
Honeybee communication during collective defence is shaped
by predation

Additional file 2: Calibration of the learning process
Before PS could be successfully applied to our model, we determined which learning parameters —
also called hyperparameters— should be selected in order to optimize the model’s global performance
[1]. In particular, we investigated the influence of the forgetting parameter (γ).

To this end, we first set up a task admitting a clear optimal collective strategy that could be
easily predicted beforehand. We considered just one predator with sth = 26, tatt = 0 and ∆tv = 10,
for which the optimal strategy is known: the first 26 bees should sting with ps = 1 and the remaining
ones should not sting (ps = 0). Given a killing rate k = 1, the number of live bees at the end of the
trial has a theoretical maximum of a∗ = 100− 2 · 26 = 48. Note that we have chosen sth = 26 so as
to allow the bees to distinguish when they have stung exactly 26 times, since this is the start of a
new binning interval that corresponds to a different percept (percept 6). Fig. S2a shows the learned
probability of stinging as a function of the pheromone units for cases with γ = 0, 0.001, 0.003, 0.01.
The behaviour that is closest to the optimal one is obtained for γ with order of magnitude 10−3.
Indeed, if the forgetting is too low (γ = 0) or too high (γ = 0.01), the agents’ behaviour converged
quickly (as can be seen on Fig. S2b) but got stuck in local minima, and the optimal performance a∗
was not reached. Looking at the strategy adopted by these populations, the probability of stinging at
low pheromone concentrations appeared lower, which lead to a slower collective defensive response,
allowing the predator to kill more bees before it is scared away. Note that the last two percepts,
corresponding to pheromone units up to 63 and 99, respectively, retained the initial values ps = 0.5.
This is due to the fact that, once agents learned to stop stinging at percept 6 (26-39 pheromone
units), they did not encounter those two percepts any more so their values decayed back to 0.5.
Thus these two probabilities did not affect the final collective performance at all. As expected, the
agents also learned to stop stinging when the percept vESC was activated. The obtained values are
ps = 0.25 ± 0.03 for γ = 0, ps = 0.042 ± 0.007 for γ = 0.001, ps = 0.006 ± 0.003 for γ = 0.003 and
ps = 0.015 ± 0.007 for γ = 0.01. Note that populations trained with γ in the range of 10−3 again
achieved the lowest value, which further supports our finding that this order of magnitude for the
forgetting parameter is suitable.

The forgetting parameter is also crucial in tasks with changing objectives, for instance when
different predators attack the colony (i.e. when sth can vary throughout the trial). To refine our
calibration of γ, we thus considered a second task in which sth was chosen from a uniform distribution
over the range sth ∈ (16, 40). In this case the agents need to develop a single strategy that is suitable
for all values of sth within the same learning process, that is, there is no independent learning process
for different values of sth. Based on our previous results, we varied γ systematically in the range
(0.001, 0.1) in order to select the forgetting parameter that lead to the best performance. The results
are presented in the inset of Fig. S2c, where we see that the value γ = 0.003 achieved the best
performance. Therefore, we chose this value to further extend our analysis and study the influence
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of the predator’s parameters in the main text. As examples, Fig. S2c shows the learned probabilities
of stinging for processes with γ = 0.001, 0.003, 0.007. We observe that ps has a high value for
pheromone concentrations below 26 pheromone units. At higher concentrations, the probability of
stinging decreases gradually, reflecting the fact that only few predators necessitate that many stings
before escaping. By contrast, when only one value of sth was considered in the learning process, the
decrease of ps was more abrupt (see Fig. S2a). Finally, the agents learned to stop stinging when the
percept vESC was activated in all three learning processes, with ps = 0.039 ± 0.007 for γ = 0.001,
ps = 0.005 ± 0.002 for γ = 0.003 and ps = 0.012 ± 0.005 for γ = 0.007. The lowest value of ps was
again achieved for γ = 0.003, thus further validating our choice.

Another important choice we had to make was to set the number of percepts in the bee’s ECM.
Here, we analysed the influence of this parameter and of the logarithmic binning, in order to check
if different choices in parametrizing the bees’ perception could influence the strategy adopted by
the colony. To do so, we considered a learning process with a range of predators sth ∈ (16, 40)
and γ = 0.003 and we varied the resolution with which the agents could perceive the number of
pheromone units. Fig. S2d shows the learned probabilities of stinging for processes with 9 and 21
percepts, both with logarithmic binning, and with 100 percepts (full resolution, linear/no binning
since the agents are able to resolve every single pheromone unit). Note that, for the logarithmic
binning, we considered that the minimum size of each bin is three pheromone units. We observe
that the behaviour adopted by the agents did not qualitatively change depending on our choices
in modelling their perceptual mechanisms. In all three processes, agents learned to sting with high
probability when the concentration of pheromone was low and to stop stinging around 40 units,
which is the sth of the largest predator. As expected the probability of stinging for percept vESC
tended to zero in all cases: ps = 0.005±0.002, ps = 0.006±0.003 and ps = 0.006±0.002, for processes
with 9, 21 and 100 percepts respectively. The only difference between these 3 ways of modelling
the sensory perception of the agents was the resolution achieved: more percepts (i.e. smaller bins)
allowed more gradual transitions in ps values. Therefore, in the rest of the study we considered only
9 percepts, as this made the learning process more stable and less computationally demanding.
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Figure S2: (a) Calibration of the learning process with respect to the forgetting parameter γ. A
scenario where the optimal response is known in advance is considered. Specifically, one predator
with sth = 26 and k = 1 attacks the colony at tatt = 0 (∆tv = 10), so the best collective strategy
is to sting with probability ps = 1 until the concentration of alarm pheromone reaches 26 units and
then stop (ps = 0). The values of γ that achieve the closest responses to the optimal ones are of the
order 10−3. Markers indicate the upper end of each perceptual bin. (b) Evolution of the fraction
of live bees throughout the same learning processes. The dashed line indicates the optimal value
of 100 − 2 × 26 = 48 live bees. Shaded areas indicate one standard deviation. (c) Influence of γ
in a learning process with a range of predators sth ∈ (16, 40) (k = 1, tatt = 0,∆tv = 10). Learned
probabilities for processes with γ = 0.001, 0.003, 0.007. The inset shows that the value 0.003 achieves
the best performance of values in the range (0.001, 0.01). (d) With γ fixed at 0.003, an increase in
the sensing resolution does not qualitatively change the learned responses. "Full resolution" denotes
that agents are able to resolve an increase in one pheromone unit, whereas in the other two learning
processes, agents have logarithmic sensing with 9 and 21 percepts, respectively. Large markers are
at the end of each percept’s range of pheromone units. In all panels, averages are obtained by taking
data of 50 independently trained ensembles of 100 agents.
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