VR dataset) – 
TerL tree

mean 95% CI p-value Note

Phylogenetic signal a parameter (=-log(α)) -0.788 -0.629;0.183 < 0.002

bootstrap mean: -
0.207 so possible 
downward bias

Biome signal Aquatic:Groundwater 0.656 0.388;1.139 0.046
Aquatic:Inlet -0.341 -0.682;0.138 0.516
Aquatic:Other 0.212 -0.071;0.682 0.498
Aquatic:Saline-lakes 0.938 0.581;1.341 0.006
Engineered:Anaerobic-incubation 0.929 0.671;1.391 0.003
Engineered:Landfill 1.193 0.939;1.529 1.77E-04
Engineered:Other 0.566 0.275;1.057 0.076
Host-associated:Human-fecal 1.614 1.492;1.936 2.24E-08
Host-associated:NonHuman-fecal 1.791 1.592;2.055 2.11E-10
Host-associated:Other 1.313 1.244;1.546 1.08E-06
Terrestrial:Other 0.177 -0.113;0.722 0.669
Terrestrial:Soil-peat 0.627 0.33;1.181 0.103

Supplementary Table 1. Results of phylogenetic logistic regression analysis on DGR trees. For this
analysis, DGRs were first connected to metagenome-assembled genomes (both microbial and viral).
Trees were then constructed using genome marker genes: RNA polymerase B for microbes (RpoB), and
Terminase Large subunit (TerL) for viruses. Trees included 174 and 883 DGR-encoding genomes for
RpoB  and  TerL,  respectively,  along  sequences  from  non-DGR-encoding  related  genomes  (see
Methods). A binary phylogenetic regression was run for each tree using the presence of a DGR as the
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dependent  variable,  and  the  ecosystem category  as  independent  variable.  For  each  tree,  the  table
includes the strength of the phylogenetic signal (a parameter) and the correlation coefficient observed
for  each  ecosystem  category,  along  with  95%  confidence  intervals  and  p-values  based  on  5,000
boostraps. Ecosystem categories considered here to be significantly correlated with DGR distribution
are highlighted in bold.
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