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Figure EV1. The smoothing and balancing procedure using bootstrapped averages reduces the effect of outliers and balances the classes increasing

classification accuracy.
One of the sparsely populated classes (GluCl agonists with 5 compounds) and the most well-populated class (AChE inhibitors with 10 compounds) are shown before and after
the smoothing and balancing procedure in the 3 top PCA components.
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Figure EV2.
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e Mitochondrial inhibition - Cyazofamid

normalization

lllustration of the effect of normalization with real data.
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The normalization of samples to unit L2 norm brings compounds with different potencies closer together and helps separate the classes in the phenotypic space.
A PCA of the data from 2 different classes with 3 compounds each before normalization (data simply standardized).

B PCA of the

EV2

normalized data.
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cross validation accuracy = 26.6%
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Figure EV3. Confusion matrices showing cross-validation performance of a clas
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cross validation accuracy = 32.3%
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ier trained to distinguish compounds of the same class from each other.
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Figure EV4. Randomization of columns using liquid handling robot.
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To minimize any position-induced bias, we use an Opentrons liquid handling robot to randomly shuffle the position of the compounds in the imaging plates. We programmed
the robot to keep a record of the randomized shuffle and use this log to create the correct well-compound mapping.
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Clean up data:
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- Remove features with NaN ratio > 5%

- Impute NaN values with gobal feature mean

Figure EV5.
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Flow chart showing the data pre-processing steps.
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Figure EV6. Flow chart showing the pipeline for the clustering of
Training set Test set average drug doses.

combine

Select tierpsy_256
feature set
(all bluelight conditions)

v

Partiton DMSO
points in 6 subsets
N\ J

v

Average dose
replicates and
DMSO subsets

v

e N

Standardize features

\ J

v

Hierarchical clustering
of samples and features

e A
Get cluster purity for
each level of the row

dendrogram
! "
- N\
Clustermap in Figure 2A Get cluster purity with

random permutations
of cluster labels

v

Cluster purity plot in
Figure 2B

A

EV6  Molecular Systems Biology 17:€10267 | 2021 © 2021 The Authors



Adam McDermott-Rouse et al

Smoothed
training / tuning set

)

Select best
number of features

N_FEAT_TO_TEST:
feature set sizes to —
evaluate

evaluate n features repeat for n in N_FEAT_TO_TEST——

peat k=5 ti

(*) Smooth

k-fold cross validation

rescale training fold
and test fold

v
Bootstrap compound dose
replicates npoot times
Get average of each
bootstrapped sample

(*) Rescale

Feature matrix

i select n features with

get mean RFE using training
cross-validation fold
accuracy for n
features

train classifier using
training fold with n
selected features

- predict test fold
- get majority vote

- get compound-level

accuracy

v
Standardize features
Normalize samples with L2-
norm

Keep only selected
features {X}pest

for downstream analysis

PARAM_GRID:
hyperparameter —f
values to check

Optimise
hyperparameters

select npeg¢ Which gives

maximum cross-validation
accuracy

Select npegt features {X}pest
with RFE using the entire
rescaled training/tuning set

evaluate parameter
combination {P}; from
PARAM_GRID

repeat for every combination:

peat k=5 t

k-fold cross val\dation} fold split

get mean
cross-validation
accuracy for {P};

rescale training fold

and test fold

train classifier with
{P}; using training fold

- predict test fold
- get majority vote

- get compound-level

accuracy

Train classifier with {P}pest
using the entire
training/tuning set with the
selected features {X}pest

Smoothed test set

Rescale test set

© 2021 The Authors

v

select {P}yest max cross-validation
which gives max cross- —> accuracy reported in
validation accuracy Figure 3B

Trained classifier
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., Test set accuracy
reported in Figure 3C
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Figure EV7. Flow chart showing the steps
followed for the tuning and training of the
classifier using the training dataset and the
prediction of the mode of action in the test set.
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Figure EV8.
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Flow chart showing the steps of the novelty detection method.
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