Supporting Information

An Umpolung Approach to the Hydroboration of Pyridines: A Novel and Efficient Synthesis of *N*-H 1,4-Dihydropyridines

Huan Yang, Li Zhang, Fei-Yu Zhou, and Lei Jiao*

Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China

Leijiao@mail.tsinghua.edu.cn

Contents

1.	General Information	S2						
2.	Study on the Inversed Hydroboration of 4-Phenylpyridine	S3						
	2.1 General	S3						
	2.2 The reaction between 4-PhPy, B ₂ pin ₂ , and MeOK in the presence of MeO	H S3						
	2.3 The reaction between 4-PhPy, B2pin2, and MeOK in the presence of MeO	D S5						
3.	Optimization of Reaction Conditions	S6						
	3.1 The synthesis of bis(ethyleneglycolato)diboron (B ₂ eg ₂)	S16						
	3.2 Experimental procedure for the optimization study	S16						
	3.3 ¹ H NMR spectra of the optimization experiments	S16						
4.	Substrate Scope and Characterization Data	S19						
5.	The Asymmetric Hydrogen Transfer Reactions	S45						
	5.1 General procedure	S45						
	5.2 Results	S45						
6.	Copies of the NMR Spectra of Products	S49						
Re	eferences							

1. General Information

Experimental. Air- and moisture-sensitive reactions were carried out in oven-dried Schlenk flasks sealed with rubber septa under a positive pressure of dry argon, or oven-dried glass tubes sealed with Teflon screw caps. Air- and moisture-sensitive liquids and solutions were transferred by a syringe or a double-headed needle. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a rotary evaporator with a diaphragm vacuum pump or concentrated under vacuum using standard Schlenk techniques. Analytical TLC was performed on silica gel GF₂₅₄ plates. The TLC plates were visualized by either ultraviolet light (λ = 254 nm). Purification of 1,4-dihydropyridine products was done by flash column chromatography on basic alumina (80-160 mesh, pH = 9-10) under argon. Purification of other products was accomplished by flash column chromatography on silica gel (Innochem SilicaFlashP60, 230-400 mesh).

Chemicals. Anhydrous solvents (H₂O <30 ppm), ethylene dimethyl ether, and methanol were purchased from J&K Scientific. Tetrahydrofuran and acetonitrile were purified by PureSolv MD-5 solvent purification system, and were deoxygenated by three freeze-pump-thaw cycles before use. Methanol-*d*₁ (MeOD) was purchased from J&K Scientific and was dried over 4Å molecular sieves and deoxygenated by three freeze-pump-thaw cycles before use. B₂pin₂, B₂neo₂, and pyridine derivatives were purchased from TCI and used without further purification. MeOK and MeONa were purchased from Sigma-Aldrich and dried under vacuum before use. Cs₂CO₃ was purchased from J&K Scientific and dried under vacuum before use. 18-crown-6 was purified by recrystallization before use. Other chemicals were purchased from various commercial sources and were used as received. B₂eg₂ was synthesized following the published procedure.

Analytical. NMR spectra were recorded on a Bruker AVANCE III HD 400 (¹H at 400 MHz, ¹³C at 100 MHz) nuclear magnetic resonance spectrometer. The ¹H NMR spectra were calibrated against the peak of tetramethylsilane (TMS, 0 ppm) and the ¹³C NMR spectra were calibrated against the peak of CDCl₃ (77.16 ppm). GC-MS analysis was performed on a Shimadzu GCMS-QO2010SE instrument equipped with an EIS detector using helium as the carrier gas (EI ionization, 70 eV). Enantiomeric excess (e.e.) were determined by analytical high-performance liquid chromatography (HPLC) analysis using a Daicel chiral column Chirapak IC (4.6 × 250 mm). The X-ray single crystal structure analysis was performed on a SuperNova X-ray Diffraction System equipped with Atlas CCD detector and 4-circle kappa goniometer. Structure solution and refinement were accomplished with OLEX2.

2. Study on the Inversed Hydroboration of 4-Phenylpyridine

2.1 General

The reactions were conducted in normal THF solvent and were monitored by ¹H NMR of the crude reaction solution. The NMR spectra were recorded after ¹H gradient shimming without applying the ²H-lock, and the undesired solvent signals were suppressed by the WET solvent suppression method (No-D NMR). The chemical shifts of the solvent utilized in the NMR experiments were calibrated against TMS (1.77 and 3.61 ppm for THF and 1.93 ppm for MeCN), and for other NMR spectra, the chemical shifts was calibrated against the solvent peaks. All measurements were performed under argon atmosphere.

2.2 The reaction between 4-PhPy, B₂pin₂, and MeOK in the presence of MeOH

In a glove box, a 15 mL oven-dried reaction tube was charged with 4-PhPy (56.5 mg, 0.36 mmol), B_2pin_2 (102 mg, 0.40 mmol), MeOK (28.0 mg, 0.40 mmol), 18-crown-6 (106 mg, 0.40 mmol), and anhydrous THF (2 mL). An indicated amount of MeOH (0.4 mmol for 1.1 equiv., 0.48 mmol for 1.3 equiv., and 0.8 mmol for 2.2 equiv.) was added by a microsyringe. The resulting mixture was allowed to react at 30 °C for 12 h before submission to ¹H NMR analysis. The reaction mixture with 2.2 equiv. of MeOH was determined by GC-MS analysis.

¹H NMR spectra of the crude reaction mixture are shown below, which were used to construct Figure 1 in the main text:

GC-MS trace of the crude reaction mixture with 2.2 equiv. of MeOH is shown below. Conditions for GC-MS analysis: helium as the carrier gas; capillary column (0.25 mm × 30 m, SH-Rxi-5Sil MS); constant pressure mode (150.2 kPa); oven temperature program: 50 °C for 2 min, elevation rate 25 °C/min to 200 °C, keep for 6 min, elevation rate 30 °C/min to 260 °C, keep for 4 min; ion source temperature 200 °C, interface temperature 250 °C, acquisition mode: scan.

The assignment of the above peaks was confirmed by GC-MS SIM (selected ions monitoring) mode to detect ions at m/z = 155 and 157.

GC-MS results confirmed the formation of 1,4-DHP (MW = 157) in the reaction mixture.

2.3 The reaction between 4-PhPy, B₂pin₂, and MeOK in the presence of MeOD

In a glove box, a 15 mL oven-dried sealed tube was charged with 4-PhPy (56.5 mg, 0.36 mmol), B_2pin_2 (102 mg, 0.40 mmol), MeOK (28.0 mg, 0.40 mmol), 18-crown-6 (106 mg, 0.40 mmol), and anhydrous THF (2 mL). Then MeOD (methanol-*d*, 26.4 mg, 0.8 mmol) was added by a microsyringe. The resulting mixture was allowed to react at 30 °C for 12 h before submission to ¹H NMR and GC-MS analysis.

¹H NMR spectrum of the crude reaction mixture is shown below, in which the decrease of the peak at 4.25 ppm indicates deuterium incorporation at the C4-position of 1,4-DHP:

GC-MS trace of the crude reaction mixture is shown below (with identical GC-MS conditions specified in Section 2.2):

The assignment of the above peaks were confirmed by GC-MS SIM (selected ions monitoring) mode to detect ions at m/z = 155, 158, and 159.

Both NMR and GC-MS analyses confirmed the formation of deuterated 1,4-DHP in the presence of MeOD.

3. DFT Computational Study

3.1 General

All calculations were performed with the Gaussian 09 program.^[1] Density functional theory calculations using the M06-2X functional^[2] were used to locate the stationary points involved. The gas-phase structures were optimized at the M06-2X/6-31+G(d) level. NBO analysis and NAO orbital composition analysis were performed on the same level of theory.

3.2 NBO analysis on Int-A•K and TS-1•K

Cartesian coordinates of Int-A•K:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	2.895648	-1.001803	0.534748	
2	5	0	1.394261	-0.928076	0.354097	
3	8	0	1.113226	-1.901059	-0.706515	
4	5	0	0.875115	0.701214	-0.031291	
5	8	0	1.165428	1.795334	0.948356	
6	8	0	1.290677	1.226822	-1.318489	
7	6	0	2.234303	-2.758618	-0.847860	
8	6	0	3.432089	-1.815573	-0.496076	
9	6	0	1.432068	2.632578	-1.227473	
10	6	0	1.863134	2.835735	0.262331	
11	6	0	2.262002	-3.299831	-2.272617	
12	6	0	2.474646	3.077900	-2.247877	
13	6	0	1.475843	4.184720	0.856451	
14	6	0	0.096586	3.321738	-1.542573	
15	6	0	3.365586	2.596300	0.452674	
16	6	0	2.113435	-3.925134	0.141937	
17	6	0	3.819443	-0.919947	-1.677732	
18	6	0	4.667613	-2.540419	0.028430	
19	7	0	-0.807564	0.615301	-0.071429	
20	6	0	-1.591211	1.138346	0.877744	
21	6	0	-2.957993	0.905787	0.909827	
22	6	0	-3.546170	0.104534	-0.075559	
23	6	0	-2.704758	-0.426592	-1.061014	
24	6	0	-1.346109	-0.157655	-1.026431	
25	6	0	-5.002359	-0.171275	-0.076095	
26	6	0	-5.686071	-0.394368	1.125316	
27	6	0	-7.054117	-0.653285	1.123474	
28	6	0	-7.758130	-0.688648	-0.079338	
29	6	0	-7.086037	-0.466491	-1.280561	
30	6	0	-5.717268	-0.212304	-1.279388	

31	8	0	0.843264	-1.381511	1.716072
32	6	0	-0.375006	-2.068640	1.744925
33	1	0	3.182682	-3.865047	-2.465393
34	1	0	1.410765	-3.972343	-2.425899
35	1	0	2.188317	-2.485246	-2.997554
36	1	0	2.073941	2.942542	-3.257762
37	1	0	2.734078	4.136497	-2.121204
38	1	0	3.381297	2.473127	-2.162942
39	1	0	1.819225	4.247808	1.895760
40	1	0	1.938792	5.007767	0.298533
41	1	0	0.391980	4.324767	0.849278
42	1	0	0.212610	4.409083	-1.622576
43	1	0	-0.270370	2.940659	-2.501260
44	1	0	-0.662006	3.113676	-0.782585
45	1	0	3.976720	3.355973	-0.045572
46	1	0	3.604381	2.649130	1.524797
47	1	0	3.639614	1.605837	0.071175
48	1	0	1.156414	-4.430097	-0.029471
49	1	0	2.915984	-4.660696	0.009356
50	1	0	2.127186	-3.557979	1.173067
51	1	0	2.940343	-0.390876	-2.058430
52	1	0	4.541079	-0.172163	-1.326609
53	1	0	4.289873	-1.490218	-2.487365
54	1	0	5.050403	-3.256374	-0.709433
55	1	0	5.461225	-1.812285	0.233452
56	1	0	4.445514	-3.078248	0.954281
57	1	0	-1.076621	1.759876	1.604405
58	1	0	-3.562596	1.368440	1.683590
59	1	0	-3.097498	-1.079950	-1.833232
60	1	0	-0.636668	-0.579275	-1.732416
61	1	0	-5.136822	-0.393094	2.063176
62	1	0	-7.568668	-0.835826	2.062168
63	1	0	-8.825081	-0.890267	-0.080888
64	1	0	-7.629478	-0.485757	-2.220514
65	1	0	-5.202507	-0.018598	-2.216715
66	1	0	-0.428096	-2.673944	2.660105
67	1	0	-1.244556	-1.387895	1.748238
68	1	0	-0.476166	-2.738522	0.881331
69	19	0	2.510828	0.265858	2.676980

Summary of Natural Population Analysis:

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
0	1	-0.87434	1.99974	6.85595	0.01866	8.87434
В	2	0.86460	1.99813	2.09821	0.03906	4.13540
0	3	-0.82472	1.99972	6.80590	0.01910	8.82472
В	4	0.77701	1.99810	2.18774	0.03715	4.22299
0	5	-0.86238	1.99975	6.84377	0.01887	8.86238
0	6	-0.80280	1.99971	6.78319	0.01990	8.80280
С	7	0.24225	1.99885	3.73398	0.02492	5.75775
С	8	0.24797	1.99886	3.72809	0.02508	5.75203
С	9	0.24015	1.99884	3.73489	0.02612	5.75985
С	10	0.24146	1.99885	3.73489	0.02480	5.75854
С	11	-0.69158	1.99932	4.68239	0.00987	6.69158
С	12	-0.69395	1.99933	4.68434	0.01028	6.69395
С	13	-0.69312	1.99932	4.68394	0.00986	6.69312
С	14	-0.70396	1.99934	4.69435	0.01028	6.70396
С	15	-0.70807	1.99933	4.69760	0.01114	6.70807
С	16	-0.70789	1.99934	4.69788	0.01066	6.70789
С	17	-0.70872	1.99933	4.69848	0.01090	6.70872
С	18	-0.69154	1.99932	4.68268	0.00954	6.69154
Ν	19	-0.47952	1.99928	5.44847	0.03177	7.47952
С	20	0.05463	1.99910	3.92433	0.02195	5.94537
С	21	-0.26637	1.99897	4.25447	0.01294	6.26637
С	22	-0.00141	1.99898	3.98460	0.01783	6.00141
С	23	-0.26076	1.99898	4.24887	0.01292	6.26076
С	24	0.08313	1.99910	3.89563	0.02214	5.91687
С	25	-0.07452	1.99897	4.05924	0.01631	6.07452
С	26	-0.22062	1.99899	4.20750	0.01413	6.22062
С	27	-0.23864	1.99905	4.22382	0.01576	6.23864
С	28	-0.23783	1.99904	4.22349	0.01530	6.23783
С	29	-0.23808	1.99905	4.22327	0.01576	6.23808
С	30	-0.21952	1.99899	4.20646	0.01407	6.21952
0	31	-0.88770	1.99974	6.86459	0.02338	8.88770
С	32	-0.29755	1.99938	4.28219	0.01599	6.29755
Н	33	0.22912	0.00000	0.77043	0.00045	0.77088
Н	34	0.23904	0.00000	0.76007	0.00089	0.76096
Н	35	0.24757	0.00000	0.75174	0.00068	0.75243
Н	36	0.24713	0.0000	0.75204	0.00083	0.75287

Natural Population

* T	otal *	-0.00000	81.95674	173.42030	0.62295	256.00000
=====	K 69	0.98600	17.98395 =======	0.02467	0.00537	18.01400
H	H 68	0.20927	0.00000	0.78907	0.00165	0.79073
H	H 67	0.16741	0.00000	0.83059	0.00200	0.83259
H	H 66	0.19782	0.00000	0.80120	0.00098	0.80218
H	H 65	0.25084	0.00000	0.74825	0.00091	0.74916
H	H 64	0.25267	0.00000	0.74656	0.00077	0.74733
H	H 63	0.25158	0.00000	0.74775	0.00067	0.74842
H	H 62	0.25206	0.00000	0.74716	0.00077	0.74794
H	H 61	0.24957	0.00000	0.74947	0.00096	0.75043
H	H 60	0.29366	0.00000	0.70525	0.00110	0.70634
H	H 59	0.26363	0.00000	0.73557	0.00080	0.73637
H	H 58	0.25932	0.00000	0.73980	0.00088	0.74068
H	H 57	0.26677	0.00000	0.73207	0.00116	0.73323
H	H 56	0.23946	0.00000	0.75985	0.00069	0.76054
H	H 55	0.23346	0.00000	0.76559	0.00095	0.76654
H	H 54	0.23447	0.00000	0.76509	0.00044	0.76553
H	H 53	0.22771	0.00000	0.77173	0.00056	0.77229
H	H 52	0.22683	0.00000	0.77241	0.00077	0.77317
H	H 51	0.27175	0.00000	0.72717	0.00108	0.72825
H	H 50	0.24885	0.00000	0.74977	0.00138	0.75115
H	H 49	0.22782	0.00000	0.77149	0.00069	0.77218
H	H 48	0.23900	0.00000	0.76023	0.00078	0.76100
H	H 47	0.26282	0.00000	0.73591	0.00127	0.73718
H	46	0.20523	0.00000	0.79387	0.00090	0.79477
H	4 4 5	0.24436	0.00000	0.75512	0.00052	0.75564
H	H 44	0.23196	0.00000	0.76727	0.00077	0.76804
H	H 43	0.24914	0.00000	0.74997	0.00089	0.75086
H	H 42	0.23375	0.00000	0.76560	0.00065	0.76625
H	H 41	0.24420	0.00000	0.75505	0.00075	0.75580
H	H 40	0.23918	0.00000	0.76033	0.00049	0.76082
H	H 39	0.23270	0.00000	0.76640	0.00090	0.76730
H	H 38	0.24941	0.00000	0.74987	0.00073	0.75059
H	H 37	0.22883	0.0000	0.77070	0.00047	0.77117

Cartesian coordinates of **TS-1-K**:

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	8	 0	-2.129782	1.552321	0.790139	
2	5	0	-0.752675	1.274221	0.519344	
3	8	0	-0.325084	1.947220	-0.618707	
4	5	0	-0.986132	-1.061169	-0.198186	
5	8	0	-1.620853	-1.829818	0.853589	
6	8	0	-1.807331	-1.078884	-1.350087	
7	6	0	-1.266411	3.003045	-0.854060	
8	6	0	-2.603666	2.440525	-0.246879	
9	6	0	-2.581200	-2.276793	-1.244831	
10	6	0	-2.821324	-2.394739	0.298771	
11	6	0	-1.317582	3.287856	-2.346758	
12	6	0	-3.849221	-2.119715	-2.070215	
13	6	0	-2.973523	-3.823763	0.802894	
14	6	0	-1.733902	-3.432911	-1.784606	
15	6	0	-4.003126	-1.544436	0.769175	
16	6	0	-0.750738	4.232317	-0.100363	
17	6	0	-3.421951	1.647890	-1.261737	
18	6	0	-3.485942	3.499844	0.403027	
19	7	0	0.436163	-1.047537	-0.265655	
20	6	0	1.232811	-1.510176	0.796602	
21	6	0	2.588414	-1.328705	0.811152	
22	6	0	3.287485	-0.717392	-0.254508	
23	6	0	2.484145	-0.441802	-1.399137	
24	6	0	1.135503	-0.625105	-1.411385	
25	6	0	4.720951	-0.454140	-0.197117	
26	6	0	5.388851	-0.315146	1.038879	
27	6	0	6.757806	-0.080924	1.108154	
28	6	0	7.518727	0.043367	-0.054754	
29	6	0	6.876345	-0.076976	-1.288697	
30	6	0	5.510145	-0.323220	-1.360214	
31	8	0	0.043126	1.118092	1.665790	
32	6	0	1.391689	1.570357	1.598045	
33	1	0	-2.084689	4.036731	-2.576765	
34	1	0	-0.348462	3.677544	-2.672339	
35	1	0	-1.526283	2.377335	-2.912677	
36	1	0	-3.586882	-2.067558	-3.131346	
37	1	0	-4.520356	-2.974815	-1.925642	
38	1	0	-4.383052	-1.202395	-1.808277	
39	1	0	-3.148622	-3.822559	1.884679	

40	1	0	-3.828629	-4.315755	0.324077	
41	1	0	-2.073600	-4.409955	0.606718	
42	1	0	-2.287361	-4.378187	-1.790994	
43	1	0	-1.439436	-3.193721	-2.810455	
44	1	0	-0.819016	-3.561250	-1.195275	
45	1	0	-4.955542	-1.905849	0.369212	
46	1	0	-4.080289	-1.601402	1.864458	
47	1	0	-3.863348	-0.500523	0.470760	
48	1	0	0.265238	4.447805	-0.444067	
49	1	0	-1.375567	5.114199	-0.277773	
50	1	0	-0.710657	4.043072	0.978627	
51	1	0	-2.830839	0.844755	-1.708036	
52	1	0	-4.285764	1.201960	-0.755761	
53	1	0	-3.805072	2.306703	-2.048378	
54	1	0	-3.787596	4.253661	-0.333636	
55	1	0	-4.394934	3.029853	0.793420	
56	1	0	-2.976924	4.002283	1.228655	
57	1	0	0.700244	-2.053185	1.568772	
58	1	0	3.134027	-1.727490	1.663760	
59	1	0	2.934639	-0.059583	-2.310622	
60	1	0	0.510465	-0.397417	-2.265516	
61	1	0	4.815398	-0.363053	1.961061	
62	1	0	7.231991	0.023196	2.081091	
63	1	0	8.586426	0.233324	-0.001788	
64	1	0	7.449276	0.008716	-2.208810	
65	1	0	5.049564	-0.445631	-2.336380	
66	1	0	1.938790	1.114388	2.426266	
67	1	0	1.867542	1.278351	0.658494	
68	1	0	1.418300	2.662843	1.690997	
69	19	0	-1.838654	-0.138731	2.840151	

Summary of Natural Population Analysis:

	Natural Population						
		Natural -					_
Atom	No	Charge	Core	Valence	Rydberg	Total	
0	1	-0.85516	1.99971	6.83855	0.01691	8.85516	
В	2	1.24467	1.99896	1.70666	0.04971	3.75533	
0	3	-0.80524	1.99967	6.77989	0.02568	8.80524	
В	4	1.05651	1.99886	1.90346	0.04117	3.94349	
0	5	-0.84572	1.99973	6.82848	0.01751	8.84572	
0	6	-0.79270	1.99970	6.77375	0.01924	8.79270	

С	7	0.24142	1.99885	3.73721	0.02251	5.75858
С	8	0.24594	1.99884	3.73185	0.02336	5.75406
С	9	0.23885	1.99885	3.73734	0.02497	5.76115
С	10	0.23959	1.99885	3.73698	0.02459	5.76041
С	11	-0.69841	1.99932	4.68858	0.01051	6.69841
С	12	-0.69735	1.99932	4.68779	0.01024	6.69735
С	13	-0.69743	1.99932	4.68787	0.01024	6.69743
С	14	-0.71168	1.99934	4.70085	0.01148	6.71168
С	15	-0.70740	1.99932	4.69697	0.01112	6.70740
С	16	-0.70656	1.99934	4.69640	0.01083	6.70656
С	17	-0.71446	1.99931	4.70386	0.01129	6.71446
С	18	-0.69719	1.99932	4.68767	0.01020	6.69719
Ν	19	-0.66107	1.99909	5.64140	0.02058	7.66107
С	20	-0.13233	1.99906	4.10376	0.02952	6.13233
С	21	-0.22597	1.99900	4.21291	0.01407	6.22597
С	22	-0.21349	1.99899	4.19381	0.02069	6.21349
С	23	-0.23234	1.99901	4.21999	0.01335	6.23234
С	24	-0.07746	1.99904	4.05369	0.02473	6.07746
С	25	-0.03872	1.99900	4.02342	0.01629	6.03872
С	26	-0.25628	1.99902	4.24249	0.01477	6.25628
С	27	-0.24192	1.99905	4.22645	0.01642	6.24192
С	28	-0.29027	1.99903	4.27300	0.01824	6.29027
С	29	-0.24043	1.99905	4.22509	0.01628	6.24043
С	30	-0.25024	1.99901	4.23664	0.01458	6.25024
0	31	-0.86376	1.99965	6.84549	0.01861	8.86376
С	32	-0.30424	1.99934	4.28910	0.01579	6.30424
Η	33	0.23627	0.00000	0.76332	0.00041	0.76373
Η	34	0.25402	0.00000	0.74523	0.00076	0.74598
Η	35	0.25653	0.00000	0.74279	0.00068	0.74347
Η	36	0.25488	0.00000	0.74434	0.00078	0.74512
Η	37	0.23795	0.00000	0.76165	0.00040	0.76205
Η	38	0.24439	0.00000	0.75486	0.00076	0.75561
Η	39	0.23468	0.00000	0.76452	0.00080	0.76532
Η	40	0.24261	0.00000	0.75694	0.00045	0.75739
Η	41	0.25860	0.00000	0.74075	0.00065	0.74140
Η	42	0.23675	0.00000	0.76267	0.00057	0.76325
Η	43	0.25692	0.00000	0.74232	0.00076	0.74308
Η	44	0.25363	0.00000	0.74537	0.00100	0.74637
Η	45	0.25257	0.00000	0.74696	0.00047	0.74743
Η	46	0.20892	0.00000	0.79021	0.00087	0.79108
Η	47	0.25290	0.00000	0.74579	0.00130	0.74710
Η	48	0.25727	0.00000	0.74191	0.00082	0.74273
Η	49	0.24005	0.00000	0.75935	0.00059	0.75995
Н	50	0.23782	0.00000	0.76147	0.00071	0.76218

Н	51	0.27902	0.00000	0.71978	0.00121	0.72098
Н	52	0.22899	0.00000	0.77031	0.00070	0.77101
Н	53	0.24115	0.00000	0.75838	0.00047	0.75885
Н	54	0.24387	0.00000	0.75569	0.00044	0.75613
Н	55	0.24157	0.00000	0.75759	0.00085	0.75843
Н	56	0.24572	0.00000	0.75362	0.00066	0.75428
Н	57	0.22903	0.00000	0.77003	0.00094	0.77097
Н	58	0.24316	0.00000	0.75577	0.00107	0.75684
Н	59	0.24568	0.00000	0.75350	0.00081	0.75432
Н	60	0.24994	0.00000	0.74914	0.00092	0.75006
Н	61	0.23088	0.00000	0.76801	0.00111	0.76912
Н	62	0.23804	0.00000	0.76109	0.00087	0.76196
Н	63	0.23924	0.00000	0.75998	0.00078	0.76076
Н	64	0.23945	0.00000	0.75971	0.00084	0.76055
Н	65	0.23540	0.00000	0.76365	0.00095	0.76460
Н	66	0.21581	0.00000	0.78346	0.00073	0.78419
Н	67	0.23683	0.00000	0.76124	0.00192	0.76317
Н	68	0.20126	0.00000	0.79773	0.00100	0.79874
K	69	0.98903	17.98719	0.01946	0.00431	18.01097
* Tot	====== cal *	0.00000	81.96112	173.40002	0.63886	256.00000

3.3 DFT calculated HOMO and NAO orbital composition of Int-B

Cartesian coordinates of Int-B:

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.691014	1.168859	-0.364006	
2	6	0	-0.341956	1.170027	-0.414371	
3	7	0	0.423579	-0.020200	-0.194879	
4	6	0	-0.340693	-1.230641	-0.164869	
5	6	0	-1.689712	-1.220823	-0.116148	
6	6	0	-2.487888	-0.015101	-0.131547	
7	6	0	-3.901202	-0.003194	-0.010758	
8	6	0	-4.680235	1.201953	-0.060790	
9	6	0	-6.061478	1.202962	0.043365	
10	6	0	-6.793190	0.018993	0.213260	
11	6	0	-6.061162	-1.174908	0.282500	
12	6	0	-4.679944	-1.194358	0.179993	
13	5	0	1.810421	-0.007542	-0.079284	
14	8	0	2.606880	1.142296	-0.196796	
15	6	0	3.917351	0.778087	0.239170	

16	6	0	3.956209	-0.755965	-0.065941	
17	8	0	2.599431	-1.145237	0.151979	
18	6	0	4.860219	-1.564807	0.853747	
19	6	0	4.297269	-1.047922	-1.529587	
20	6	0	4.943642	1.604758	-0.522744	
21	6	0	4.010231	1.074231	1.738284	
22	1	0	-2.174618	2.124666	-0.549157	
23	1	0	0.246901	2.056032	-0.621844	
24	1	0	0.249599	-2.139548	-0.182505	
25	1	0	-2.171912	-2.194888	-0.099514	
26	1	0	-4.176584	2.157276	-0.177055	
27	1	0	-6.585982	2.157367	-0.004845	
28	1	0	-7.876076	0.027317	0.297569	
29	1	0	-6.585497	-2.119957	0.424912	
30	1	0	-4.176272	-2.153772	0.255140	
31	1	0	5.897660	-1.214769	0.786820	
32	1	0	4.527894	-1.495103	1.892045	
33	1	0	4.832313	-2.618567	0.558202	
34	1	0	4.102719	-2.106247	-1.728119	
35	1	0	3.666225	-0.454190	-2.199069	
36	1	0	5.349013	-0.835415	-1.752652	
37	1	0	5.962683	1.273325	-0.288216	
38	1	0	4.785542	1.531173	-1.601192	
39	1	0	4.849222	2.657213	-0.236453	
40	1	0	3.766229	2.128438	1.900547	
41	1	0	3.289323	0.468500	2.297104	
42	1	0	5.015293	0.880882	2.130058	

The HOMO of **Int-B** was plotted using the softwares $Multiwfn^{[3]}$ and VMD,^[4] with isovalue = 0.07. The result of the NAO orbital composition analysis was listed below.

NAO#	Center	Label	Туре	Composition
1	1(C)	S	Cor(1S)	0.000036%
2	1(C)	S	Val(2S)	0.009409%
6	1(C)	рх	Val(2p)	0.003600%
9	1(C)	ру	Val(2p)	0.0299298
12	1(C)	pz	Val(2p)	0.765625%
20	2(C)	S	Cor(1S)	0.000025%
21	2(C)	S	Val(2S)	0.008649%
25	2(C)	px	Val(2p)	0.015376%

28	2 (C)	ру	Val(2p)	0.439569%
31	2(C)	pz	Val(2p)	12.110400%
39	3 (N)	S	Cor(1S)	0.00004%
40	3 (N)	S	Val(2S)	0.001369%
44	3 (N)	рх	Val(2p)	0.041616%
47	3 (N)	ру	Val(2p)	0.074529%
50	3 (N)	pz	Val(2p)	7.054336%
58	4 (C)	S	Cor(1S)	0.000025%
59	4 (C)	S	Val(2S)	0.0100008
63	4 (C)	px	Val(2p)	0.015376%
66	4 (C)	ру	Val(2p)	0.004761%
69	4 (C)	pz	Val(2p)	12.517444%
77	5(C)	S	Cor(1S)	0.000036%
78	5(C)	S	Val(2S)	0.008464%
82	5(C)	px	Val(2p)	0.003136%
85	5(C)	ру	Val(2p)	0.000169%
88	5(C)	pz	Val(2p)	0.808201%
96	6(C)	S	Cor(1S)	0.000049%
97	6(C)	S	Val(2S)	0.002809%
101	6(C)	рх	Val(2p)	0.304704%
104	6(C)	ру	Val(2p)	0.297025%
107	6(C)	pz	Val(2p)	27.510025%

Condensed above result to atoms:

1(C)	0.808599%
2 (C)	12.574019%
3 (N)	7.171854%
4 (C)	12.547606%
5(C)	0.820006%
6(C)	28.114612%

4. Optimization of Reaction Conditions

4.1 The synthesis of bis(ethyleneglycolato)diboron (B₂eg₂)

 B_2eg_2 was prepared according to a published procedure^[5] with some modification. A 125 mL round-bottom flask was charged with a magnetic stir bar, $B_2(OH)_4$ (2.0 g, 22.4 mmol), anhydrous MgSO₄ (3.22 g, 26.8 mmol) and 40 mL THF. Then freshly distilled ethylene glycol (2.9 g, 46.8 mmol) was added to the flask. The flask was sealed with a rubber stopper and the reaction mixture was stirred at 35 °C for 24 h. The reaction mixture was filtered, and the residue was washed by THF. The combined filtrate was concentrated, and the residue was further purified by sublimation at reduced pressure (150 °C, 2.5 Pa) to get a white solid (1.8 g, 58% yield). The spectroscopic data was consistent with those reported in literature.^[5]

4.2 Experimental procedure for the optimization study

In a glove box, a 15 mL oven-dried glass vial was charged with 4-PhPy (56.5 mg, 0.36 mmol), diboron(4) (0.40 mmol), base (0.40 mmol), and 2 mL of anhydrous solvent. Then MeOH (128 mg, 4.0 mmol) was added by a microsyringe. The vial was sealed and the resulting mixture was allowed to react at 30 °C for 4.5 h. The crude reaction solution was transferred to an NMR tube in a glove box, and then ¹H NMR analysis (No-D NMR) of the reaction solution was performed.

4.3 ¹H NMR spectra of the optimization experiments

¹H NMR spectra of the crude reaction mixtures of optimization experiments are shown below, which were used to calculate the conversions listed in Table 1 of the main text. The integrals of the 1,4-DHP product (6.04 ppm) and the unreacted 4-phenylpyridine (7.59 ppm) were used to calculate the NMR conversion, assuming that 1,4-DHP was the only product of the converted 4-phenylpyridine.

Entry 1: B₂pin₂, MeOK in THF (17% conversion)

Entry 2: B₂neo₂, MeOK in THF (63% conversion)

Entry 6: B₂eg₂, K₂CO₃ in THF (73% conversion)

f1 (ppm)

Entry 7: B₂eg₂, Cs₂CO₃ in MeCN (71% conversion)

Note: the NMR shifts of the peaks of the 1,4-DHP product in the crude reaction mixture were slightly different from those obtained in the preliminary experiments (Section 2.2). This was due to the excess MeOH (11 equiv.) added in the optimization experiments, which may form hydrogen bonds with the 1,4-DHP product. This was confirmed by the observation that addition of excess MeOH to the previous reaction mixtures caused the shift of the product peaks.

5. Substrate Scope and Characterization Data

General procedure (GP-A) for determination of the NMR yield: In a glove box, a 15 mL ovendried reaction vail was charged with pyridine substrate (0.18 mmol), B₂eg₂ (28.4 mg, 0.20 mmol), base (0.20 mmol), and anhydrous THF (2 mL). MeOH (64.0 mg, 2.00 mmol) or MeOD (134 mg, 4.00 mmol) was then added by a microsyringe. The vial was sealed by a screw cap and the resulting mixture was then allowed to react at 50 °C for 14 h. The reaction mixture was cooled to room temperature, and a standard solution of DMSO in THF was added as the internal standard under an argon atmosphere. The crude reaction solution was transferred to an NMR tube in a glove box, and then ¹H NMR analysis (No-D NMR) of the reaction solution was performed to determine the NMR yield of the 1,4-DHP product.

General procedure (GP-B) for obtaining the pure 1,4-DHP product: In a glove box, a 25 mL Schlenk tube was charged with the pyridine substrate (0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), Cs_2CO_3 (130 mg, 0.40 mmol) and anhydrous MeCN (2 mL). MeOH (128 mg, 4.00 mmol) or MeOD (264 mg, 8.00 mmol) was added by a microsyringe. The tube was sealed by a rubber septum and the resulting mixture was allowed to react at 50 °C for 14 h. The reaction solution was cooled to room temperature and was transferred to a column packed with a pad of basic alumina (6 g, dried in the oven prior to use) using degassed anhydrous diethyl ether. A positive pressure of argon was applied to drive the solution pass through the column, and then the column was washed by 3 × 20 mL degassed diethyl ether. The combined organic solution was concentrated under vacuum under an argon atmosphere to obtain the 1,4-dihydropyridine product.

4-Phenyl-1,4-dihydropyridine (4)

Determination of the NMR yield. Following the general procedure GP-A, starting from **1** (28.0 mg, 0.18 mmol), B₂eg₂ (28.4 mg, 0.20 mmol), and MeOH (64.0 mg, 2.00 mmol), and using MeONa (10.8 mg, 0.20 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **4** was generated in 81% NMR yield.

¹H NMR of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF-*d*₀): δ 7.24 (m, 4H), 7.07 (m, 1H), 6.17 (br s, 1H), 5.99 (m, 2H), 4.26 (d, *J* = 6.8 Hz, 2H), 4.20 (m, 1H).

¹³C NMR (100 MHz, THF-*d*₀): δ 150.5, 127.8, 127.4, 125.8, 125.3, 100.0, 39.9.

GC-MS: C₁₁H₁₁N (*m*/*z* = 157, M⁻⁺).

4-Phenyl-1,4-dideuteropyridine (4-d₂)

Determination of the NMR yield. Following the general procedure GP-A, starting from **1** (28.0 mg, 0.18 mmol), B₂eg₂ (28.4 mg, 0.20 mmol), and MeOD (132 mg, 4.00 mmol), and using MeONa (10.8 mg, 0.20 mmol) as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **4**- d_2 was generated in 94% NMR yield (>98% 4-D).

¹H NMR of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF-*d*₀): δ 7.24 (m, 4H), 7.06 (m, 1H), 5.99 (d, *J* = 7.6 Hz, 2H), 4.26 (d, *J* = 7.6 Hz, 2H).

²H NMR (61 MHz, THF-*d*₀): δ 6.24, 4.17.

¹³C NMR (100 MHz, THF-*d*₀): δ 150.5, 127.8, 127.4, 125.7, 125.3, 99.8, 39.4 (t, *J* = 20.1 Hz).

GC-MS: C₁₁H₉ND₂ [m/z = 159, (M- d_2)⁻⁺].

Methyl 1,4-dihydropyridine-4-carboxylate (6a)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5a** (25.0 mg, 0.18 mmol), B₂eg₂ (28.4 mg, 0.20 mmol), and MeOH (64.0 mg, 2.00 mmol), and using Cs₂CO₃ (65.2 mg, 0.20 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6a** was generated in 96% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF- d_0): δ 6.34 (br s, 1H), 5.97 (dd, J = 7.5, 4.9 Hz, 2H), 4.31 (dd, J = 7.5, 3.7 Hz, 2H), 3.87 (t, J = 3.7 Hz, 1H).

¹³C NMR (100 MHz, THF-*d*₀): *δ* 173.4, 127.3, 93.7, 50.5, 39.2.

GC-MS: $C_7H_9NO_2 [m/z = 139, (M^{+})]$.

Methyl 1,4-dideuteropyridine-4-carboxylate (6a-d₂)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5a** (25.0 mg, 0.18 mmol), B₂eg₂ (28.4 mg, 0.20 mmol), and MeOD (132 mg, 4.00 mmol), and using Cs₂CO₃ (65.2 mg, 0.20 mmol) as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **6a**- d_2 was generated in 67% NMR yield (>98% 4-D).

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF-*d*₀): δ 5.99 (d, *J* = 7.6 Hz, 2H), 4.29 (d, *J* = 7.6 Hz, 2H).

²H NMR (61 MHz, THF-*d*₀): δ 6.52, 3.84.

¹³C NMR (100 MHz, THF-*d*₀): *δ* 173.7, 127.4, 93.5, 50.6, 38.9 (t, *J* = 19.8 Hz).

GC-MS: C₇H₇NO₂D₂ [m/z = 141, (M- d_2)⁻⁺].

1,4-Dihydropyridine-4-carboxamide (6b)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5b** (45.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using MeONa (21.6 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6b** was generated in 57% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF- d_0): δ 6.48 (br s, 1H), 6.40 (br s, 2H), 6.01 (m, 2H), 4.34 (m, 2H). The peak of C4-H overlapped with the THF peak at 3.61 ppm.

¹³C NMR (100 MHz, THF-*d*₀): *δ* 177.0, 127.4, 95.7, 41.6.

GC-MS: $C_6H_8N_2O[m/z = 124, (M^{+})]$.

1,4-Dideuteropyridine-4-carboxamide (6b-d₄)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5b** (45.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (264 mg, 7.99 mmol), and using MeONa (21.6 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **6b**-*d*₄ was generated in 77% NMR yield (ratio of deuterium incorporation at the C4-position was not calculated due to overlap of the residue C4-H peak with other peaks).

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF- d_0): δ 6.02 (d, J = 7.6 Hz, 2H), 4.33 (d, J = 7.6 Hz, 2H).

²H NMR (61 MHz, THF-*d*₀): δ 6.63, 6.50, 3.61.

¹³C NMR (100 MHz, THF-*d*₀): δ 177.3, 127.5, 95.3, 41.1 (t, *J* = 21.0 Hz).

GC-MS: C₆H₄N₂OD₄ [m/z = 128, (M- d_4)⁻⁺].

4-(3-Phenylpropyl)-1,4-dideuteropyridine (S2-d₂)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **S1** (35.9 mg, 0.18 mmol), B₂eg₂ (28.4 mg, 0.20 mmol), and MeOD (132 mg, 4.00 mmol), and using Cs₂CO₃ (65.2 mg, 0.20 mmol) as the base in 4 mL of anhydrous THF, 1,4-dideuteropyridine product **S2-** d_2 was generated in 50% NMR yield (98% 4-D).

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF-*d*₀): δ 7.16 (m, 5H), 5.87 (d, *J* = 7.7 Hz, 2H), 4.13 (d, *J* = 7.7 Hz, 2H), 2.57 (t, *J* = 7.8 Hz, 2H), 1.65 (m, 2H), 1.32 (m, 2H).

²H NMR (61 MHz, THF-*d*₀): δ 5.98, 2.98.

¹³C NMR (100 MHz, THF-*d*₀): δ 142.9, 128.1, 127.9, 126.5, 125.2, 99.6, 40.5, 36.2, 29.3 (t, J = 48.1 Hz), 27.3.

The formation of 1,4-DHP product $S2-d_2$ from pyridine S1 indicated that the present hydroboration process is compatible with pyridine substrate with electron-neutral substituents and is not limited to activated pyridines.

1,4-Dihydropyridine-3-carboxamide (6c)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5c** (44.5 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using

the combination of MeOK (28 mg, 0.40 mmol) and 18-crown-6 (106 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6c** was generated in 67% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF- d_0): δ 6.96 (m, 1H), 6.08 (br s, 3H), 5.84 (m, 1H), 4.50 (dt, J = 7.7, 3.5 Hz, 1H), 3.08 (m, 2H).

¹³C NMR (100 MHz, THF-*d*₀): δ 170.3, 135.1, 125.4, 100.2, 99.0, 22.7.

GC-MS: $C_6H_8N_2O[m/z = 124, (M^{+})]$.

1,4-Dideuteropyridine-3-carboxamide (6c-d4)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5c** (45.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (264 mg, 7.99 mmol), and using the combination of MeOK (28 mg, 0.40 mmol) and 18-crown-6 (106 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **6c**- d_4 was generated in 90% NMR yield (86% 4-D).

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Note: This 1,4-DHP product was rather oxygen-labile, and attempts to obtain its pure form following general procedure GP-B failed. The NMR data were acquired using the No-D NMR technique from the above reaction mixture.

¹H NMR (400 MHz, THF-*d*₀): δ 7.01 (s, 1H), 5.85 (d, *J* = 7.9 Hz, 1H), 4.50 (dd, *J* = 7.9, 3.4 Hz, 1H), 3.06 (m, 1H).

²H NMR (61 MHz, THF-*d*₀): *δ* 7.15, 6.29, 3.06.

¹³C NMR (100 MHz, THF-*d*₀): δ 170.8, 135.5, 125.3, 100.1, 98.4, 22.2 (t, *J* = 19.8 Hz).

GC-MS: C₆H₄N₂OD₄ [m/z = 128, (M- d_4)⁺⁺].

1,4-Dihydropyridine-3-carbonitrile (6d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5d** (36.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6d** was generated in 90% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5d** (473 mg, 4.55 mmol), the 1,4-DHP product **6d** (321 mg, 67% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 6.61 (d, *J* = 4.7 Hz, 1H), 5.84 (m, 1H), 5.40 (br s, 1H), 4.60 (ddt, *J* = 8.2, 1.6, 3.5 Hz, 1H), 3.10 (dd, *J* = 3.5, 1.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 140.0, 124.3, 121.6, 100.7, 78.4, 23.4.

HRMS Calcd for C₆H₆N₂ (M+H)⁺: 107.0609, Found: 107.0604.

4-Deutero-1-hydropyridine-3-carbonitrile (6d-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5d** (36.0 mg, 0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), and MeOD (264 mg, 8.00 mmol), and using Cs_2CO_3 (131 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **6d**- d_2 was generated in 79% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the gerenal procedure GP-B, starting from pyridine **5d** (473 mg, 4.55 mmol), the 1,4-DHP product **6d**-*d* (300 mg, 62% yield, >98% 4-D) was obtained. **Note:** In the crude mixture **6d**-*d*₂ was produced, which became **6d**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 6.61 (dt, *J* = 5.6, 0.9 Hz, 1H), 5.84 (ddt, *J* = 8.1, 4.4, 6.5 Hz, 1H), 5.31 (br s, 1H), 4.60 (ddd, *J* = 8.1, 3.4, 1.5 Hz, 1H), 3.08 (m, 1H).

²H NMR (61 MHz, CDCl₃): δ 3.08.

¹³C NMR (100 MHz, CDCl₃): δ 140.2, 124.3, 121.6, 100.7, 78.6, 23.0 (t, *J* = 20.7 Hz).

HRMS Calcd for C₆H₅N₂D (M+H)⁺: 108.0672, Found: 108.0670.

Sample for X-Ray single crystal diffraction analysis was prepared by recrystallization in CH₂Cl₂/*n*-hexane.

Data for XRD analysis of 6d-d (CCDC1935576)

Empirical formula	C ₆ H ₅ DN ₂	
Formula weight	107.13	
Temperature/K	293(2)	
Crystal system	orthorhombic	
Space group	Pbca	
a/Å	6.0431(2)	
b/Å	13.3857(4)	
c/Å	14.3592(4)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	1161.53(6)	
Z	8	
ρ _{calc} g/cm ³	1.225	
µ/mm⁻¹	0.613	
F(000)	448.0	
Crystal size/mm ³	0.3 × 0.1 × 0.1	
Radiation	CuKα (λ = 1.54184)	
2Θ range for data collection/°	12.328 to 153.394	
Index ranges	-7 ≤ h ≤ 5, -16 ≤ k ≤ 16, -17 ≤ l ≤ 12	
Reflections collected	2497	
Independent reflections	1181 [R _{int} = 0.0169, R _{sigma} = 0.0209]	
Data/restraints/parameters	1181/0/81	
Goodness-of-fit on F ²	1.099	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0667, wR ₂ = 0.1497	
Final R indexes [all data]	R ₁ = 0.0746, wR ₂ = 0.1598	
Largest diff. peak/hole / e Å ⁻³	0.36/-0.56	

3-Acetyl-1,4-dihydropyridine (6e)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5e** (45.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using the combination of MeOK (28.0 mg, 0.40 mmol) and 18-crown-6 (106 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6e** was generated in 70% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5e** (605 mg, 5.00 mmol), the 1,4-DHP product **6e** (259 mg, 42% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.10 (d, *J* = 5.8 Hz, 1H), 5.98 (br s, 1H), 5.88 (m, 1H), 4.83 (ddt, *J* = 6.7, 3.6, 1.8 Hz, 1H), 3.07 (dd, *J* = 3.6, 1.8 Hz, 2H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 195.9, 140.0, 123.7, 109.5, 105.3, 24.1, 21.7.

HRMS Calcd for C7H9NO (M+H)+: 124.0762, Found: 124.0754.

3-Acetyl-4-deutero-1-hydropyridine (6e-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5e** (45.0 mg, 0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), and MeOD (132 mg, 4.00 mmol), and using the combination of MeOK (28.0 mg, 0.40 mmol) and 18-crown-6 (106 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **6e**-*d*₂ was generated in 74% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5e** (44.0 mg, 0.36 mmol), the 1,4-DHP product **6e**-*d* (20.8 mg, 46% yield) was obtained. **Note:** In the crude mixture **6e**-*d*₂ was produced, which became **6e**-*d* during purification due to H/D exchange at the nitrogen atom. Both ¹H and ²H NMR analysis also showed a minor extent of deuterium incorporation (20% D) at the methyl group.

¹H NMR (400 MHz, CDCl₃): δ 7.09 (d, *J* = 5.4 Hz, 1H), 5.89 (dd, *J* = 8.3, 3.8 Hz, 1H), 5.79 (br s, 1H), 4.83 (m, 1H), 3.05 (t, *J* = 2.6 Hz, 1H), 2.15 (s, 3H).

²H NMR (61 MHz, CDCl₃): δ 3.07, 2.16 (t, *J* = 1.1 Hz).

¹³C NMR (100 MHz, CDCl₃): δ 195.8, 139.8, 123.7, 109.6, 105.2, 24.1, 21.3 (t, *J* = 20.2 Hz).

HRMS Calcd for C₇H₈NOD (M+H)⁺: 125.0825, Found: 125.0815.

Methyl 1,4-dihydropyridine-3-carboxylate (6f)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5f** (50.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using the combination of MeOK (28.0 mg, 0.40 mmol) and 18-crown-6 (106 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6f** was generated in 48% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5f** (625 mg, 4.56 mmol), the 1,4-DHP product **6f** (260 mg, 41% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, *J* = 5.6 Hz, 1H), 5.86 (m, 1H), 5.27 (br s, 1H), 4.72 (m, 1H), 3.68 (s, 3H), 3.11 (dd, *J* = 3.5, 1.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 168.9, 137.9, 124.2, 103.5, 98.2, 51.1, 22.2.

HRMS Calcd for C₇H₉NO₂ (M+H)⁺: 140.0712, Found: 140.0702.

Methyl 4-deutero-1-hydropyridine-3-carboxylate (6f-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5f** (50.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (132 mg, 4.00 mmol), and using the combination of MeOK (28.0 mg, 0.40 mmol) and 18-crown-6 (106 mg, 0.40 mmol) as the base in 2 mL of anhydrous THF, 1,4-DHP product **6f**- d_2 was generated in 61% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5f** (625 mg, 4.56 mmol), the 1,4-DHP product **6f**-*d* (250 mg, 39% yield) was obtained. **Note:** In the crude mixture **6f**-*d*₂ was produced, which became **6f**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 7.13 (d, *J* = 5.6 Hz, 1H), 5.86 (m, 1H), 5.27 (br s, 1H), 4.71 (ddd, *J* = 8.1, 3.6, 1.6 Hz, 1H), 3.68 (s, 3H), 3.09 (m, 1H).

²H NMR (61 MHz, CDCl₃): δ 3.10

¹³C NMR (100 MHz, CDCl₃): δ 168.9, 137.9, 124.2, 103.5, 98.2, 51.1, 21.8 (t, *J* = 20.2 Hz).

HRMS Calcd for C₇H₈NO₂D (M+H)⁺: 141.0774, Found: 141.0768.

tert-Butyl 1,4-dihydropyridine-3-carboxylate (6g)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5g** (65.0 mg, 0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-DHP product **6g** was generated in 69% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5g** (65.0 mg, 0.36 mmol), the 1,4-DHP product **6g** (33.2 mg, 51% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.04 (d, *J* = 5.5 Hz, 1H), 5.86 (m, 1H), 5.19 (br s, 1H), 4.70 (m, 1H), 3.06 (dd, *J* = 3.5, 1.7 Hz, 2H), 1.46 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 168.0, 137.1, 124.3, 103.2, 100.0, 28.5, 22.3.

HRMS Calcd for C₁₀H₁₅NO₂ (M+H)⁺: 182.1181, Found: 182.1174.

tert-Butyl 4-Deutero-1-hydropyridine-3-carboxylate (6g-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5g** (65.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (264 mg, 8.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-dihydrodeuteropyridine product **6g**- d_2 was generated in 57% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5g** (65.0 mg, 0.36 mmol), the 1,4-DHP product **6g**-*d* (25.5 mg, 39% yield) was obtained. **Note:** In the crude mixture **6g**-*d*₂ was produced, which became **6g**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 7.04 (d, *J* = 5.5 Hz, 1H), 5.85 (m, 1H), 5.11 (br s, 1H), 4.68 (ddd, *J* = 8.0, 3.5, 1.1 Hz, 1H), 3.04 (m, 1H), 1.46 (s, 9H).

²H NMR (61 MHz, CDCl₃): δ 3.05

¹³C NMR (100 MHz, CDCl₃): δ 168.0, 136.9, 124.3, 103.1, 99.9, 78.9, 28.5, 21.9 (t, *J* = 20.6 Hz).

HRMS Calcd for $C_{10}H_{14}NO_2D$ (M+H)⁺: 183.1244, Found: 183.1235.

3-Cyano-4-methyl-1,4-dihydropyridine (6h)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5h** (43.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using MeONa (21.6 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-dihydrodeuteropyridine product **6h** was generated in 40% NMR yield.

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5h** (540 mg, 4.57 mmol), the 1,4-DHP product **6h** (273 mg, 50% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 6.63 (dd, *J* = 5.6, 1.2 Hz, 1H), 5.87 (dd, *J* = 8.0, 4.4 Hz, 1H), 5.58 (br s, 1H), 4.59 (ddd, *J* = 8.1, 3.8, 1.5 Hz, 1H), 3.25 (ddd, *J* = 6.7, 3.8, 1.1 Hz, 1H), 1.23 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 138.8, 122.8, 121.4, 106.7, 84.6, 28.3, 24.8.

HRMS Calcd for C₇H₈N (M+H)⁺: 121.0766, Found: 121.0762.

3-Cyano-4-methyl-4-deutero-1-hydropyridine (6h-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5h** (43.0 mg, 0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), and MeOD (132 mg, 4.00 mmol), and using MeONa (21.6 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-dihydrodeuteropyridine product **6h**- d_2 was generated in 44% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5h** (540 mg,4.57 mmol), the 1,4-DHP product **6h**-*d* (291 mg, 53% yield, 93% 4-D) was obtained. **Note:** In the crude mixture **6h**-*d*₂ was produced, which became **6h**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 6.64 (dd, *J* = 5.6, 1.2 Hz, 1H), 5.88 (ddd, *J* = 8.0, 4.4, 1.3 Hz, 1H), 5.50 (br s, 1H), 4.60 (dd, *J* = 8.1, 1.5 Hz, 1H), 1.23 (s, 3H).

²H NMR (61 MHz, CDCl₃): δ 3.22

¹³C NMR (100 MHz, CDCl₃): δ 138.7, 122.8, 121.3, 106.6, 84.7, 27.9 (t, *J* = 20.4 Hz), 24.7.

HRMS Calcd for C₇H₇ND (M+H)⁺: 122.0828, Found: 122.0823.

3-Cyano-5-methyl-1,4-dihydropyridine (6i)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5i** (43.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous THF, 1,4-DHP product **6i** was generated in 72% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5i** (43.0 mg, 0.36 mmol), the 1,4-DHP product **6i** (20.6 mg, 47% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 6.62 (d, *J* = 5.6 Hz, 1H), 5.66 (d, *J* = 2.0 Hz, 1H), 5.50 (br s, 1H), 2.97 (s, 2H), 1.53 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 139.5, 122.1, 118.6, 109.9, 76.9, 28.8, 20.1.

HRMS Calcd for C₇H₈N (M+H)⁺: 121.0766, Found: 121.0762.

3-Cyano-5-methyl-4-deutero-1hydropyridine (6i-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5i** (43.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (264 mg, 8.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous THF, 1,4-dideuteropyridine product **6i**- d_2 was generated in 60% NMR yield.

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5i** (43.0 mg, 0.36 mmol), the 1,4-DHP product **6i**-*d* (26.9 mg, 61% yield, >98% D) was obtained (in this experiment THF was used as the solvent in place of MeCN). **Note:** In the crude mixture **6i**-*d*₂ was produced, which became **6i**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 6.64 (m, 1H), 5.68 (dq, *J* = 4.4, 1.4 Hz, 1H), 5.63 (br s, 1H), 2.97 (m, 1H), 1.53 (s, 3H).

²H NMR (61 MHz, CDCl₃): δ 2.95

¹³C NMR (100 MHz, CDCl₃): δ 139.7, 122.2, 118.6, 109.7, 76.8, 28.3 (t, *J* = 20.6 Hz), 20.1.

HRMS Calcd for C7H7ND (M+H)*: 122.0828, Found: 122.0814.

2-Methyl-5-cyano-1,4-dihydropyridine (6j)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5j** (43.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using MeONa (21.6 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-DHP product **6j** was generated in 97% NMR yield.

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5j** (43.0 mg, 0.36 mmol), the 1,4-DHP product **6j** (27.1 mg, 62% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 6.62 (d, *J* = 5.7 Hz, 1H), 5.11 (br s, 1H), 4.34 (dt, *J* = 3.3, 1.7 Hz, 1H), 3.06 (m, 2H), 1.66 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 140.3, 131.6, 121.6, 96.8, 78.5, 24.2, 19.2.

HRMS Calcd for C₇H₈N (M+H)⁺: 121.0766, Found: 121.0762.

2-Methyl-5-cyano-4-deutero-1-hydropyridine (6j-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5j** (43.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (264 mg, 8.00 mmol), and using MeONa (21.6 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-dideuteropyridine product **6***j*-*d*₂ was generated in 74% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5j** (43.0 mg, 0.36 mmol), the 1,4-DHP product **6j**-*d* (21.1 mg, 48% yield, 86% 4-D) was obtained. **Note:** In the crude mixture **6j**-*d*₂ was produced, which became **6j**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 6.62 (d, *J* = 5.6 Hz, 1H), 5.11 (br s, 1H), 4.34 (dt, *J* = 3.3, 1.7 Hz, 1H), 3.06 (m, 1.06H), 1.67 (t, *J* = 1.4 Hz, 3H).

²H NMR (61 MHz, CDCl₃): δ 3.04.

¹³C NMR (100 MHz, CDCl₃): δ 140.3, 131.6, 121.7, 96.7, 78.5, 23.7 (t, *J* = 20.8 Hz), 19.2.

HRMS Calcd for C₇H₇ND (M+H)⁺: 122.0828, Found: 122.0823.

3-Acetyl-4-methyl-1,4-dihydropyridine (6k)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5k** (49.2 mg, 0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-DHP product **6k** was generated in 68% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5k** (49.2 mg, 0.36 mmol), the 1,4-DHP product **6k** (16.8 mg, 34% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 5.8 Hz, 1H), 6.10 (br s, 1H), 5.96 (m, 1H), 4.85 (ddd, *J* = 7.7, 5.1, 1.1 Hz, 1H), 3.48 (dd, *J* = 6.7, 5.5 Hz, 2H), 2.17 (s, 3H), 1.04 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 195.9, 139.0, 122.5, 115.2, 110.3, 26.1, 24.6, 24.5.

HRMS Calcd for C₈H₁₁NO (M+H)⁺: 138.0919, Found: 138.0913.

3-Acetyl-4-methyl-4-deutero-1-hydropyridine (6k-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5k** (49.2 mg, 0.36 mmol), B_2eg_2 (56.8 mg, 0.40 mmol), and MeOD (264 mg, 8.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-dideuteropyridine product **6k**-*d*₂ was generated in 55% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5k** (49.2 mg, 0.36 mmol), the 1,4-DHP product **6k**-*d* (21.0 mg, 42% yield, 94% 4-D) was obtained. **Note:** In the crude mixture **6k**-*d*₂ was produced, which became **6k**-*d* during purification due to H/D exchange at the nitrogen atom. Both ¹H and ²H NMR analysis also showed a minor extent of deuterium incorporation (9% D) at the methyl group.

¹H NMR (400 MHz, CDCl₃): δ 7.17 (dd, *J* = 5.8, 1.1 Hz, 1H), 5.99 (ddd, *J* = 7.7, 4.3, 1.1 Hz, 1H), 5.90 (br s, 1H), 4.86 (dd, *J* = 7.6, 1.7 Hz 1H), 2.19 (s, 2.74H), 1.04 (s, 3H).

²H NMR (61 MHz, CDCl₃): δ 3.48, 2.18 (t, *J* = 0.73 Hz)

¹³C NMR (100 MHz, CDCl₃): δ 195.9, 138.8, 122.5, 115.2, 110.2, 25.7 (t, *J* = 21.3 Hz), 24.6, 24.3.

HRMS Calcd for C₈H₁₀NOD (M+H)⁺: 139.0982, Found: 139.0975.

Methyl 4-methyl-1,4-dihydropyridine-3-carboxylate (6l)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5I** (55.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOH (128 mg, 4.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-DHP product **6I** was generated in 62% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5I** (412 mg, 2.73 mmol), the 1,4-DHP product **6I** (154 mg, 37% yield) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.19 (dd, *J* = 5.7, 1.2 Hz, 1H), 5.91 (ddd, *J* = 7.8, 4.3, 1.2 Hz, 1H), 5.74 (br s, 1H), 4.74 (ddd, *J* = 7.8, 4.8, 1.7 Hz, 1H), 3.67 (s, 3H), 3.34 (m, 2H), 1.08 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 169.1, 137.1, 122.9, 108.7, 103.4, 50.9, 26.9, 25.1.

HRMS Calcd for C₈H₁₁NO₂ (M+H)⁺: 154.0868, Found: 154.0860.

Methyl 4-methyl-4-deutero-1-hydropyridine-3-carboxylate (61-d)

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5I** (55.0 mg, 0.36 mmol), B₂eg₂ (56.8 mg, 0.40 mmol), and MeOD (264 mg, 8.00 mmol), and using Cs₂CO₃ (131 mg, 0.40 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-dideuteropyridine product **6I**-*d*₂ was generated in 65% NMR yield.

¹H NMR spectra of the reaction mixture (* denotes the peak used to calculate the NMR yield):

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5I** (412 mg, 2.73 mmol), the 1,4-DHP product **6I**-*d* (151 mg, 36% yield, 94% 4-D) was obtained. **Note:** In the crude mixture **6I**-*d*₂ was produced, which became **6I**-*d* during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 7.22 (dd, *J* = 5.7, 1.2 Hz, 1H), 5.95 (ddd, *J* = 7.8, 4.3, 1.2 Hz, 1H), 5.55 (br s, 1H), 4.77 (dd, *J* = 7.7, 1.6 Hz, 1H), 3.69 (s, 3H), 1.09 (s, 3H).

²H NMR (61 MHz, CDCl₃): δ 3.34.

¹³C NMR (100 MHz, CDCl₃): δ 168.9, 136.9, 122.9, 108.7, 103.7, 51.0, 26.6 (t, J = 20.7 Hz), 25.0. HRMS Calcd for C₈H₁₀NO₂D (M+H)⁺: 155.0931, Found: 155.0922.

1,4-DHP 6f from double hydroboration reaction of pyridine 5m

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5m** (66.8 mg, 0.36 mmol), B₂eg₂ (114 mg, 0.80 mmol), and MeOH (264 mg, 8.25 mmol), and using Cs₂CO₃ (261 mg, 0.80 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4-DHP product **6f** was generated in 59% NMR yield.

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5m** (49.8 mg, 0.30 mmol), B₂eg₂ (78.6 mg, 0.60 mmol), and Cs₂CO₃ (196 mg, 0.60 mmol), the 1,4-DHP product **6f** (12.6 mg, 30% yield) was obtained.

¹H NMR (400MHz, CDCl₃): δ 7.05 (dd, *J* = 5.6 Hz, 1H), 5.79 (m, 1H), 5.26 (br s, 1H), 4.64 (m, 1H), 3.61 (s, 3H), 3.04 (dd, *J* = 3.5, 1.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 169.0, 137.9, 124.2, 103.5, 98.1, 51.1, 22.2.

HRMS: Calcd for C₇H₉NO₂ (M+H): 140.07115, Found: 140.07065.

Methyl 1,4-dideuteropyridine-3-carboxylate (6f-*d*₂) from double hydroboration reaction of pyridine 5m

Determination of the NMR yield. Following the general procedure GP-A, starting from pyridine **5m** (66.8 mg, 0.36 mmol), B₂eg₂ (114 mg, 0.80 mmol), and MeOD (528 mg, 16.0 mmol), and using Cs₂CO₃ (261 mg, 0.80 mmol) the as the base in 2 mL of anhydrous MeCN, 1,4,4-trideuteropyridine product **6f**-*d*₃ was generated in 53% NMR yield.

Determination of the yield after isolation. Following the general procedure GP-B, starting from pyridine **5m** (403 mg, 2.41 mmol), B₂eg₂ (747 mg, 5.27 mmol), and Cs₂CO₃ (1.73 g, 5.31 mmol), the 1,4-DHP product **6f**- d_2 (89.3 mg, 26% yield) was obtained. **Note:** In the crude mixture **6f**- d_3 was produced, which became **6f**- d_2 during purification due to H/D exchange at the nitrogen atom.

¹H NMR (400 MHz, CDCl₃): δ 7.13 (dd, J = 5.6, 1.2 Hz, 1H), 5.88 (ddd, J = 8.1, 4.2, 1.2 Hz, 1H), 5.26 (br s, 1H), 4.72 (dd, J = 8.0, 1.5 Hz, 1H), 3.70 (s, 3H), 3.09 (m, 0.05H).

²H NMR (61 MHz, CDCl₃): δ 3.07

¹³C NMR (100 MHz, CDCl₃): δ 168.9, 137.7, 124.1, 103.2, 98.0, 51.1.

HRMS Calcd for C₇H₇NO₂D₂ (M+H)⁺: 142.0837, Found: 142.0827.

6. The Asymmetric Hydrogen Transfer Reactions

6.1 General procedure

General procedure: In a glove box, a 15 mL oven-dried sealed tube was charged with α , β unsaturated aldehyde **7** (1 equiv.), catalyst **8** (20 mol%), and anhydrous toluene as the solvent (to make a 0.4 M solution of substrate **7**). Then the 1,4-DHP derivative (1.2 equiv.) was added. The resulting mixture was allowed to react at 4 °C for 12 h. The reaction solution was diluted by ether, and then filtered through a pad of diatomite. The residue was washed by ether. The combined ether solution was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate 80:1 V/V) to afford the desired product **9**. The enantiomeric excess (e.e.) was determined by HPLC using a Chiralpak IC column (column temperature 24 °C).

6.2 Results

Entry 1: HEH 11 was employed as the hydride donor.

Following the general procedure, starting from **7** (146 mg, 1.00 mmol), **8** (56.6 mg, 0.20 mmol), and **11** (304 mg, 1.2 mmol), in 5 mL of anhydrous toluene, product **9** (72.3 mg, 49% yield, 83% e.e.) was obtained.

Entry 2: 1,4-DHP 6f was employed as the hydride donor.

Following the general procedure, starting from **7** (74 mg, 0.50 mmol), **8** (28.3 mg, 0.10 mmol), and **6f** (83.4 mg, 0.6 mmol), in 2.5 mL of anhydrous toluene, product **9** (28.5 mg, 38% yield, 75% e.e.) was obtained.

Entry 3: $6f-d_2$ was employed as the hydride donor.

Following the general procedure, starting from **7** (70 mg, 0.48 mmol), **8** (28.3 mg, 0.10 mmol), and **6**f- d_2 (67 mg, 0.5 mmol), in 2.5 mL of anhydrous toluene, product **9** (35 mg, 49% yield, 80% e.e.) was obtained.

5.3 Spectroscopic data of the product^[6] (*R*)-3-Phenylbutanal (9)

¹H NMR (400 MHz, CDCl₃): δ 9.71 (t, *J* = 2.0 Hz, 1H), 7.32 (m, 2H), 7.22 (m, 3H), 3.39 (q, 1H), 2.73 (m, 2H), 1.32 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 202.0, 145.6, 128.8, 126.9, 126.7, 51.9, 42.0, 34.4, 22.3.

(R)-1-Deutero-3-phenylbutanal (9-d)

¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, *J* = 1.9 Hz, 1H), 7.31 (m, 2H), 7.22 (m, 3H), 3.36 (q, 0.1H), 2.67 (m, 2H), 1.32 (q, 3H).

²H NMR (61 MHz, CDCl₃): δ 3.36

¹³C NMR (100 MHz, CDCl₃): δ 202.0, 145.6, 128.8, 126.9, 126.7, 51.9, 42.1, 34.4, 22.2 (t, *J* = 25.3 Hz).

5.4 Copies of HPLC traces for the determination of e.e.

#	Ret. time	FWHM	Height	Area	Area (%)
1	12.459	0.219	122553	1717049	48.813
2	12.862	0.233	122200	1800559	51.187

(*R*)-9 obtained in entry 1 (83% e.e.):

mAU

0.231

9604162

(*R*)-9 obtained in entry 2 (75% e.e.):

12.901

#	Ret. time	FWHM	Height	Area	Area (%)
1	12.410	0.240	20085	283539	12.463
2	12.802	0.230	128737	1991464	87.537

(*R*)-**9**-*d* obtained in entry 3 (80% e.e.):

#	Ret. time	FWHM	Height	Area	Area (%)
1	13.938	0.230	55221	810221	9.919
2	14.475	0.254	447191	7358232	90. 08 <mark>1</mark>

7. Copies of the NMR Spectra of Products

¹H and ¹³C NMR of **4** (in THF-*d*₀, No-D NMR)

¹H, ²H, and ¹³C NMR of **4-d**₂ (in THF-d₀, No-D NMR)

¹H and ¹³C NMR of **6a** (in THF-*d*₀, No-D NMR)

¹H, ²H, and ¹³C NMR of **6a-d**₂ (in THF-d₀, No-D NMR)

¹H and ¹³C NMR of **6b** (in THF-*d*₀, No-D NMR)

¹H, ²H, and ¹³C NMR of **6b-d**₄ (in THF-d₀, No-D NMR)

S56

¹H, ²H, and ¹³C NMR of **S2**-*d*₂ (in THF-*d*₀, No-D NMR)

S63

¹H and ¹³C NMR of 1,4-DHP **6f** from double hydroboration reaction of pyridine **5m**:

¹H, ²H, and ¹³C NMR of **6f**- d_2 from double hydroboration reaction of pyridine **5m**:

S93

References

[1] Full citation of Gaussian 09: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; *Gaussian 09, revision B.01*; Gaussian Inc.: Wallingford, CT, 2010.

[2] (a) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2008**, *120*, 215-241. (b) Zhao, Y.; Truhlar, D. G. *Acc. Chem. Res.* **2008**, *41*, 157-167.

[3] Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.

[4] Humphrey, W.; Dalke, A.; Schulten, K. J. Molec. Graphics 1996, 14.1, 33-38.

[5] Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.; Maleczka, R. E.;

Singleton, D. A.; Smith, M. R. J. Am. Chem. Soc. 2017, 139, 7864-7871.

[6] Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. J. Am. Chem. Soc. 2005, 127, 32-33.