Cryo-EM structure of the mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses

SUPPLEMENTARY INFORMATION

Supplementary Fig. 1. Fourier shell correlation profile of MAYV Cryo-EM density map. FSC curve calculated from two MAYV 3D volumes is shown in blue, the $\frac{y}{2}$ --bit curve in red and the 0.143 crossing line in green. The global resolution determined based on the $\frac{y}{2}$ --bit or 0.143 criterion is indicated60.

Supplementary Fig. 2. Purified MAYV stocks used in Cryo-EM experiments are viable and infective. (A) Representative pictures of plaque assays performed in Vero CCL81 cells to assess infective MAYV load in stock samples. Viable Vero CCL81 cells were stained in Methylene Blue 1% w/ v. MAYV replication leads to cell death, creating transparent lysis plaques in the blue Vero CCL81 monolayer. **(B)** Viral load of stocks used in Cryo-EM experiments, before and after the purification process. (**C)** An example of MAYV Cryo-EM micrograph from set of 8792 movie stacks. The micrograph was processed by applying a band-pass filter in Imagic software to suppress very low-frequency information (less than 0.02 of Nyquist frequency), removing ramps of background fluctuations, and to suppress very high-frequency information (higher than 0.4 of Nyquist frequency), allowing a better visualization of low frequency content. After filtering, we resized the micrograph to 512x512 dimensions. Inset presents individually raw picked particles used in 3D reconstruction.

Supplementary Fig. 3. Absence of the E3 protein indicates that purified MAYV samples are composed of mature virions. (A) Superposition of the MAYV electron density with the SINDV particle cryo-EM structure (entry 6IMM). The SIDNV E3 protein is shown in orange. MAYV electron density is shown in grey contoured at 2.0 sigma-level. **(B)** Analysis of purified MAYV in 15% SDS-PAGE gel, stained with Coomassie brilliant blue. Lane 1 is carried with 30 µg of denatured purified MAYV and shows no visible bands compatible with E3 protein size (7 kDa). Lanes 2 and 3 are carried with 1 µg and 9 µg of a 5 kDa synthetic peptide, used as a positive control. This gel is representative of 7 experiments with similar results.

Supplementary Fig. 4. List of the main interfaces among MAYV structural proteins of the asymmetric unit. The interfaces were identified using the PDBePISA server (https://www.ebi.ac.uk/pdbe/prot_int/pistart.html). Only interfaces with area larger than 100 Å were considered. The structures are rendered as spacefill and the interaction partners are colored in blue or cyan. Interaction residues are colored in red or green. Nhb and Nsb represent the average number of hydrogen bonds and salt-bridges in each interface, respectively.

A - Multiple Sequence Alignment of the Alphaviral Capsid

B - Multiple Sequence Alignment of the Alphaviral E1

C - Multiple Sequence Alignment of the Alphaviral E2

Supplementary Fig. 5. Multiple sequence alignment of alphaviruses structural proteins. The alignments were performed for proteins C **(A)**, E1 **(B)** and E2 **(C)** using the Muscle Algorithm in EBI server (https://www.ebi.ac.uk/Tools/msa/muscle/) and visualized with ESPript version 3.0 server.

ARTARA

PYRLTPNARIPFCLAVLCC
PYKLAPNAQVPILLALLCC

VEEV

EEEV

AC

Supplementary Fig. 6. MAYV E1 and E2 transmembrane domains. Overall view of E1 and E2 TM domains inserted into the lipid membrane. The 3D atomic model is colored by hydrophobicity using Kyte-Doolittle scale. Important arginine and lysine residues in E2 are highlighted in spheres, as well as glycine (E1) and serine (E2) residues. The electron density is shown in grey surface.

Supplementary Fig. 7. 3D model fitting of a C18 hydrocarbon (Octadecane) in the extra density from two MAYV E1-E2 heterodimers (chains B/C and chains L/M). Octadecane was built and fitted into the density map using Coot. The density map was rendered at 2.5 sigma contour level.

Supplementary Fig. 8. Structural features extracted from the cavity between E1 and E2 TM helices in MAYV and other alphaviruses. (A) Cavity volume estimated for the four E1-E2 heterodimers (n = 4 independent heterodimer structures) in asymmetric unit. One-way ANOVA with Tukey's multiple comparison test was used for comparing MAYV cavity volume with other alphaviruses (* indicates adj. p < 0.01 when comparing the alphaviruses to MAYV). **(B)** Number of residues in each four E1-E2 heterodimers (n = 4 independent heterodimer structures) in asymmetric unit separated by classes. One-way ANOVA with Tukey's multiple comparison test was used for comparing the number of residues in aliphatic apolar class with the other classes in the same alphavirus species (* indicates adj. p < 0.01 when comparing the aliphatic apolar class with the other classes). All data are presented as mean values +/- SD. Aliphatic apolar: ALA, VAL, ILE, LEU, GLY, PRO; Aromatic: PHE, TYR, TRP; Polar uncharged: SER, THR, CYS, MET, ASN, GLN; Negatively charged: GLU, ASP; Positively charged: ARG, LYS, HIS.

Supplementary Fig. 9. Structural features extracted from the C-protein cavity that binds to E2 C-terminal. (A) Boxplot of cavity volume estimated for the four capsids (n = 4 independent capsids structures) in asymmetric unit. In the boxplot, the box portion defines the interquartile range (IQR) (67.5 Å3) and the 75th (Q3) (526.2 Å3) and 25th (Q1) (458.7 Å3) percentiles. The central line indicates the median (486.3 Å3) and the mean (498.6 Å3) is indicated by a dot. The whiskers with minimum (395.7 Å3) and maximum (626.2 Å3) are determined using Q1-1.5 x IQR and Q3+1.5 x IQR, respectively. **(B)** Number of residues in each four capsids (n = 4 independent capsids structures) in asymmetric unit separated by classes. One-way ANOVA with Tukey's multiple comparison test was used for comparing the number of residues in aliphatic apolar class with the other classes (* indicates adj. p < 0.01 when comparing the aliphatic apolar class with the other classes) All data are presented as mean values +/- SD. Aliphatic apolar: ALA, VAL, ILE, LEU, GLY, PRO; Aromatic: PHE, TYR, TRP; Polar uncharged: SER, THR, CYS, MET, ASN, GLN; Negatively charged: GLU, ASP; Positively charged: ARG, LYS, HIS.

Supplementary Fig. 10. The electrostatic potential of at the surface of MAYV capsid proteins. The electrostatic potential was calculated using ABPS and visualized in Pymol. Top, bottom and side view from capsid hexameric organization is shown. Charges are presented in a gradient of blue (positive) to red (negative), white being neutral local charge.

Supplementary Fig. 11. Spectra of identified peptides, after Endo H and trypsin digestions, annotated by Proteome Discoverer and manually verified. (A) Spectrum of the peptide VTYGTVNQTVEAYVNGDHAVTIAGTK (m/z 971.14655, +3) from E1 protein with the N-acetylglucosamine in N141 residue, and **(B)** VHIPFPLINTTCR (m/z 590.97968, +3) E2 peptide with the N-acetylglucosamine in the N262 residue. The blue square represents the N-Acetyl-D-Glucosamine monosaccharide.

Supplementary Fig. 12. Base peak chromatogram derived from UPLC-MS/MS analyses of N-glycans released from E1/E2 glycoproteins of MAYV and glycan composition interpretation based on MS2 data. (A) Nine peaks were integrated (#1 to #9) and characterized as N-glycans composed by Nacetyl hexosamine (HexNAc); hexose (Hex) and fucose (Fuc) - HexNAc(2-5)Hex(5-8)Fuc(0-1). These glycan were proposed based on MS1 isotopic pattern (presence of double and triple charge forms in a variation of adducts) and respective carbohydrate unit compositions were proposed based on MS2 fragmentation pattern, as exemplified for peak #3 in (B). **(B)** MS2 (fragmentation) spectrum of m/z 808.8387, the most intense MS1 peak detected in the chromatographic peak #3. Through the interpretation of different MS1 peaks, according to the isotopic pattern for double and triple charge and also the variation of adducts (please see Supplementary Table 5 or details), the m/z 808.8387 was identified as [M+2H]2+, thus representing a glycan of 1,615.6597 Da composed by HexNAc(2)Hex(6). In the fragmentation spectrum, it was possible to recognize neutral losses of 162.05 (relative to hexose residues) and 203.07 (N-acetyl-hexosamine residues), in addition to fragments corresponding to procainamide derivatives (orange and blue sequence paths, respectively). Furthermore, MS2 double charge peaks fragmentation sequence (green) allowed for the visualization of losses of 81.02 (another way to verify the presence of the hexose units). For the other six chromatogram peaks (peaks #4 to #9), the same rational was used to investigate the fragmentation pattern and to attribute the respective compositions of the glycans **(Figure 4D)**. For peaks #1 and #2, it composition was predicted mainly using MS1 data, due to the poor fragmentation in the MS2 data. All N-glycans compositions were confirmed using Glycoworkbench software and data was deposited at UniCarb-DB.

Supplementary Table 1. Identity between structural proteins from MAYV and other alphaviruses.

Supplementary Table 2. Cryo-EM data collection and processing.

Supplementary Table 3. Overall MAYV 3D atomic model quality

evaluated by MolProbity.

Supplementary Table 4. List of alphaviruses PDB files and Cryo-EM maps used for comparative studies.

Supplementary Table 5. Summary of MS¹ analyses of N-glycans released from E1/E2 MAYV and identified by UPLC-MS/MS analyses. The nine chromatographic with featured MS¹ variations (double peaks are presented and triple charge and adducts). The glycan composition was proposed in combination with MS² data.

^aFor N-glycans exact mass, it was considered the average of the most intense MS¹ peaks ^bDerived from MS and MS² peak interpretation of N-glycans reacted with procainamide ND - not detected