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Supplementary Figure 1. Co-upregulated GIS31 genes in EAC. GIS31 genes in EAC patient 

dataset (from TCGA) were analyzed by a pairwise correlation of their expression, using Pearson 

method.  

 

 
  



 
Supplementary Figure 2. Functional siRNA screen evaluating GIS31 genes for impact on 
homologous recombination (HR) activity in EAC cells. EAC (FLO1) cells were transfected with 

siRNAs, either control (non-targeting) or those targeting 31 potential genomic instability (GIS31) 

genes, and impact on homologous recombination assessed using strand exchange assay 

described in Methods section. Bar graphs show percent inhibition of homologous recombination 

activity; error bars represent SDs of three independent experiments. Two-tailed p-values, 

indicating significance of difference relative to control siRNA-transfected cells, are shown as: * < 

0.05 - > 0.005; ** < 0.005 - > 0.0001; *** < 0.0001 - < 0.000005.  
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Supplementary Figure 3. Overexpression of TTK, TPX2 and RAD54B increases DNA breaks 
and homologous recombination activity in EAC (OE19) cells. (a-b) OE19 cells were 

transfected with control plasmid (C) or those overexpressing TTK (TTK-O), TPX2 (TPX2-O) or 

RAD54B (RAD54B-O), selected in puromycin and evaluated for g-H2AX and phosphorylated-

RPA32, using Western blotting (a), and homologous recombination activity, using a plasmid-based 

assay (b). Error bars indicate SDs of experiments conducted in triplicate; Two-tailed p values: = p 

< 0.5; (c) The transgene overexpression confirmed by Q-PCR. 
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Supplementary Figure 4. Overexpression of TTK, TPX2 and RAD54B increases DNA breaks 
and DNA end resection in EAC (FLO-1) cells. a) FLO-1 cells were transfected with control 

plasmid (C) or those overexpressing TTK (TTK-O), TPX2 (TPX2-O) or RAD54B (RAD54B-O), 

selected in puromycin and evaluated for g-H2AX and phosphorylated-RPA32, using Western 

blotting; b) The transgene overexpression confirmed by Q-PCR. 
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Supplementary Figure 5. Overexpression of TTK, TPX2 and RAD54B in normal primary 
esophageal cells induces the acquisition of new copy number changes over time. Normal 

primary human esophageal epithelial cells (HEsEpi; ScienCell) were transfected with control 

plasmid (C) or those overexpressing TTK (TTK-O), TPX2 (TPX2-O) or RAD54B (RAD54B-O), 

selected in puromycin and cultured for thirty days. DNA from these and baseline control (day 0) 

cells was purified and acquisition of copy number events during growth of cells in culture vs. day 

0 cells (representing baseline genome) monitored, using SNP6.0 arrays (Affymetrix); a copy event 

was defined as a change in ≥ 5 consecutive CNV probes by 1 copy. (a) Images showing copy 

number events, as red (amplification) and blue (deletion) dots on all chromosomes, in cultured 

relative to baseline (day 0) cells; (b) Bar graph showing total copy-number change events, 

throughout genome.  
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Supplementary Figure 6. Overexpression of TTK, TPX2 and RAD54B increases genomic 
instability in EAC (OE19) cells. OE19 cells were transfected with control plasmid (C) or those 

overexpressing TTK (TTK-O), TPX2 (TPX2-O) or RAD54B (RAD54B-O), selected in puromycin 

and evaluated for micronuclei, a marker of genomic instability. Flow cytometry images of 

micronuclei (a) and bar graphs showing percentage of micronuclei (b) are shown. 
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Supplementary Figure 7. TTK inhibitor reduces etoposide-induced acquisition of copy 
number events in EAC cells. FLO-1 cells, control (C; DMSO only) or those treated with TTK 

inhibitor (TTK-I; 10 nM) and etoposide (ET; 1 µM), alone as well as in combination with each other 

for 3 weeks. DNA from these and baseline control (day 0) cells was purified and acquisition of copy 

number events during growth of cells in culture vs. day 0 cells (representing baseline genome) 

monitored, using Axiom™ Precision Medicine Diversity Arrays; a copy event was defined as a 

change in ≥ 3 consecutive CNV probes by 1 copy. (a) Apmlifications (red dots) and deletions (blue 

dots) on different chromosomes; (b) Bar graph showing copy number events throughout genome. 
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Supplementary Table 1. Known functions of GIS31 genes. 
 

Gene Name Family Function/Pathway Ref. # 
ARHGAP11A Rho GTPase Cell cycle, DNA damage response 1 
ARHGAP11B Rho GTPase Brain Development 2 

BRI3BP BRI3 binding protein Involved in tumorigenesis 3 
BUB1B Serine/Threonine Kinase B Mitotic checkpoint kinase 4 

CAPRIN1 Cell Cycle Associated Protein Cell proliferation 5 
CASC5 Kinetochore protein Cell cycle regulation 6 

CCDC138 Coiled-coil domain-containing Unknown  
CCNB2 B-type cyclins G2/M Cell cycle regulation 7 
CCT6A Chaperonin protein Protein folding 8 
CDK1 Cyclin dependent kinase G2/M Cell cycle regulation 9 

CENPQ Centromere protein Regulation of mitosis 10 
CSE1L Nuclear export factor Cell cycle and genomic instability 11 

DKC1 
Small nucleolar 

ribonucleoprotein 
Cell cycle 12 

ERCC6L Mitotic helicase Mitosis checkpoint regulation 13 

FAM72B 
Family with sequence 

similarity 72 
Cell cycle regulation 14 

KIF11 
Kinetochore associated 

protein 
Mitosis checkpoint regulation 15 

KIF23 
Kinetochore associated 

protein 
Mitosis checkpoint regulation 15 

KIF4A 
Kinetochore associated 

protein 
Mitosis checkpoint regulation 15 

LEO1 
RNA polymerase II associated 

factor Paf1 
Oncogene 16 

MST4 
Serine/threonine protein 

kinase 
Promote cell growth and 

transformation 
17 

NEK2 Mitotic kinase Cancer progression 18 
NUSAP1 Nucleolar & spindle associated Promote cancer progression 19 
PSMD14 Deubiquitinating enzyme Promote tumor metastasis 20 

RAD54B 
DNA repair and recombination 

protein 
Promotes homologous 

recombination 
21 

SMC2 
Structural maintenance of 

chromosomes protein 
Involved in DNA repair pathway 

and genomic instability 
22 

STIL Centriolar replication factor Involved in DNA damage response 23 

STIP1 
Stress induced 
phosphoprotein 

Tumor growth, metastasis 24 

TOMM34 Mitochondrial import receptor Promotes cancer growth 25 
TPX2 Microtubule-associated protein Genomic instability, cancer 26 

TROAP 
Cytoskeleton, spindle 

assembly 
Cancer and metastasis 27 

TTK Mitotic kinase 
Homologous recombination and 

cancer growth 
28 
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