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S.1. Proof of Theorem 4.1
To make the argument more readable, we suppress the subscript i on a profile, but this is to be understood. The generative
model for an individual status profile has A ∼ f (A), H ∼ f (H) where f denotes the corresponding density function, and
V pl(t) = max{µ +H +A cos(2πt−ν),10}. Let V supp(t) denote the curve V pl(t) adjusted to reflect a particular supplementation
scheme for individual i. For both the fixed and dynamic dose schedule V supp(t)≥V pl(t), t ≥ 0. Let Ω be the union of all (disjoint)
intervals of R+ for which it is possible that V supp(t) = V pl(t). Let Ω c = R+\Ω, then V supp(t) > V pl(t) for any t ∈ Ω c. This
condition is satisfied by all supplementation schemes we discuss.

At time t, the probability of contracting infection from an exposure is given by the (general logistic) relative risk curve for
the status level and multiplying by the baseline probability:

p(t) = p0 g(V (t))

with g(x) the generalised logistic curve describing relative risk scaling introduced in Section 2.3.2. Since g(x) is strictly
decreasing,

g(V supp(t))< g(V pl(t)) =⇒ psupp(t)< ppl(t) for t ∈Ω c

g(V supp(t)) = g(V pl(t)) =⇒ psupp(t) = ppl(t) for t ∈Ω
(4)

Given a trial running over (0,τ], let the number of exposures be denoted X(τ) where X(t), t ≥ 0 is a NHPP with intensity
function λ (t). At each exposure, whether an infection occurs or not is determined by outcomes of independent (conditional
on A, H etc.) Bernoulli trials with success probability given by ppl(t), or psupp(t) for supplementation. The random variable
counting total number of infections is

Npl(τ) =
X(τ)

∑
l=1

ZTl , Zt ∼ Bernoulli( ppl(t))

for the placebo case. The T1, . . . ,TX(τ) denote times of random exposures to infection as arrivals from the NHPP. Let N supp(τ) be
the analogous infection count for the supplementation scheme. Condition on the values of A, H and δ or ρ to begin. Denote
these collectively as Ψ, and their density as p(Ψ) (we assume they are marginally independent in our simulation model). The
result applies to setups of practical interest, so in what follows we assume p0 > 0, limx→∞ g(x) = 1 and λ (t) is non-zero on an
interval of time of non-negligible length during the study.

Statement (i): Letting θs = Pr{individual gets ≥ 1 infection in arm s}, we have

θs = 1−Pr{individual stays infection free in arm s}.

An individual staying infection free in arm s is equivalent to the event Ns(τ) = 0. This happens only if no exposures result in
infection, which happens with probability

X(τ)

∏
l=1

(1− ps(Tl)) .

Using a conditional probability decomposition

Pr{Ns(τ) = 0|Ψ} =
∞

∑
k=0

Pr{Ns(τ) = 0|X(τ) = k,Ψ}Pr{X(τ) = k}

=
∞

∑
k=0

[∫
A

Pr{Ns(τ) = 0|T1 = t1, . . . ,Tk = tk,Ψ} f(0,τ](t1, . . . , tk)dt1 . . .dtk

]
Pr{X(τ) = k}

=
∞

∑
k=0

[∫
A

k

∏
l=1

(1− ps(tl)) × f(0,τ](t1, . . . , tk)dt1 . . .dtk

]
Pr{X(τ) = k}

where f(0,τ](t1, . . . , tk) is the joint distribution of the first k arrival times T1,T2, . . . ,Tk of an NHPP with intensity function λ (t),
conditional on Tk ≤ τ . Denote the region t1 < t2 < · · ·< tk by A . Consider the product space Ωk = Ω×Ω×·· ·×Ω, such that
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(t1, . . . , tk) ∈ Ωk if t j ∈ Ω for j = 1, . . . ,k. Split the domain of integration A of the integral in the square brackets into that
which intersects with Ωk and its complement∫

A

k

∏
`=1

(1− ps(t`)) × f(0,τ](t1, . . . , tk)dt1 . . .dtk

=
∫

A ∩Ωk

k

∏
`=1

(1− ps(t`)) × f(0,τ](t1, . . . , tk)dt1 . . .dtk

+
∫

A ∩(Ωk)c

k

∏
`=1

(1− ps(t`)) × f(0,τ](t1, . . . , tk)dt1 . . .dtk.

Considering the last integral in this expression. For a point (t1, . . . , tk) ∈A ∩ (Ωk) c, there is at least one t j for which t j /∈Ω

and we can write
k

∏
l=1

(1− ppl(tl)) = ∏
`:t`∈Ω

(1− ppl(tl)) ∏
`:t` /∈Ω

(1− ppl(t`))

< ∏
`:t`∈Ω

(1− psupp(t`)) ∏
`:t` /∈Ω

(1− psupp(t`)) =
k

∏
`=1

(1− psupp(t`)) .

Hence, Pr{Npl(τ) = 0|Ψ}< Pr{N supp(τ) = 0|Ψ}. Considering all possible values of Ψ:

Pr{Npl(τ) = 0} =
∫

Pr{Npl(τ) = 0|Ψ} p(Ψ)dΨ

<
∫

Pr{N supp(τ) = 0|Ψ} p(Ψ)dΨ = Pr{N supp(τ) = 0}

implying 1−Pr{Npl(τ) = 0}> 1−Pr{N supp(τ) = 0} and thus θpl > θsupp.

Statement (ii): In this case, to get E(Npl(τ)|Ψ) using a sequence of conditioning arguments gives,

E(Npl(τ)|Ψ) =
∞

∑
k=0

E(Npl(τ) |X(τ) = k,Ψ) Pr{X(τ) = k}=
∞

∑
k=0

E

(
k

∑
`=1

ZT`

∣∣∣∣∣Ψ
)

Pr{X(τ) = k}

=
∞

∑
k=0

[∫
A

E

(
k

∑
`=1

ZT`

∣∣∣∣∣T1 = t1, . . . ,Tk = tk,Ψ

)
f(0,τ](t1, t2, . . . , tk)dt1 . . .dtk

]
Pr{X(τ) = k}

=
∞

∑
k=0

[∫
A

(
k

∑
`=1

ppl(t`)

)
f(0,τ](t1, t2, . . . , tk)dt1 . . .dtk

]
Pr{X(τ) = k}

and using the same idea as above splitting the domain of integration

k

∑
`=1

ppl(t`) = ∑
`:t`∈Ω

ppl(t`)+ ∑
`:t` /∈Ω

ppl(t`)> ∑
`:t`∈Ω

psupp(t`)+ ∑
`:t` /∈Ω

psupp(t`) =
k

∑
`=1

psupp(t`)

where the inequality follows from (4). Thus

E(Npl(τ)|Ψ) =
∞

∑
k=0

[∫
A

(
k

∑
`=1

ppl(t`)

)
f(0,τ](t1, t2, . . . , tk)dt1 . . .dtk

]
Pr{X(τ) = k}

>
∞

∑
k=0

[∫
A

(
k

∑
`=1

psupp(t`)

)
f(0,τ](t1, t2, . . . , tk)dt1 . . .dtk

]
Pr{X(τ) = k}= E(N supp(τ)|Ψ) .

Making explicit the conditioning on Ψ, it has been shown that E(Npl(τ)|Ψ)> E(N supp(τ)|Ψ) . Using the law of total expectation
to average over all possible vitamin D status curves by marginalising over Ψ, the expected number of infections for placebo
individuals in a study of length τ is∫

E(Npl(τ)|Ψ) p(Ψ)dΨ >
∫

E(N supp(τ)|Ψ) p(Ψ)dΨ

and µpl > µsupp.
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S.2. Truncated distribution
The distribution assumed for the individual level increases in the fixed increase scheme is an exponential distribution reflected
about the administered increase δ truncated at 0 and δ . Its density and distribution function are

f (t) =
γ e−γ(δ−t)

1− e−γδ
I(0 < t < δ ) F(t) =

e−γ(δ−t)− e−γδ

1− e−γδ

where the parameter γ can be used to control the spread close to δ . The first moment is given by δ

1−e−γδ
− 1

γ
. Random generation

can be carried out straightforwardly by inverting the cumulative distribution function. If U ∼ Uniform(0,1) then

δ +
1
γ

log
[
e−γδ +(1− e−γδ )U

]
is a sample from F(·). Choosing a large value of γ concentrates all derived increases around δ . This is the choice made in
Sections 2.5.1 and 2.5.2.

S.3. Glossary of parameters
Parameter Explanation Section 2.5
(µA,σA) Mean and standard deviation of simulated individual amplitudes (15,5)
(µ,σH) Height and standard deviation of the height perturbation (Many,5)
(δ ,γ) Maximum administered dose and uptake concentration around that dose (Many,∞)

(µρ ,σρ) Mean and standard deviation of the individual level Not used here
in concentration controlled scheme

(µω ,σω) Mean and standard deviation of proportion of equivalent (0.8,0.1)
dose utilised all year around

(τstart,τend) Duration of study where start is counted from beginning of March Many used
λ (t) Rate function of IHPP for exposures Figure 2
p0 Baseline risk of adverse event given exposure has occurred when sufficient 0.03

g(x) Generalised logistic function describing scaling of Most change between
baseline risk for different sufficient levels (10,70) nmol/L

(`,u) Risk scale extremes (1,2 or 4)
(n,r) The number of participants in the placebo group

and the corresponding fold factor for the number in the tratment group (Many,1)
N Number of independent simulations of the trial 500
α Significance level for the test used 0.05

Code provided with the supplementary material reproduces the experiments reported in Section 2.5. The table above gives a
break down of the choices made (where appropriate). We argue that Vitamin D investigators should think about the mechanistic
parameters above when planning a trial. It provides a route to envisaging potential sources of variability in trials which might
impact power.

S.4. Further experimental results for one year trial
This section gives more verbose reporting of the simulation experiments. Designs achieving ≥ 80% power are shown in bold
font. Here it can be observed that when the supplementation is substantial enough, effects might be detectable at smaller n in
the vitamin D deficient group (15 nmol/L baseline). For those that are highly sufficient, supplementation makes no detectable
difference.
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n (per arm) 15 nmol/L 35 nmol/L 50 nmol/L 60 nmol/L 75 nmol/L
100 8.0 15.5 15.1 11.2 6.4
200 11.6 21.0 20.3 14.1 7.2
300 11.0 27.3 26.1 16.5 7.4
400 13.9 33.6 32.2 21.1 9.0
500 14.6 38.8 38.3 23.8 10.2
600 16.2 43.3 42.2 26.1 9.8
700 17.5 49.3 47.1 28.8 10.1
800 18.5 54.1 52.6 34.7 12.8
900 20.0 59.0 57.1 35.6 11.9

1000 21.9 63.1 59.3 36.7 12.5
1100 25.1 68.0 65.2 42.2 13.8
1200 23.9 69.2 66.9 44.0 13.6
1300 26.6 75.0 72.3 46.8 14.9
1400 27.2 75.0 72.9 48.2 14.7
1500 28.2 78.2 75.6 50.0 14.8

Table S1. Power (in percentage) for 10 nmol/L increase equivalent dose at u = 2 for a range of sample sizes and baseline
population 25OHD concentrations.

n (per arm) 15 nmol/L 35 nmol/L 50 nmol/L 60 nmol/L 75 nmol/L
100 67.0 71.8 40.2 20.6 8.160
200 89.2 92.3 64.4 31.5 10.2
300 97.0 98.4 77.9 39.7 10.7
400 99.4 99.6 86.9 48.3 13.3
500 99.9 100.0 93.1 57.6 15.0
600 100.0 100.0 97.1 62.8 14.7
700 100.0 100.0 98.3 69.8 16.4
800 100.0 100.0 99.3 74.2 16.7
900 100.0 100.0 99.3 79.9 19.0

1000 100.0 100.0 99.6 83.9 20.4
1100 100.0 100.0 99.8 85.6 22.7
1200 100.0 100.0 99.9 88.2 23.5
1300 100.0 100.0 100.0 90.3 23.2
1400 100.0 100.0 100.0 92.4 24.5
1500 100.0 100.0 100.0 94.2 25.7

Table S2. Power (in percentage) for 40 nmol/L increase equivalent dose at u = 2 for a range of sample sizes and baseline
population 25OHD concentrations.

n (per arm) 15 nmol/L 35 nmol/L 50 nmol/L 60 nmol/L 75 nmol/L
100 14.4 41.5 44.5 30.8 11.8
200 21.6 64.1 68.6 47.3 16.8
300 27.1 79.7 82.8 62.2 21.0
400 31.1 89.6 91.7 73.0 22.4
500 40.0 93.5 96.1 81.3 25.9
600 44.3 96.8 97.6 85.7 30.1
700 51.8 98.8 99.2 91.7 34.6
800 53.1 99.1 99.7 94.8 36.5
900 58.6 99.4 99.8 96.4 40.5

1000 62.5 99.8 99.9 97.9 41.6
1100 66.1 99.9 100.0 98.6 44.1
1200 68.6 100.0 100.0 99.1 47.5
1300 71.2 100.0 100.0 99.7 51.1
1400 73.5 100.0 100.0 99.7 52.8
1500 76.6 100.0 100.0 99.9 54.5

Table S3. Power (in percentage) for 10 nmol/L increase equivalent dose at u = 4.
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n (per arm) 15 nmol/L 35 nmol/L 50 nmol/L 60 nmol/L 75 nmol/L
100 49.2 91.6 84.2 56.2 16.00
200 75.3 99.4 98.1 81.4 22.9
300 89.5 100.0 99.9 94.0 30.5
400 95.0 100.0 100.0 97.3 35.6
500 97.8 100.0 100.0 99.2 43.5
600 99.5 100.0 100.0 99.8 48.9
700 99.5 100.0 100.0 99.9 54.2
800 100.0 100.0 100.0 100.0 58.8
900 99.9 100.0 100.0 100.0 64.1

1000 100.0 100.0 100.0 100.0 67.4
1100 100.0 100.0 100.0 100.0 71.2
1200 100.0 100.0 100.0 100.0 74.6
1300 100.0 100.0 100.0 100.0 76.3
1400 100.0 100.0 100.0 100.0 79.1
1500 100.0 100.0 100.0 100.0 81.4

Table S4. Power (in percentage) for 20 nmol/L increase equivalent dose at u = 4.

n (per arm) 15 nmol/L 35 nmol/L 50 nmol/L 60 nmol/L 75 nmol/L
100 100.0 100.0 98.0 74.2 18.76
200 100.0 100.0 100.0 94.4 26.6
300 100.0 100.0 100.0 98.7 37.8
400 100.0 100.0 100.0 99.7 47.6
500 100.0 100.0 100.0 100.0 53.2
600 100.0 100.0 100.0 100.0 58.9
700 100.0 100.0 100.0 100.0 65.8
800 100.0 100.0 100.0 100.0 71.3
900 100.0 100.0 100.0 100.0 74.1

1000 100.0 100.0 100.0 100.0 78.6
1100 100.0 100.0 100.0 100.0 80.7
1200 100.0 100.0 100.0 100.0 86.2
1300 100.0 100.0 100.0 100.0 87.6
1400 100.0 100.0 100.0 100.0 89.8
1500 100.0 100.0 100.0 100.0 91.4

Table S5. Power in percentage for 40 nmol/L equivalent dose at u = 4.

S.5. Power in published studies
This section details an illustrative retrospective calculation of power in some studies which have examined the benefits of
supplementation in prevention of respiratory tract infections in various populations. These studies were identified from the
broad and thorough IPD (individual patient data) meta-analysis by Martineau et al. (2017)42. We took a varied selection of
studies from the IPD where vitamin D supplementation was administered daily.

For calculation using our proposed generative framework, some settings are kept the same across all studies. The Poisson
exposures process is identical to that shown in Figure 2. We consider u = 2,4 with l = 1, to reflect low/high dose response
situations. For all experiments we assume that µA = 15,σA = 5 which gives a 95% interval of (6.9,26.3)nmol/L fluctuations of
an individual’s 25OHD around their individual mean (µ +Hi) level. A value of γ = ∞ is applied in all cases, so that the entire
equivalent of every dose is absorbed by every participant. We assume that supplementation in winter gives slightly more benefit
µω = 0.8,σω = 0.1 as described in Section 2.2.1. A value of p0 = 0.03 is used for all studies. There was ten replications of
N = 1000 trials simulated in each instance. A Type I error rate of α = 0.05 was used for all studies.

In determining δ (the expected increase in 25OHD from supplementation) we make what we believe to be a reasonable but
conservative conversion from µg daily to nmol/L, based on available literature. This conversion is an engaging calibration
problem in and of itself which encourages debate. Where participants are enrolled in a staggered fashion, we take chose a single
start date that would maximise the power as much as possible.

Before describing the studies considered in further detail, we’d like the reader to note that inclusion of these specific
experiments is for a demonstrative purpose in this instance. A full post–hoc analysis would require a much more careful and
rigorous treatment to establish equivalence in parameter choices. Our aim here is to highlight the many different scenarios and
constraints that investigators work under, and how situational and temporal factors may impact power in a broad sense. We are
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aware of the blood, sweat and tears involved in conducting any trial, and aware too of how a modelling tool like that which we
propose cannot reflect all facets of such an involved endeavour. However, we believe our tool will give a good reflection of
patterns of variability in broad brush-stroke terms for what is, effectively, a complex system. Patterns which we believe to be
nigh on impossible to capture through methods requiring an investigator to specify just two point values and an expected effect
size, as would be done when using out-of-the-box sample size determination methods. In a prospective planning scenario, we
would envisage our tool working symbiotically with expert opinion during the trial set up, so that rather than power calculations
being a task exclusively for a supporting statistician, a conversation invites investigators to probe sources of variability in the
trial context. A more nuanced set of parameter values than those we assume here would result from such a process.

Li-Ng (2009)44: This was a 3 month trial. Recruitment was staggered from December 2006 to March 2007 and the study
ran until June 2007. The recruitment was through newspaper adverts, flyers at medical offices etc. with a wide age range in
the inclusion criteria. Participants either received 50µg/day (2000 IU/day) supplement or placebo with treatment randomly
assigned. Baseline 25OHD level was 63.7±25.5 nmol/L. In their discussion of power the authors state that initially the study
was powered to detect a 25% difference in incidence of URIs in the placebo and treatment arms, but taking into account attrition
they could conclude 80% power to detect a 23% difference in URI incidence between arms. This power calculation appears to
be based on a two independent samples proportions test.

Laaksi (2010)45: This was a 6 month trial. The trial began in October 2005 and ran until March 2006. Participants were
young men undergoing compulsory military service. Participants received 10µg/day (400 IU/day) supplement or placebo with
treatment randomly assigned. Baseline 25OHD level was 75.9±18.7 nmol/L. Power calculations were not carried out, the
investigators recruited all volunteers possible.

Bergman (2012):46: This was a one year trial with participants recruited from an immunodeficiency unit between March and
June (2010). The primary endpoint in this study was an infectious score which is different to the other trials. Baseline 25OHD
was 49.3±23.2 nmol/L. A sample size calculation was carried out using the expected number of days with symptoms: these
would be reduced from 42 to 28 days in the supplementation group. The authors used a target of 90% power at a Type I error
rate of 0.02. The distributional assumption used to calculate the power was stated as the Student’s t test.

Urashima (2014):47 This trial took place over two months from October to December 2009 in Japan. Participants were high
school students. In this case, the investigators did not want to deter volunteers from participating by carrying out an invasive
blood test, so that 25OHD was not measured at recruitment. We use conservative values for the study regarding the 25OHD
generative characteristics. The sample size was calculated by assuming that supplementation would be sufficient in reducing
incidence by 60%, where the overall prevalence was assumed to be 25% to begin with. This sample size calculation was carried
out with a two sample proportions calculation, two tailed, with a Type I error rate of 0.05. The authors conclude their study has
85% power (we use the 1:1 ratio, diving 254 by two).

Table S6 outlines the results of the comparative study. The reported power in the original publication, when available, is usually
higher except in one case. The count test (test (2) in our paper) will be more highly powered than the proportions (test (3) in
our paper). The reason for this is that counts (ie. number of infections) provide a more granular record of the trial outcomes
(compared to any infections: yes/no). The risk scaling u has a huge impact on power when increased from 2 to 4. This is not
surprising, in that if the benefit of vitamin D does not manifest strongly in observable measurements, then a large sample size
will be required to detect a difference between groups. Note that the 25OHD for Urashima et al. (2014)47 were chosen by us.
They are slightly lower than the other studies, and paired with the larger sample size than the other studies, this leads to the
higher power values observed.
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Parameters Li-Ng (2009) Laaksi (2010) Bergman (2012) Urashima (2014)
(τstart,τend)

† (0, 3
12 ) ( 7

12 ,1) (0,1) ( 7
12 ,

9
12 )

µ 63.7 75.9 49.3 45.0
σH 25.5 18.7 23.2 20.0

Dose 50µg/day 10µg/day 100µg/day 50µg/day

n determined 85 84 60 127
Power reported 80% ND 90% 85%

α reported 0.05 ND 0.02 0.05

SimVitD δ dose nmol/L 40 20 60 40

Count test (2): power u = 2 8.7% 5.3% 14.7% 25.6%
Count test (2): u = 4 34.5% 15.2% 78.4% 90.9%

Count test (2): effect u = 2 0.03 0.04 0.16 0.10
Count test (2): u = 4 0.10 0.10 0.48 0.29

Prop. test (3): power u = 2 8.1% 4.0% 8.0% 19.5%
Prop. test (3): u = 4 28.2% 8.8% 49.4% 78.3%

Prop. test (3): effect u = 2 0.03 0.02 0.09 0.06
Prop. test (3): u = 4 0.08 0.06 0.22 0.17

Table S6. Table showing settings and results of retrospective power calculation for studies identified in the IPD of Martineau
et al. (2017)42. The n determined gives a number per trial arm. In the case of Laaksi et al. we used the larger of the two group
sizes. The power and effect size through simulation for tests (2) and (3) in main manuscript are given. Note†: within the
SimVitD package26, March corresponds to time zero.
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