Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting Information

for

Isolation of Singlet Carbenes Derived 2-Phospha-1,3-butadienes and their Sequential One-electron Oxidation to Radical Cations and Dications

Mahendra K. Sharma,^a Sebastian Blomeyer,^a Timo Glodde,^a Beate Neumann,^a Hans-Georg Stammler,^a Alexander Hinz,^b Maurice van Gastel,^c and Rajendra S. Ghadwal^a*

^aMolecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany.

^bInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.

^cMax-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, D-45470, Germany.

*Email: rghadwal@uni-bielefeld.de

https://www.ghadwalgroup.de

Table of contents

Experimental Section	pp 1-5
Plots of the NMR Spectra	pp 6-14
Cyclic Voltammetry	pp 15
UV-vis Spectra	pp 16-19
EPR Spectra	pp 20
Crystallographic Details	pp 21-25
Computational Details	pp 26-52
References	pp 53-54

Experimental Section

All experiments and manipulations were carried out under an inert gas (Ar or N₂) atmosphere using standard *Schlenk* techniques or an MBraun LABmaster Pro glovebox. THF, toluene, and *n*-hexane were dried by refluxing over NaK, distilled prior to use, and stored over 3Å molecular sieve. {(IPr)CPh}PCl₂ (1)¹ and cAACs² were synthesized by following the literature reported methods. GaCl₃ (ABCR) was used as supplied. NMR spectra were recorded using a Bruker Avance III 500HD NMR spectrometer. Chemical shifts are given in δ ppm and referenced to the solvent residual peak(s).³ Melting points were measured using a Büchi B-545 melting point apparatus. UV-visible spectra were recorded at a Thermo Fisher Evolution 300 spectrophotometer.

Synthesis of [{(IPr)C(Ph)}P(Cl)(cAAC^{Me})](OTf) (2a): To a Schlenk flask containing {(IPr)C(Ph)}PCl₂ (1) (0.50 g, 0.86 mmol) and cAAC^{Me}(LiOTf) (0.39 g, 0.87 mmol) was added 20 mL THF at room temperature. The resulting violet solution was stirred overnight. The volatiles were removed under vacuum to obtain a dark residue, which was washed with 10 mL toluene and dried, yielding 2a as a violet solid. Yield: 88%, 0.75 g. M.p. 158 °C (dec.). X-ray quality single crystals were grown by a slow diffusion of *n*-hexane into a saturated dichloromethane solution of 2a. Elemental analysis (%), calcd for C₅₅H₇₂N₃ClF₃O₃PS (978.67) 2a: C, 67.50; H, 7.42; N, 4.29; found: C, 68.05; H, 7.93; N, 4.43. ¹H NMR (500 MHz, THF- d_8 , 298 K): δ = 7.44 (d, J = 7.7 Hz, 1H, NCH), 7.38 (d, J = 7.5 Hz, 1H, NCH), 7.26–7.32 (m, 7H, C₆H₅, C₆H₃), 7.11 (m, 4H, C₆H₅, C₆H₃), 6.84 (t, J = 7.5 Hz, 2H, C_6H_5), 6.71 (d, J = 7.3 Hz, 1H, C_6H_5), 3.19-3.25 (m, 2H, $CH(CH_3)_2$), 3.12-3.18 (m, 1H, $CH(CH_3)_2$), 2.87-2.93 (m, 2H, CH(CH₃)₂), 2.29-2.34 (m, 1H, CH(CH₃)₂), 2.12-2.20 (q, 2H, CH₂), 1.63 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 1.44 (d, J = 6.7 Hz, 6H, CH(CH₃)₂), 1.36 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 1.34 (s, 3H, CH_3), 1.29 (d, J = 6.7 Hz, 6H, $CH(CH_3)_2$), 1.25 (s, 3H, CH_3), 1.22 (m, 6H, $CH(CH_3)_2$), 1.19 (t, J = 6.7 Hz, 6H, $CH(CH_3)_2$), 1.19 (t, J = 6.7 Hz, 6H, $CH(CH_3)_2$), 1.25 (s, 3H, CH_3), 1.22 (m, 6H, $CH(CH_3)_2$), 1.29 (t, J = 6.7 Hz, J = 6.7 Hz, J = 6.7 Hz, $CH(CH_3)_2$), 1.29 (t, J = 6.7 Hz, $CH(CH_3)_2$), 1.29 (t, J = 6.7 Hz, 6.7 Hz, 3H, $CH(CH_3)_2$), 1.03 (s, 6H, $CH(CH_3)_2$), 1.01 (s, 3H, CH_3), 0.99 (d, J = 7.80 Hz, 3H, $CH(CH_3)_2$), 0.87 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, THF- d_8 , 298 K): $\delta = 218.0$ (d, $J_{P-C} = 93.9$ Hz, PC_{cAAC}), 152.6, 152.2, 147.2, 146.3, 145.9, 145.2, 143.7, 136.5, 135.3, 131.8, 131.4, (C₆H₃); 129.2, 129.1, 128.2, 126.9, 126.5, 126.0 125.4, 125.3, 124.0 ($C_{6}H_{5}$); 86.0 (d, $J_{P-C} = 5.7$ Hz, CCP), 59.3 (C(CH₃)₂), 52.9 (CH₂), 30.7, 30.3, 30.0, 29.8, 29.2, (CH(CH₃)₂, 26.8, 24.3, 23.1, 22.0 (CH₃). ³¹P{¹H} NMR (202 MHz, THF- d_8 , 298 K): $\delta = 100.9$ ppm. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 265 (7560), 326 (12480), 371 (16100), 382 (14800). MS (ESI pos.): *m/z*: 828.5 [2a-OTf]⁺.

Synthesis of [{(IPr)C(Ph)}P(Cl)(cAAC^{Cy})](OTf) (2b): Compound 2b was synthesized as a violet solid by adopting a similar protocol as described for 2a using [(IPr)C(Ph)]PCl₂ (1.00 g, 1.73 mmol) and cAAC^{Cy}(LiOTf) (0.83 g, 1.73 mmol). Yield: 83%, 1.45 g. Mp: 167 °C (dec.). Elemental analysis (%), calcd for C₅₈H₇₆N₃ClF₃O₃PS (1018.73) 2b: C, 68.38; H, 7.52; N, 4.12; found: C, 68.97; H, 7.83; N, 4.31. ¹H NMR (500 MHz, THF-*d*₈, 298 K): δ = 7.43 (t, *J* = 7.8 Hz, 1H, C₆H₃), 7.37 (s, 2H, NCH), 7.35 (t, *J* = 6.9 Hz, 1H, C₆H₃), 7.31 (d, *J* = 7.7 Hz, 2H, C₆H₃), 7.27 (d, *J* = 7.6 Hz, 1H, C₆H₃), 7.23 (d, *J* =

7.6 Hz, 2H, C₆H₃), 7.16 (m, 3H, C₆H₅), 7.09 (d, J = 7.0 Hz, 2H, C₆H₅), 6.95 (s, 1H), 6.87 (t, J = 7.5 Hz, 2H, C₆H₅), 6.80 (m, 1H, C₆H₃), 6.71-6.74 (m, 1H, C₆H₅), 3.02-3.09 (m, 2H, CH(CH₃)₂), 2.95-3.00 (m, 2H, CH(CH₃)₂), 2.87-2.93 (m, 1H, CH(CH₃)₂), 2.50 (d, J = 14.0 Hz, 1H, CH₂), 2.30-2.35 (m, 1H, CH(CH₃)₂), 1.95 (d, J = 13.9 Hz, 1H, CH₂), 1.51-1.58 (m, 4H, CH₂), 1.35-1.39 (m, 6H, CH₂), 1.31 (d, J = 6.9 Hz, 6H, CH(CH₃)₂), 1.26 (br, 3H, CH₃), 1.29 (br, 6H, CH(CH₃)₂), 1.19 (d, J = 6.6 Hz, 6H, CH(CH₃)₂), 1.15 (d, J = 6.8 Hz, 6H, CH(CH₃)₂), 1.07 (d, J = 6.7 Hz, 6H, CH(CH₃)₂), 1.01 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, THF- d_8 , 298 K): $\delta = 216.6$ (d, $J_{P-C} = 95.74$ Hz, PC_{cAAC}), 154.1, 153.3, 147.5, 147.3, 145.9, 144.3, 136.1, 135.3, 131.5, 131.1, (C₆H₃); 129.2, 128.3, 127.3, 126.7, 125.8 125.7, 125.6, 125.4, 125.1, 124.6, 121.6 (C₆H₅); 85.5 (d, $J_{P-C} = 29.8$ Hz, CCP), 65.0 (C(CH₃)₂, 46.0 (CH₂), 30.8, 30.3, 30.1, 29.9 (CH(CH₃)₂, 26.8, 26.5, 23.0, 22.9, 22.7 (CH₃). ³¹P{¹H} NMR (202 MHz, THF- d_8 , 298 K,): $\delta = 102.9$ ppm. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 267 (9100), 325 (7029), 370 (8978). MS (ESI pos.): m/z: 868.5 [**2b**-OTf]⁺.

Synthesis of [{(IPr)C(Ph)}P(cAAC^{Me})] (3a): To a *Schlenk* flask containing 2a (0.50 g, 0.51 mmol) and Mg turnings (25 mg, 1.02 mmol) was added 20 mL THF at room temperature. The resulting reaction mixture was stirred overnight. During this period, the initially violet solution turned into orange. The volatiles were removed in vacuo, giving an orange residue, which was extracted with 50 mL n-hexane and filtered through a plug of Celite. The volatiles were removed under vacuum to obtain compound **3a** as an orange solid. Yield: 0.38 g, 94%. M.p. 108 °C (dec.). X-ray quality single crystals were grown by storing a saturated *n*-pentane solution of **3a** at -40 °C for 3 days. Elem. Anal. calcd. for C₅₄H₇₂N₃P (794.14) **3a**: C, 81.67; H, 9.14; N, 5.29, found: C, 82.05; H, 9.51; N, 5.63. ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 7.21$ (br, 2H, C₆H₃), 7.14 (d, J = 7.0 Hz, 2H, C₆H₃), 7.10 (d, J = 7.3 Hz, 4H, C₆H₃), 6.95 (br, 4H, C_6H_3 , C_6H_5), 6.74 (t, J = 7.4 Hz, 2H, C_6H_5), 6.61 (t, J = 7.2 Hz, 1H, C_6H_5), 3.53 (br, 4H, CH(CH₃)₂), 2.88-2.93 (m, 2H, CH(CH₃)₂), 1.71 (s, 2H, CH₂), 1.32 (d, *J* = 6.5 Hz, 12H, CH(CH₃)₂), 1.22 (br, 6H, CH(CH₃)₂), 1.21 (d, *J* = 6.7 Hz, 6H, CH(CH₃)₂), 1.15 (br, 12H, CH(CH₃)₂), 1.09 (br, 6H, CH₃), 0.96 (s, 6H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₆, 298 K): $\delta = 201.2$ (d, $J_{P-C} = 74.9$ Hz, PC_{CAAC}), 148.9, 146.5, 146.1, 138.5, 135.7, 133.6 (C₆H₃); 126.8, 124.7, 124.1, 122.9, 119.1 (C₆H₅); 76.6 (d, J_{P-C} = 48.7 Hz, CCP), 66.0, 58.3 (C(CH₃)₂, 48.6 (CH₂) 32.2, 29.6, 29.4, 28.9, 28.7, 28.5 (CH(CH₃)₂, 25.7, 24.4, 14.4, 14.3 (CH₃). ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): $\delta = 102.5$ ppm. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 277 (11920), 331 (11356), 427 (11710). MS (ESI pos.): *m/z*: 794.5 [**3**a+H]⁺.

One-pot Synthesis of 3a: To a *Schlenk* flask containing **1** (1.20 g, 2.07 mmol), cAAC^{Me}(LiOTf) (0.92 g, 2.07 mmol) and Mg turnings (84 mg, 3.46 mmol) was added 20 mL THF at room temperature. The resulting reaction mixture was stirred overnight. During this period, the initially violet solution turned into orange. The volatiles were removed in vacuo. The resulting orange residue was extracted with 50 mL *n*-hexane. The filtrate was dried under vacuum to obtain **3a** as an orange solid. Yield: 1.60 g, 97%.

Synthesis of [{(**IPr**)C(**Ph**)}**P**(**cAAC**^{Cy})] (**3b**): Compound **3b** was synthesized following the similar protocol as described for compound **3a** using compound **2b** (0.20 g, 0.19 mmol) and Mg turnings (10 mg, 0.39 mmol) as an orange. Yield: 150 mg, 93%. Mp: 117 °C (dec.). Elem. Anal. calcd. for C₅₇H₇₆N₃P (834.21) **3b**: C, 82.07; H, 9.18; N, 5.04, found: C, 82.63; H, 9.67; N, 5.29. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 7.31 (br, 2H, C₆H₃), 7.14-7.21 (m, 2H, C₆H₃), 7.04 (br, 3H, C₆H₃), 6.94 (br, 4H, C₆H₃, C₆H₅), 6.78 (t, *J* = 7.4 Hz, 2H, C₆H₅), 6.58 (t, *J* = 7.1 Hz, 1H, C₆H₅), 3.54 (br, 4H, CH(CH₃)₂), 2.95-2.98 (m, 2H, CH(CH₃)₂), 1.75 (s, 2H, CH₂), 1.50 (br, 4H, CH(CH₃)₂), 1.32 (br, 12H, CH(CH₃)₂), 1.22 (d, *J* = 6.7 Hz, 14H, CH(CH₃)₂, CH₂), 1.17 (br, 16H, CH(CH₃)₂, CH₂), 0.98 (s, 6H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₆, 298 K): δ = 200.4 (d, *J*_{P-C} = 75.3 Hz, PC_{cAAC}), 149.0, 148.5, 146.4, 146.0, 145.7, 138.5, 135.9, 133.5 (C₆H₃); 127.4, 124.8, 124.1, 123.0, 119.4 (C₆H₅); 77.7 (d, *J*_{P-C} = 50.3 Hz, CCP), 66.1, 54.6, 54.5 (*C*(CH₃)₂, 50.1 (CH₂); 29.4, 29.0, 28.7, 28.3 (CH(CH₃)₂, 25.5, 24.6, 24.1, 22.8, 14.4, 14.3 (CH₃). ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): δ = 108.6 ppm. UV-vis (THF, λ (nm) (ϵ (M⁻¹ cm⁻¹)): 271 (11790), 322 (11950), 430 (18546).). MS (ESI pos.): *m/z*: 834.6 [**3b**+H]⁺.

One-pot Synthesis of 3b: To a *Schlenk* flask containing **1** (1.00 g, 1.73 mmol), cAAC^{Cy}(LiOTf) (0.83 g, 1.73 mmol), and Mg turnings (84 mg, 3.46 mmol) was added 20 mL THF at room temperature. The resulting reaction mixture was stirred overnight. During this period, the initially violet solution turned into orange. The volatiles were removed in vacuo, giving an orange residue, which was extracted with 50 mL *n*-hexane and filtered through a plug of Celite. Removal of *n*-hexane from the filtrate under vacuum gave **3b** as an orange solid. Yield: 1.4 g, 97%.

Synthesis of [{(IPr)C(Ph)}P(cAAC^{Me})](GaCl₄) (4a): To a 20 mL toluene solution of 3a (0.2 g, 0.25 mmol) was added GaCl₃ (88 mg, 0.50 mmol) in one portion with constant stirring at room temperature. After stirring overnight, the violet precipitate was collected by filtration and dried in *vacuo* to afford 4a as a violet solid. Yield: 0.23 g, 90%. Mp: 143 °C (dec.). Single crystals suitable for X-ray diffraction were grown by a slow diffusion of *n*-hexane into a saturated THF solution of 4a. Elem. Anal. calcd. for C₅₄H₇₂Cl₄GaN₃P (1005.68) 4a: C, 64.49; H, 7.22; N, 4.18, found: C, 64.93; H, 7.65; N, 4.39. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 268 (5169), 327 (3408), 446 (1110), 563 (4420).). MS (ESI pos.): *m/z*: 794.6 [(4a-GaCl₄)+H]⁺, 828.5 [(4a-GaCl₄)+Cl]⁺.

Synthesis of [{(IPr)C(Ph)}P(cAAC^{Cy})](GaCl₄) (4b): Compound 4b was synthesized following the similar protocol as described for compound 4a using compound 3b (0.20 g, 0.24 mmol) and GaCl₃ (84 mg, 0.48 mmol). Yield: 0.20 g, 81%; violet solid. Mp: 137 °C (dec.). Single crystals suitable for X-ray diffraction were grown by a slow diffusion of *n*-hexane into a saturated THF solution of 4b. Elem. Anal. calcd. for C₅₇H₇₆Cl₄GaN₃P (1045.74) 4b: C, 65.47; H, 7.33; N, 4.02, found: C, 65.97; H, 7.71; N, 4.33. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 275 (9200), 329 (5750), 384 (4031), 448 (3000), 571 (11390). MS (ESI pos.): *m/z*: 834.6 [(4b-GaCl₄)+H]⁺, 868.6 [(4b-GaCl₄)+Cl]⁺.

Synthesis of [{(IPr)C(Ph)}P(cAAC^{Me})](aCl₄)₂ (5a): To a 10 mL dichloromethane solution of 3a (0.15 g, 0.15 mmol) was transferred GaCl₃ (53 mg, 0.30 mmol) at rt. The color of the solution turned orange to yellow immediately, which was further stirred for 6 h. The volatiles were removed in *vacuo* to afford 5a as a yellow solid. Yield: 178 mg, 98%. Mp: 143 °C (dec.). Single crystals suitable for X-ray diffraction were grown by a slow diffusion of *n*-hexane into a saturated dichloromethane solution of **5a**. Elem. Anal. calcd. for C₅₄H₇₂Cl₈Ga₂N₃P (1217.21) **5a**: C, 53.28; H, 5.96; N, 3.45; found: C, 53.63; H, 6.41; N, 3.67. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.98 (s, 2H, NCH), 7.74 (t, J = 8.5 Hz, 1H, C_6H_3), 7.70 (d, J = 8.5 Hz, 1H, C_6H_3), 7.61 (t, J = 7.8 Hz, 2H, C_6H_3), 7.53 (t, J = 7.6 Hz, 2H, C_6H_5), 7.48 (d, J = 7.8 Hz, 2H, C₆H₃), 7.29 (d, J = 7.7 Hz, 2H, C₆H₅), 6.84 (d, J = 7.6 Hz, 2H, C₆H₅), 2.55 (br, 2H, CH(CH₃)₂), 2.35 (s, 2H, CH₂), 2.30 (br, 4H, CH(CH₃)₂), 1.55 (s, 6H, CH₃), 1.33 (d, J = 6.4 Hz, 6H, CH(CH₃)₂), 1.16 (d, J = 6.6 Hz, 12H, CH(CH₃)₂), 1.04 (br, 6H, CH(CH₃)₂), 0.93 (d, J = 5.2 Hz, 12H, CH(CH₃)₂), 0.64 (br, 6H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K): δ = 213.6 (d, J_{P-C} = 91.0 Hz, PC_{cAAC}), 172.3 (d, J_{P-C} = 75.3 Hz, PC=C), 146.2, 145.2, 144.8, 140.3, 136.0, 134.3, 134.2, 131.4 (C₆H₃); 129.1, 129.0, 128.8, 126.2 (C₆H₅); 87.1 (C(CH₃)₂), 74.2 (NC(CH₃)₂), 58.3, 52.6 (CH₂); 32.1, 30.6, 30.5, 27.4 (CH(CH₃)₂, 26.3, 25.8, 23.2, 22.9, 22.3, 14.4 (CH₃) ppm. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): δ = 243.9 ppm. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 340 (16590), 384 (13620). MS (ESI pos.): *m/z*: 794.6 [(**5a**-2GaCl₄)+H]⁺.

Alternate Synthesis of 5a: To a DCM solution (5 mL) of 4a (50 mg, 0.05 mmol), was transferred GaCl₃ (18 mg, 0.10 mmol) at rt. The violet colored solution turned yellow immediately, which was further stirred for 10 min. The volatiles were removed in *vacuo* to get a yellow residue. This was washed with n-hexane (5 mL) and dried to afford 5a as a yellow solid. Yield (60 mg, 99%).

Synthesis of [{(IPr)C(Ph)}P(cAAC^{Cy})](GaCl₄)₂ (5b): Compound 5b was synthesized following the similar protocol as described for compound **5a** using **3b** (30 mg, 0.03 mmol), and GaCl₃ (10 mg, 0.06 mmol). Yield (35 mg, 99%; yellow solid). Mp: 149 °C (dec.). Elem. Anal. calcd. for C₅₇H₇₆Cl₈Ga₂N₃P (1257.28) **5b**: C, 54.45; H, 6.09; N, 3.34; found: C, 55.15; H, 6.69; N, 3.54. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.95 (s, 2H, NCH), 7.76 (t, *J* = 7.5 Hz, 1H, C₆H₃), 7.70 (t, *J* = 8.8 Hz, 1H, C₆H₃), 7.63 (t, *J* = 7.8 Hz, 2H, C₆H₃), 7.54 (t, *J* = 7.6 Hz, 2H, C₆H₅), 7.46 (d, *J* = 7.0 Hz, 2H, C₆H₃), 7.32 (d, *J* = 6.5 Hz, 4H, C₆H₅, C₆H₃), 6.92 (d, *J* = 7.6 Hz, 2H, C₆H₅), 2.23-2.75 (br, 6H, CH(CH₃)₂), 2.36 (s, 2H, CH₂), 1.39-1.68 (br, 10H, CH₂), 1.33 (d, *J* = 6.2 Hz, 12H, CH(CH₃)₂), 1.17 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 0.64 (m, 3H, CH₃), 0.45 (br, 3H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K): δ = 212.9 (d, *J*_{P-C} = 91.1 Hz, PC_{cAAC}), 171.4 (d, *J*_{P-C} = 75.3 Hz, PC=C), 145.5, 144.5, 139.6, 136.3, 134.2, 134.2 131.1, 130.8 (C₆H₃); 129.1, 129.0, 128.8, 126.2 (C₆H₅); 87.1 (C(CH₃)₂), 64.1 (NC(CH₃)₂), 46.0 (CH₂); 30.7, 27.4 (CH(CH₃)₂, 25.8, 23.5, 22.6, 14.4 (CH₃) ppm. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): δ = 236.3 ppm. UV-vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 329 (12900), 385 (15990). MS (ESI pos.): m/z; 834.6 [(**5b**-2GaCl₄)+H]⁺.

Alternate Synthesis of 5b: To a DCM solution (5 mL) of 4b (0.15 g, 0.14 mmol), was transferred GaCl₃ (50 mg, 0.28 mmol), at rt. The violet colored solution turned yellow immediately, which was further stirred for 10 min. The volatiles were removed in *vacuo* to get a yellow residue. This was washed with n-hexane (5 mL) and dried to afford 5b as a yellow solid. Yield (178 mg, 99%).

Plots of the NMR spectra

Figure S1. ¹H NMR (500 MHz, THF- d_8 , 298 K,) spectrum of compound 2a (* = THF).

Figure S2. ${}^{13}C{}^{1}H$ NMR (125 MHz, THF- d_8 , 298 K) spectrum of compound 2a.

Figure S3. ${}^{31}P{}^{1}H$ NMR (202 MHz, THF- d_8 , 298 K) spectrum of compound 2a.

Figure S4. ¹H NMR (500 MHz, THF- d_8 , 298 K) spectrum of compound 2b (* = THF).

Figure S5. ¹³C{¹H} NMR (125 MHz, THF-*d*₈, 298 K,) spectrum of compound **2b**.

Figure S6. ${}^{31}P{}^{1}H$ NMR (202 MHz, THF- d_8 , 298 K) spectrum of compound 2b.

Figure S7. ¹H NMR (500 MHz, C₆D₆, 298 K) spectrum of compound 3a.

Figure S8. ${}^{13}C{}^{1}H$ NMR (125 MHz, C₆D₆, 298 K) spectrum of compound 3a.

Figure S9. ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆, 298 K) spectrum of compound 3a.

Figure S10. 1 H NMR (500 MHz, C₆D₆, 298 K) spectrum of compound **3b**.

Figure S11. ¹³C{¹H} NMR (125 MHz, C₆D₆, 298 K) spectrum of compound **3b**.

Figure S12. ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆, 298 K) spectrum of compound **3b**.

Figure S13. ¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of compound 5a.

Figure S14. ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K) spectrum of compound 5a.

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

Figure S15. ${}^{31}P{}^{1}H$ NMR (202 MHz, CD₂Cl₂, 298 K) spectrum of compound 5a.

Figure S16. ¹H NMR (500 MHz, CD₂Cl₂, 298 K) spectrum of compound 5b.

 $\begin{array}{c} \text{Dipp} & \text{Dipp} \\ \text{C} & \text{C} & \text{C} \\ \text{Dipp} \end{array} \end{array}$

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -€ f1 (ppm)

Figure S18. ${}^{31}P{}^{1}H$ NMR (202 MHz, CD₂Cl₂, 298 K) spectrum of compound 5b.

Cyclic Voltammetry

Figure S19. Cyclic voltammogram of **3a** in DCM (0.01 M *n*-Bu₄N[Al(OC(CF₃)₃]₄ as a supporting electrolyte, at 50, 100, 250, and 500 mVs⁻¹, *vs* Fc/Fc⁺). The cycle for Fc/Fc⁺ couple has been removed for clarity.

Figure S20. Cyclic voltammogram of **4a** in DCM (0.01 M *n*-Bu₄N[Al(OC(CF₃)₃]₄ as a supporting electrolyte, at 50, 100, 250, and 500 mVs⁻¹, *vs* Fc/Fc⁺). The cycle for Fc/Fc⁺ couple has been removed for clarity.

UV-vis Spectra

Figure S21. UV-vis spectrum of 2a (10⁻⁴ M) recorded in THF.

Figure S22. UV-vis spectrum of 2b (10⁻⁴ M) recorded in THF.

Figure S23. UV-vis spectrum of 3a (10⁻⁴ M) recorded in THF.

Figure S24. UV-vis spectrum of 3b (10⁻⁴ M) recorded in THF.

Figure S25. UV-vis spectrum of 4a (10⁻⁴ M) recorded in THF.

Figure S26. UV-vis spectrum of 4b (10⁻⁴ M) recorded in THF.

Figure S27. UV-vis spectrum of 5a (10⁻⁴ M) recorded in THF.

Figure S28. UV-vis spectrum of 5b (10⁻⁴ M) recorded in THF.

EPR Spectra

The continuous wave (CW) EPR experiments were performed at room temperature (298 K) as well as at 80 K on a Bruker standard ST9402 resonator and with a Bruker ELEXSY E500 spectrometer. The microwave frequency was 9.628 GHz and the modulation amplitude was 0.3 mT.

Figure S29. EPR spectrum of compound **4a** (1 mM THF solution) at 80 K. Microwave freq. 9.628 GHz, power = 2 mW, mod. freq. 100 KHz.

Figure S30. EPR spectrum of compound **4b** (1 mM THF solution) at 80 K. Microwave freq. 9.628 GHz, power = 2 mW, mod. freq. 100 KHz.

Crystallographic Details

The single crystal data were examined on a Rigaku Supernova diffractometer using either MoK α ($\lambda = 0.71073$ Å) or CuK α ($\lambda = 1.54184$ Å) radiation. The crystals were kept at 100.0(1) K during data collection. Using Olex2,⁴ the structure was solved with the ShelXT⁵ structure solution program using Intrinsic Phasing and refined with the ShelXL⁶ refinement package using Least Squares minimization. Hydrogen atoms were taken into account using a riding model. Details of the X-ray investigation are given in Table S1, S2, and S3. CCDC 1949887-1949892, 1951632 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.

	2a	3a	3b
Empirical formula	C55H72ClF3N3O3PS	C ₅₄ H ₇₂ N ₃ P	C ₅₇ H ₇₆ N ₃ P
Formula weight	978.63	794.11	834.17
Temperature/K	100.0(1)	100.0(1)	100.0(1)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	P2 ₁ /n	P2 ₁ /c
a/Å	11.0592(4)	12.56270(10)	18.56527(11)
b/Å	12.9006(3)	15.9337(2)	11.96597(7)
c/Å	18.7834(5)	23.6169(2)	22.85445(16)
α/°	98.063(2)	90	90
β/°	91.131(2)	93.5540(10)	101.6144(6)
γ/°	103.315(3)	90	90
Volume/Å ³	2578.25(13)	4718.31(8)	4973.19(5)
Z	2	4	4
$\rho_{calc}g/cm^3$	1.261	1.118	1.114
μ/mm ⁻¹	1.785	0.788	0.770
F(000)	1044.0	1728.0	1816.0
Crystal size/mm ³	$0.5 \times 0.31 \times 0.03$	$0.45 \times 0.31 \times 0.22$	$0.43 \times 0.33 \times 0.25$
Radiation	Cu Ka	Cu Ka	Cu Ka
2θ range for data collection/°	4.758 to 153.386	6.696 to 153.434	4.86 to 153.822
Index ranges	$-13 \le h \le 11, -16 \le k \le 16,$ $-23 \le 1 \le 23$	$\begin{array}{l} -15 \leq h \leq 15, -19 \\ \leq k \leq 19, -29 \leq l \leq \\ 29 \end{array}$	$\begin{array}{l} -23 \leq h \leq 23, -15 \leq \\ k \leq 15, -28 \leq 1 \leq 28 \end{array}$
Reflections collected	46168	86959	142708
Independent reflections	10686	9876	10414
Reflections with $I > 2\sigma(I)$	9327	9416	9389
R _{int}	0.0440	0.0355	0.0828
Data/restraints/parameters	10686/36/675	9876/0/539	10414/0/564
Goodness-of-fit on F ²	1.082	1.030	1.037
Final R indexes [$I > 2\sigma(I)$]	$R_1 = 0.0420, wR_2 = 0.1129$	$R_1 = 0.0358, wR_2$ = 0.0921	$R_1 = 0.0419, wR_2 = 0.1173$
Final R indexes [all data]	$R_1 = 0.0483, wR_2 = 0.1182$	$R_1 = 0.0373, wR_2$ = 0.0933	$R_1 = 0.0459, wR_2 = 0.1215$
Largest diff. peak/hole / e Å ⁻³	0.45/-0.47	0.27/-0.28	0.67/-0.45
CCDC	1949887	1949888	1949889

Table S1. Crystal data and structure refinement for compounds 2a, 3a, and 3b.

	4 a	4b
Empirical formula	C ₅₄ H ₇₂ Cl ₄ GaN ₃ P	$C_{115}H_{154}Cl_{10}Ga_2N_6P_2$
Formula weight	1005.63	2176.31
Temperature/K	100.0(1)	100.0(1)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /c	C2/c
a/Å	11.5123(2)	40.7612(6)
b/Å	12.8811(2)	12.3237(2)
c/Å	37.2397(5)	23.4798(3)
β/°	97.7240(10)	101.3980(10)
Volume/Å ³	5472.21(15)	11562.0(3)
Z	4	4
$\rho_{calc}g/cm^3$	1.221	1.250
µ/mm ⁻¹	0.764	0.773
F(000)	2124.0	4592.0
Crystal size/mm ³	$0.41 \times 0.25 \times 0.23$	$0.24 \times 0.13 \times 0.03$
Radiation	ΜοΚα	ΜοΚα
2θ range for data collection/°	5.454 to 65.576	3.458 to 64.282
Index ranges	$-17 \le h \le 17, -19 \le k \le 19, -55 \le 1$	$-59 \le h \le 60, -18 \le k \le 18, -33 \le 1$
index ranges	\leq 56	\leq 34
Reflections collected	120621	114564
Independent reflections	19071	19086
Reflections with $I > 2\sigma(I)$	16638	13305
R _{int}	0.0381	0.0542
Data/restraints/parameters	19071/0/584	19086/0/770
Goodness-of-fit on F ²	1.174	1.036
Final R indexes [$I > 2\sigma(I)$]	$R_1 = 0.0544, wR_2 = 0.1072$	$R_1 = 0.0517, wR_2 = 0.1046$
Final R indexes [all data]	$R_1 = 0.0642, wR_2 = 0.1106$	$R_1 = 0.0873, wR_2 = 0.1194$
Largest diff. peak/hole / e Å ⁻³	0.69/-0.64	0.90/-0.57
CCDC	1949890	1949891

Table S2. Crystal data and structure refinement for compounds 4a and 4b.

	5a	5b
Empirical formula	$C_{54}H_{72}Cl_8Ga_2N_3P$	C ₅₉ H ₈₀ Cl ₁₅ Ga ₃ N ₃ P
Formula weight	1217.15	1603.14
Temperature/K	100.0(1)	100.0(1)
Crystal system	orthorhombic	monoclinic
Space group	Pbca	P2 ₁ /c
a/Å	24.13916(17)	19.16275(15)
b/Å	18.90210(13)	13.46701(10)
c/Å	26.08922(18)	28.2924(2)
β/°	90	94.5840(7)
Volume/Å ³	11904.01(15)	7277.92(10)
Z	8	4
$\rho_{calc}g/cm^3$	1.358	1.463
μ/mm ⁻¹	4.946	6.866
F(000)	5040.0	3272.0
Crystal size/mm ³	$0.38 \times 0.19 \times 0.17$	$0.42 \times 0.29 \times 0.21$
Radiation	Cu Kα	Cu Kα
2θ range for data collection/°	6.776 to 153.742	6.27 to 153.51
Index ranges	$-29 \leq h \leq 30,-23 \leq k \leq 23,-32 \leq l \leq$	$-24 \leq h \leq 24, -16 \leq k \leq 16, -35 \leq l \leq$
Index ranges	32	35
Reflections collected	220917	160048
Independent reflections	12495	15269
Reflections with $I > 2\sigma(I)$	11792	14273
R _{int}	0.0607	0.0721
Data/restraints/parameters	12495/95/669	15269/0/745
Goodness-of-fit on F ²	1.030	1.034
Final R indexes [$I > 2\sigma(I)$]	$R_1 = 0.0476, wR_2 = 0.1232$	$R_1 = 0.0360, wR_2 = 0.0954$
Final R indexes [all data]	$R_1 = 0.0497, wR_2 = 0.1251$	$R_1 = 0.0384, wR_2 = 0.0974$
Largest diff. peak/hole / e Å ⁻³	2.50/-0.87	0.68/-0.77
CCDC	1949892	1951632

Table S3. Crystal data and structure refinement for compound 5a and 5b.

Figure S31. Molecular structure of **2a**. Hydrogen atoms and the counter anion (OTf) have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): C2–P1 1.751(2), C3–P1 1.860(2), C1–C2 1.437(2), P1–Cl1 2.147(1), N1–C1 1.374(2), N2–C1 1.376(2), N3–C3 1.314(2); C2–P1–C3 104.1(1), C2–P1–Cl1 107.3(1), C3–P1–Cl1 103.0(1), C1–C2–P1 117.0(1), C2–C1–N1 128.7(1), C2–C1–N2 126.7(1), P1–C3–N3 130.0(1).

Computational Details

All geometries were optimized with the Gaussian 16 program suite⁷ using the DFT functional M06-2X⁸ in combination with the Ahlrichs def2-SVP⁹ basis function as implemented. The stationary points were located with the Berny algorithm using redundant internal coordinates. Analytical Hessians were computed to determine the nature of stationary points (zero imaginary frequencies for minima).¹⁰ The electronic energies were improved by single point calculations at the M06-2X/def2-TZVPP level of theory.

The Wiberg Bond Indices (WBI)¹¹ and NPA¹² atomic partial charges were calculated at the M06-2X/def2-TZVPP//M06-2X/def2-SVP level of theory using the NBO 3.1 interface of Gaussian.¹³

Time-dependent density functional theory (Full-TDDFT) was employed to calculate excitation energies as implemented in ORCA 4.0.1.¹⁴ We used the functional M06-2X in combination the def2-SVP basis sets. The solvent (THF) was described by the conductor-like polarizable continuum model, CPCM.¹⁵

Table S4. Electronic energies of selected molecular orbitals of compounds **3a**, **3b**, **4a**, **4b**, **5a**, and **5b** calculated at M06-2X/def2-TZVPP//M06-2X/def2-SVP level of theory. For the radical cations **4a** and **4b**, the value for both (α/β) spin orbitals are given.

energy / eV					
3 a	3b	4 a	4b	5a	5b
+0.24	+0.24	-2.52/-2.48	-2.49/-2.47	-6.21	-6.11
+0.14	+0.10	-3.01/-4.59	-3.05/-4.55	-7.74	-7.71
-4.95	-4.95	-8.08/-9.66	-8.04/-9.63	-12.79	-12.75
-6.52	-6.49	-10.09/-10.05	-10.05/-10.01	-12.86	-12.83
-7.07	-7.05	-10.11/-10.24	-10.08/-10.21	-12.94	-12.91
-7.65	-7.67	-10.29/-10.32	-10.27/-10.32	-13.00	-12.94
-7.70	-7.69	-10.33/-10.43	-10.33/-10.42	-13.19	-13.13
5.09	5.05	5.07	4.99	5.05	5.04
	3a +0.24 +0.14 -4.95 -6.52 -7.07 -7.65 -7.70 5.09	3a $3b$ $+0.24$ $+0.24$ $+0.14$ $+0.10$ -4.95 -4.95 -6.52 -6.49 -7.07 -7.05 -7.65 -7.67 -7.70 -7.69 5.09 5.05	3a3b4a $+0.24$ $+0.24$ $-2.52/-2.48$ $+0.14$ $+0.10$ $-3.01/-4.59$ -4.95 -4.95 $-8.08/-9.66$ -6.52 -6.49 $-10.09/-10.05$ -7.07 -7.05 $-10.11/-10.24$ -7.65 -7.67 $-10.29/-10.32$ -7.70 -7.69 $-10.33/-10.43$ 5.09 5.05 5.07	3a3b4a4b $+0.24$ $+0.24$ $-2.52/-2.48$ $-2.49/-2.47$ $+0.14$ $+0.10$ $-3.01/-4.59$ $-3.05/-4.55$ -4.95 -4.95 $-8.08/-9.66$ $-8.04/-9.63$ -6.52 -6.49 $-10.09/-10.05$ $-10.05/-10.01$ -7.07 -7.05 $-10.11/-10.24$ $-10.08/-10.21$ -7.65 -7.67 $-10.29/-10.32$ $-10.27/-10.32$ -7.70 -7.69 $-10.33/-10.43$ $-10.33/-10.42$ 5.09 5.05 5.07 4.99	3a 3b 4a 4b 5a +0.24 +0.24 -2.52/-2.48 -2.49/-2.47 -6.21 +0.14 +0.10 -3.01/-4.59 -3.05/-4.55 -7.74 -4.95 -4.95 -8.08/-9.66 -8.04/-9.63 -12.79 -6.52 -6.49 -10.09/-10.05 -10.05/-10.01 -12.86 -7.07 -7.05 -10.11/-10.24 -10.08/-10.21 -12.94 -7.65 -7.67 -10.29/-10.32 -10.27/-10.32 -13.00 -7.70 -7.69 -10.33/-10.43 -10.33/-10.42 -13.19 5.09 5.05 5.07 4.99 5.05

L = lowest unoccupied molecular orbital (LUMO); S = singly occupied molecular orbital (SOMO); H = highest occupied molecular orbital (HOMO)

$ \begin{array}{c} \text{Dipp} \\ \text{Dipp} \\ \text{C5} \\ \text{C5} \\ \text{C6} \\ \text{C6} \\ \text{N2} \\ \text{Dipp} \\ \text{Dipp} \\ \text{Ph} \\ \text{O} \\ \text{V} \\ \text{V} \\ \text{O} \\ \text{O}$						
		L	Wiberg bo	ond indices	-	I
bond	3 a	3b	4 a	4b	5a	5b
P1C2	0.95	0.95	1.22	1.22	1.63	1.63
C1–C2	1.49	1.49	1.20	1.20	1.06	1.06
C1–N1	1.08	1.08	1.20	1.20	1.27	1.26
C1–N2	1.07	1.07	1.19	1.19	1.26	1.26
N1-C5	1.06	1.06	1.11	1.11	1.16	1.16
N2-C6	1.07	1.07	1.12	1.12	1.17	1.17
C5–C6	1.72	1.72	1.65	1.65	1.60	1.60
P1-C3	1.57	1.56	1.19	1.18	0.92	0.91
C3–N3	1.11	1.11	1.32	1.32	1.61	1.61
C3–C4	0.96	0.96	0.97	0.98	0.98	0.99
			NPA ator	nic charge		
atom	3 a	3b	4 a	4b	5a	5b
P1	+0.49	+0.49	+0.65	+0.65	+0.85	+0.85
C2	-0.59	-0.59	-0.54	-0.55	-0.45	-0.46
C1	+0.45	+0.44	+0.47	+0.47	+0.43	+0.43
N1	-0.44	-0.44	-0.36	-0.36	-0.31	-0.31
N2	-0.44	-0.44	-0.36	-0.36	-0.31	-0.31
C5	-0.09	-0.09	-0.06	-0.06	-0.04	-0.04
C6	-0.08	-0.08	-0.05	-0.05	-0.03	-0.03
C3	-0.08	-0.08	+0.04	+0.04	+0.23	+0.24
N3	-0.50	-0.50	-0.40	-0.40	-0.33	-0.33
C4	-0.13	-0.11	-0.13	-0.11	-0.14	-0.13

Table S5. Wiberg bond indices as well as natural population analysis (NPA) atomic charges ofcompounds 3a, 3b, 4a, 4b, 5a, and 5b calculated at M06-2X/def2-TZVPP//def2-SVP level of theory.

state no.	λ / nm	f	Assignment
1	409.2	0.1398	$H \rightarrow L (c = 0.9131)$
2	377.0	0.1981	$H \rightarrow L+2 \ (c = 0.7205)$
10	285.5	0.0708	H−1 \rightarrow L (<i>c</i> = 0.5147)
44	197.8	0.0711	H−4 → L ($c = 0.2549$)
			H−5 → L+6 ($c = 0.2532$)

Table S6. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **3a**; threshold for printing excitations was chosen to be $f \ge 0.06$.

Figure S32. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **3a** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
1	414.4	0.1523	$H \rightarrow L (c = 0.9141)$
2	379.3	0.1652	$H \rightarrow L+2 \ (c = 0.5450)$
10	289.4	0.0717	H−1 → L (c = 0.5674)
13	252.4	0.0792	H−1 → L+2 ($c = 0.2306$)
17	239.4	0.0673	$H \rightarrow L+10 \ (c = 0.1404)$
36	207.3	0.0785	H−3 → L+1 ($c = 0.1828$)
46	198.0	0.0640	H−2 → L+6 ($c = 0.3371$)

Table S7. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **3b**; threshold for printing excitations was chosen to be $f \ge 0.06$.

Figure S33. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **3b** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
2	514.8	0.2862	$S \rightarrow L (c = 0.6181)$
4	386.7	0.0351	$S \rightarrow L+1 \ (c = 0.7508)$
24	278.0	0.0344	$S-12 \rightarrow S (c = 0.1543)$
49	230.2	0.0431	$S-1 \rightarrow L+1 \ (c = 0.1646)$

Table S8. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **4a**; threshold for printing excitations was chosen to be $f \ge 0.03$.

Figure S34. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **4a** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
2	518.6	0.2522	$S-1 \rightarrow S \ (c = 0.6697)$
4	384.3	0.0373	$S \rightarrow L+1 \ (c = 0.7536)$
23	280.5	0.0375	$S-12 \rightarrow S (c = 0.1797)$
50	230.5	0.0325	$S \rightarrow L+11 \ (c = 0.1567)$

Table S9. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **4b**; threshold for printing excitations was chosen to be $f \ge 0.03$.

Figure S35. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **4b** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
2	372.9	0.1203	H−4 → L ($c = 0.3077$)
6	341.0	0.0524	$H-5 \rightarrow L (c = 0.4875)$
9	309.5	0.0975	H−8 \rightarrow L (<i>c</i> = 0.7296)
25	225.8	0.0508	H−6 → L+1 ($c = 0.2221$)
27	220.0	0.0759	H−1 → L+2 ($c = 0.1728$)
48	199.1	0.0556	$H-5 \rightarrow L+2 \ (c=0.2154)$

Table S10. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **5a**; threshold for printing excitations was chosen to be $f \ge 0.05$.

Figure S36. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **5a** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
2	377.2	0.1285	H−1 → L (c = 0.3804)
6	345.7	0.0524	$H-5 \rightarrow L (c = 0.6223)$
9	311.0	0.1007	H−7 \rightarrow L (<i>c</i> = 0.7891)
27	225.8	0.0596	H−6 → L+1 ($c = 0.3394$)
28	220.7	0.0520	H−1 → L+2 ($c = 0.1362$)
29	220.9	0.0506	H−6 → L+1 ($c = 0.1953$)

0.6 0.5 0.4 0.3 4 0.2 0.1 0 100 600 1000 200 300 400 500 700 800 900 λ / nm 0.6 0.5 0.4 0.3 0.2 0.1 0 100 200 300 400 500 600 700 800 900 1000 λ / nm

Figure S37. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **5b** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

Table S11. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **5b**; threshold for printing excitations was chosen to be $f \ge 0.05$.

Table S12. Calculated *g*-factor and hyperfine coupling constants (*A* in MHz), Löwdin and Mulliken (in parenthesis) spin densities for the phosphabutadiene radical cations **4a** and **4b** calculated at the TPSS/decon-def2-TZVP//M06-2X/def2-SVP level of theory.

	4 a	4b
g-factor	2.0033601	2.0033690
A _{iso} (P)	72.7939	77.5263
$A_{ m iso}(m N_{ m IPr_cis})$	3.3114	3.2277
$A_{iso}(N_{IPr_trans})$	4.1805	4.1326
$A_{\rm iso}(N_{\rm pyrollidine})$	9.0493	9.2702
$A_{iso}(H_{Ph-ortho})$	-2.1049	-1.0971
$A_{iso}(H_{Ph-ortho})$	-1.2096	-0.9908
$A_{\rm iso}({ m H}_{{ m Ph}\text{-}para})$	-0.6019	-0.4654
A _{iso} (H _{carb})	-2.2097	-2.1951
A _{iso} (H _{carb})	-1.4377	-1.4425
$\rho_{\rm spin}({ m P})$	0.18(0.17)	0.19(0.18)
$ ho_{ m spin}({ m C}_{ m vinylic})$	0.21(0.26)	0.20(0.25)
$ ho_{ m spin}({ m C}_{ m carb-ipso})$	0.04(0.01)	0.04(0.02)
$ ho_{ m spin}(m N_{ m IPr_cis})$	0.04(0.06)	0.04(0.06)
$ ho_{ m spin}({ m N_{ m IPr_trans}})$	0.05(0.06)	0.05(0.06)
$ ho_{ m spin}(m C_{ m IPr_cis})$	0.03(0.04)	0.03(0.04)
$ ho_{ m spin}(m C_{ m IPr_trans})$	0.02(0.02)	0.02(0.02)
$ ho_{ ext{spin}}(ext{C}_{ ext{Ph-}ipso})$	0.02(-0.01)	0.02(0.00)
$ ho_{ m spin}({ m C}_{ m Ph-ortho})$	0.01(0.01)	0.01(0.01)
$ ho_{ m spin}({ m C}_{ m Ph-ortho})$	0.01(0.01)	0.01(0.01)
$ ho_{ m spin}(m C_{ m Ph-para})$	0.01(0.01)	0.01(0.01)
$\rho_{\rm spin}({\rm C}_{\rm pyrolidine-ipso})$	0.15(0.19)	0.15(0.20)
$ ho_{ m spin}(m N_{ m pyrolidine})$	0.14(0.17)	0.14(0.17)

Table S13. Parameters used in the Easyspin simulations of the room-temperature EPR spectra of compounds 4a and 4b.

	4a	4b
g-factor	2.00649	2.00647
$A_{\rm iso}({\rm P})$ [MHz]	98.6	105.6
Linewidth Gaussian component [mT]	1.1928	1.1924
Linewidth Lorentzian component [mT]	0.0391	0.0391

LUMO+1

Figure S38. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **3a** calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

HOMO-4

НОМО-2

НОМО

НОМО-3

HOMO-1

LUMO

LUMO+1

Figure S39. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **3b** calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

Figure S40. Selected molecular orbitals (from SOMO-4 to LUMO+1) and spin density plot of compound **4a** calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04 for molecular orbitals and 0.004 for spin density. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

Figure S41. Selected molecular orbitals (from SOMO–4 to LUMO+1) and spin density plot of compound **4b** calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04 for molecular orbitals and 0.004 for spin density. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

LUMO+1

Figure S42. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **5a** calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

LUMO+1

Figure S43. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **5b** calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

<u>3a</u>	V	$min = 14 \text{ cm}^{-1}$	E = -2	603.9082114
	С	1.724713	0.685963	0.403057
	С	0.933372	-0.353093	-0.077205
	C D	1.566543	-1.681320	-0.309552
	r N	1.323293	1.967184	0.810772
	C	2.387046	2.635546	1.425122
	С	3.460746	1.835858	1.378128
	Ν	3.087386	0.653114	0.746024
	С	0.240500	2.808795	0.383551
	С	-0.792759	3.087213	1.294368
	C	-1 569155	4.100170	-0 217138
	c	0.386982	3.519247	-0.824939
	С	-0.543985	4.521725	-1.110448
	С	1.516036	3.198435	-1.790511
	Н	-0.455791	5.091568	-2.036393
	H	-2.278238	5.615844	-0.451210
	С ц	-0.898322	2.359998 4 335803	2.622366
	н	2 260312	3 644339	1 802667
	H	4.471927	1.969458	1.748351
	С	4.080715	-0.360000	0.553400
	С	4.316625	-1.313629	1.554225
	С	5.331010	-2.254267	1.314502
	С	6.110082	-2.212335	0.168509
	C	5.883131 A 95951A	-1.22/53/	-0.790957
	C	4.567254	0.737204	-1.703564
	H	6.497013	-1.203759	-1.692003
	Н	6.897352	-2.952438	0.016564
	С	3.646863	-1.389277	2.927371
	H	5.512270	-3.028521	2.064212
	C	-0.386479	3.238289	3.769900
	н Н	-0 460343	2 699293	3.624099 4 726219
	H	-0.983454	4.160121	3.851545
	Н	-0.254672	1.470987	2.558638
	С	-2.324049	1.878564	2.884682
	Н	-3.012061	2.717493	3.075036
	H	-2.349099	1.223833	3.769509
	л н	-2.700003	2 779284	-1 199131
	C	2.057985	4.429751	-2.516595
	С	1.064154	2.127172	-2.789849
	Н	0.694764	1.233650	-2.267396
	Н	1.897638	1.830198	-3.446892
	H	0.251296	2.516518	-3.423531
	H U	2.3358/3	5.225759 7 839958	-1.810/65
	H	2.950548	4.157518	-3.098733
	C	4.878560	0.231226	-3.114381
	С	5.318473	2.051547	-1.454768
	Н	3.487135	0.952044	-1.658459
	H	5.963122	0.159144	-3.286221
	H	4.4/9233	0.933861	-3.860350
	н	6.404872	1.872979	-1.444902
	Н	5.036063	2.513261	-0.500123
	Н	5.098439	2.773846	-2.255703
	С	2.302853	-0.693089	3.161635
	С	4.649004	-0.909133	3.990009
	H	3.4/8295	-2.46/120	3.092508
	н	5 602446	-1 452140	3 933478
	H	4.231724	-1.042396	4.998990
	H	2.406806	0.400566	3.218285
	Н	1.906043	-1.032111	4.130198
	H	1.558443	-0.926675	2.392411
	С	-1.754755	-1.288355	-0.822290
	N	-3.110877	-1.491245	-0.568813
	C	-0.669024	-3.420660	-1.825030
	č	-0.574125	-1.229817	-3.069907
	С	-2.792639	-2.346776	-2.706786

С	-3.753432	-2.447289	-1.521329
С	-5.179387	-2.045726	-1.884639
С	-3.804295	-3.885435	-0.984778
н	-2 803148	-3 248738	-3 335012
ц Ц	-3 090660	_1 /00720	-3 343096
п т	-3.009000	2 21 00 01	-3.343000
н	0.414832	-3.319891	-1.940442
Н	-1.009085	-4.183041	-2.541927
H	-0.849182	-3.796228	-0.810408
Н	0.406991	-0.983786	-2.647449
Н	-1.094828	-0.288159	-3.302582
Н	-0.417345	-1.787148	-4.007425
С	-3.893524	-0.567945	0.205011
н	-4.224412	-4.541957	-1.760882
н	-4 449823	-3 952243	-0 101489
ц ц	-2 91/16/	_1 269316	_0 719437
п	-Z.014104	1 054205	2 244672
п	-3.220220	-1.034293	-2.344073
н	-5.830457	-2.045818	-0.99/89/
Н	-5.5/8585	-2.//4011	-2.604913
С	-4.317181	-0.852970	1.522103
С	-5.151891	0.075745	2.167354
С	-5.532116	1.266731	1.573666
С	-5.069638	1.561837	0.295855
С	-4.263979	0.665237	-0.406190
С	-3.839561	1.064830	-1.814156
Н	-6.170659	1.971506	2.108671
н	-5.350550	2.505672	-0.175768
C	-3.983544	-2.076028	2.379231
н	-5 483538	-0 147707	3 184605
C	-2 673730	-2 811/00	2 107928
c	E 10520C	2.011400	2.107520
11	-3.103320	1 655709	2.432302
п	-3.8/304/	-1.655/98	3.392871
H	-5.449521	-3.425948	1.462/61
Н	-6.0/4925	-2.51414/	2.842228
H	-4.963015	-3.880033	3.113591
Н	-2.694828	-3.389767	1.179284
Н	-2.479660	-3.508692	2.936912
Н	-1.836376	-2.103583	2.043864
С	-2.821363	2.205884	-1.790510
С	-5.030373	1.486932	-2.688273
н	-3.355972	0.198089	-2.278992
н	-5 417331	2 467483	-2 373389
н	-5 868090	0 777530	-2 648335
u u	-4 710349	1 587452	-3 736247
п	2 207002	2 122000	1 100050
п	-3.207093	3.123000	-1.400050
н	-2.461576	2.420823	-2.809597
н	-1.956811	1.966945	-1.156893
C	2.432223	-1.916528	-1.386659
С	1.320480	-2.754274	0.566587
С	1.943868	-3.986453	0.396749
С	3.064427	-3.146860	-1.560699
С	2.825624	-4.189080	-0.666807
H	3.318568	-5.153374	-0.799800
Н	1.738470	-4.797375	1.098346
Н	2.611410	-1.107127	-2.097237
Н	3.747595	-3.290513	-2.400605
Н	0.614926	-2.613138	1.388168

<u>3b</u>	<u>v</u> _{mi}	$n = 10 \text{ cm}^{-1}$	E = -2	720.5003255	
	С	1.757056	0.975458	0.313153	
	С	0.949983	-0.151469	0.192845	
	C	1.559199	-1.493261	0.415469	
	P N	-0.857957 1 385804	2 328374	0.411861 0.311879	
	C	2.475802	3.131139	0.663120	
	С	3.537273	2.333977	0.841251	
	Ν	3.129152	1.022653	0.615631	
	С	0.285378	3.027887	-0.290029	
	C	-0.723283	3.337337 4 434643	-0 012419	
	C	-1.539507	4.825931	-1.343057	
	С	0.397519	3.397266	-1.645817	
	С	-0.537903	4.301345	-2.155638	
	С	1.489782	2.811725	-2.525742	
	H U	-0.4/5224	4.611912 5.539884	-3.199343 -1 756433	
	C	-0.784541	3.182211	2.018290	
	Н	-2.435191	4.844391	0.614070	
	Н	2.371206	4.209463	0.714734	
	Н	4.561425	2.553790	1.124568	
	C	4.10/683	-0.019369	0.684335	
	C	4.402995	-1.617376	1,914776	
	C	6.099298	-1.947855	0.766098	
	С	5.813241	-1.301438	-0.435118	
	С	4.806685	-0.340892	-0.501873	
	C	4.442386	0.316164	-1.826876	
	н	6.872052	-2.717412	0.801830	
	C	3.810980	-0.270341	3.278801	
	Н	5.622542	-2.129536	2.853406	
	С	-0.207807	4.314613	2.875454	
	H	0.840421	4.524416	2.617672	
	н	-0.784961	5.242000	2.735345	
	Н	-0.157074	2.291243	2.164958	
	С	-2.204386	2.822086	2.450399	
	H	-2.870734	3.699179	2.443861	
	н н	-2.200096	2.419116 2.059479	3.4/4984 1 781923	
	Н	2.346713	2.573254	-1.874842	
	С	1.990471	3.780300	-3.596737	
	С	1.003443	1.501040	-3.155483	
	H	0.648887	0.803117	-2.383822	
	н н	1.813884	1.015567	-3.722750	
	H	2.290835	4.744539	-3.161893	
	Н	1.223149	3.972106	-4.361666	
	Н	2.860099	3.349352	-4.113956	
	С	4.674835	-0.599449	-3.031481	
	н	3 364334	1.030037	-1 787085	
	Н	5.748098	-0.735513	-3.232942	
	Н	4.231389	-0.151004	-3.932459	
	Н	4.229102	-1.594838	-2.887815	
	H	6.280741	1.458943	-2.048459	
	л Н	4.972407 4.911660	2.307332	-1.249072	
	C	2.493537	0.507167	3.360324	
	С	4.877420	0.469092	4.103224	
	H	3.633287	-1.245684	3.763168	
	Н	5.101794	1.443842	3.642486	
	л Н	J.010332 4.512590	0.654378	5.124243	
	H	2.620463	1.566828	3.094468	
	Н	2.140305	0.473612	4.401801	
	Н	1.706525	0.087084	2.724153	
	С	-1.752495	-1.267944	-0.287436	
	IN C	-3.11223/ -1 423479	-1.338851 -2 431385	U.UIZ865 -1 252113	
	C	-0.727680	-3.650329	-0.598157	
	С	-0.507377	-1.963257	-2.408938	
	С	-2.836112	-2.817880	-1.760315	

C	2 007664	2 102022	0 626007
C	-3.00/004	-2.493033	-0.020907
С	-5.199244	-2.140736	-1.147268
C	2 000020	2 602271	0 216741
C	-2.900039	-3.0922/1	0.310/41
H	-2.920615	-3.869193	-2.059604
U	_3 007021	-2 205661	-2 640674
п	-3.007021	-2.203001	-2.0400/4
H	0.304853	-3.371715	-0.385358
C	-0 703036	-1 961295	_1 542447
C	-0.703030	-4.004205	-1.042447
H	-1.167809	-3.908332	0.373560
TT	0 226472	1 252006	2 005/07
п	0.220473	-1.232090	-2.003407
H	-1.116460	-1.399670	-3.135231
C	0 243344	_3 119303	-3 101747
C	0.245544	-3.110303	-3.101/4/
С	-3.859691	-0.213932	0.502294
U	-1 161113	_1 514216	_0 23/150
п	-4.401113	-4.514210	-0.234139
H	-4.628869	-3.429382	1.161268
U	-3 030740	-1 063164	0 712093
п	-3.030/49	-4.003104	0.112903
H	-5.167373	-1.348485	-1.899185
TT	E 060000	1 00/00/	0 220720
п	-3.003023	-1.024334	-0.329729
H	-5.633593	-3.035134	-1.616219
C	1 272272	0 100576	1 010216
C	-4.2/32/3	-0.109578	1.049240
С	-5.088648	0.977441	2.209602
C	-5 156596	1 050311	1 306720
<u> </u>	5.450500	1.000044	1.300729
С	-5.000191	1.876125	-0.004375
C	-4 215600	0 80/161	-0 420034
C	-4.213000	0.004101	-0.429954
С	-3.798934	0.787597	-1.896442
U	-6 070550	2 796907	1 62/020
п	-0.079559	2.190001	1.024920
H	-5.270288	2.654466	-0.720869
C	-3 020021	-1 026649	3 027260
C	-2.920921	-1.020049	5.027200
H	-5.411217	1.058013	3.250805
C	-2 666950	_1 070031	2 040012
C	-2.0000009	-1.0/9034	2.940012
С	-5.149520	-1.852034	3.459227
ч	-3 7/1159	-0 316663	3 850380
11	5./41155	0.510005	5.050500
H	-5.462515	-2.554737	2.674990
н	-6 011122	-1 206613	3 681076
11	0.011122	1.200013	5.001070
H	-4.915926	-2.434939	4.362654
н	-2 774279	-2 727158	2 256140
11	2.114215	2.727130	2.230140
H	-2.440722	-2.280663	3.939681
н	-1 811609	-1 280053	2 602615
-	1.011000	1.200000	2.002010
C	-2.764360	1.872923	-2.196466
С	-4.992475	0.979239	-2.846117
	0.000000	0.00000	2.010117
H	-3.332923	-0.183001	-2.106827
С	2.381922	-2.107363	-0.536636
- -	1 206220	0 001005	1 COFIOE
C	1.306330	-2.201335	1.002182
С	1.877810	-3.447921	1.841213
<u> </u>	2 0 0 4 7 0 0	2 252070	0 204770
C	2.964/09	-3.353078	-0.304//0
С	2.715480	-4.030666	0.887235
TT	2 1 6 6 2 6 2	E 007120	1 071100
н	3.100302	-5.00/129	1.0/1102
Н	1.665029	-3.971971	2.774950
TT	0 550051	1 500710	1 401470
н	2.00001	-1.589/16	-1.4814/6
Н	3.613243	-3.796442	-1.063839
TT	0 (22200	1 765265	0 040055
н	0.033399	-1./05305	2.346035
Н	-4.690602	0.754483	-3.880116
	E 227010	0 000000	0 001001
п	-5.33/012	2.023932	-2.031021
Н	-5.854636	0.348568	-2.591018
ц	-2 /16352	1 702006	-3 230722
11	2.410000	1.192000	-3.230133
Н	-1.895186	1.801984	-1.529844
ц	-3 212200	2 860212	-2 060110
11	J.ZIZZ00	2.009213	-2.009110
С	-0.505008	-4.447965	-3.014124
ц	-1 620320	-5 467007	-1 130330
11	1.020329	J.40/22/	1.439330
H	0.125554	-5.516618	-1.227917
н	-1 475666	-4 349375	-3 525307
	1.1.0000		0.525507
н	0.045026	-5.230284	-3.55/5//
Н	1.225790	-3.251953	-2.622853
	0 440550	0.055100	4 1 5 1 0 1 0
п	0.443556	-2.805129	-4.151010

<u>v</u> _{mi}	$n = 17 \text{ cm}^{-1}$	E = -2	603.7376240
С	1.701494	0.839366	0.290381
С	0.914179	-0.178826	-0.356758
С	1.627463	-1.354679	-0.932326
P	-0.802450	-0.048534	-0.011711
IN C	2 286803	2.14/2/2	1 286996
C	3.243931	1.862526	1.572742
Ν	2.894231	0.682223	0.949896
С	0.321789	2.954595	-0.137572
С	-0.613765	3.567034	0.711483
С	-1.446575	4.543962	0.154703
C	-1.3/4434	4.861405 3.238649	-1.194480
C	-0.475454	4.193570	-2.024122
С	1.443497	2.569054	-2.408769
Н	-0.445476	4.441824	-3.084572
H	-2.032166	5.625106	-1.611828
С	-0.771889	3.195996	2.177849
л н	2 189827	3 821459	1 546644
Н	4.149388	1.939537	2.164698
С	3.686879	-0.515437	1.105501
С	3.470529	-1.344848	2.217614
С	4.253288	-2.504930	2.299862
С	5.206753	-2.809131	1.339018
C	5.43324/	-1.935990	0.277646
C	5.012952	0.243739	-0.953805
H	6.203884	-2.172760	-0.455501
Н	5.793323	-3.724875	1.424329
С	2.552880	-1.060869	3.405639
H	4.105376	-3.176533	3.148329
C u	-0.489362	4.386594	3.099311
Н	-0.569804	4.082030	4.152391
H	-1.214601	5.196463	2.930340
Н	-0.049060	2.401463	2.411882
С	-2.166821	2.616854	2.436636
H	-2.952567	3.363191	2.239290
H	-2.260342	2.303589	3.487170
н н	-2.357017	1.740852	-2 120606
C	2.847733	3.149418	-2.186894
С	1.084470	2.618065	-3.893145
Н	0.061516	2.260448	-4.077359
Н	1.777272	1.982448	-4.463347
H	1.172850	3.636810	-4.298913
н Н	3.193329 2 861777	3.040012 4 220757	-1.148464 -2 437317
Н	3.575180	2.640234	-2.837724
С	5.708769	-0.375895	-2.166378
С	5.900411	1.380276	-0.421001
Н	4.060338	0.684891	-1.290195
H	6.752313	-0.634106	-1.932034
H	5.735815	0.351617	-2.990247
н н	5.203370	-1.283066	-2.51/446
H	5.425140	1.956886	0.381095
Н	6.142380	2.080343	-1.234049
С	1.192190	-0.416320	3.137448
С	3.319321	-0.273905	4.478565
H	2.343280	-2.054301	3.832191
л Н	3.34368/ 4 268218	-0.764259	4.132042 4.734987
H	2.714795	-0.188550	5.393036
H	1.272460	0.659370	2.918875
Н	0.569082	-0.510240	4.038620
Н	0.658297	-0.900465	2.309554
С	-1.749857	-1.190211	-1.004170
N	-2.981149	-1.509205	-0.564462
C	-1.54666U -0 668395	-1./62877/ -3 035646	-2.416003 -2.461724
c	-0.976116	-0.690462	-3.350539
-			

C	2 712766	2 407615	1 515101
C	-3.742700	-2.40/015	-1.313101
С	-5.232326	-2.090561	-1.567394
С	-3.596188	-3.882240	-1.126364
ц	-3 064676	-2 911657	-3 537752
	3.004070	2.911037	3.000151
н	-3.46691/	-1.201888	-3.282151
H	0.373640	-2.792575	-2.688246
н	-1.033315	-3.702000	-3.255997
11	0 672050	2 502442	1 516704
п	-0.0/3939	-3.392442	-1.510/04
H	0.040524	-0.402376	-3.053269
H	-1.607791	0.211238	-3.345568
н	-0 935784	-1 083712	-4 377824
~	2 (22242	0 0 0 4 2 0 1	0 5510021
C	-3.032242	-0.034391	0.331000
H	-4.158020	-4.489381	-1.849211
H	-4.020058	-4.065911	-0.132470
н	-2 557078	-4 225158	-1 137222
11	E 42E420	1 000050	1 021204
н	-5.435439	-1.080259	-1.931284
H	-5.703208	-2.217663	-0.581969
H	-5.705232	-2.797293	-2.262894
C	-3 593404	-1 366901	1 866683
~	1 204477	1.500501	1.0000000
C	-4.3044//	-0.662254	2.852360
С	-5.028125	0.484646	2.572499
С	-5.029327	0.986915	1.277150
C	-4 327324	0 349503	0 254253
~	4.027024	1 000000	1 110100
C	-4.3255/9	1.026446	-1.113120
H	-5.576136	0.996552	3.364535
Н	-5.574907	1.905583	1.055864
C	-2 801/25	-2 618744	2 /03861
	2.001420	2.010744	2.405001
н	-4.2/9/2/	-1.043346	3.8/5818
С	-1.661089	-3.143055	1.669616
С	-3.909534	-3.734375	2,683259
ц	-2 521622	-2 207850	3 301304
	2.021022	2.297039	1 7 6 9 9 9
н	-4.389496	-4.092993	1./63004
H	-4.707848	-3.384383	3.351615
Н	-3.413597	-4.590886	3,162030
U	_1 90/026	-3 576597	0 601721
п 	-1.094920	-3.370307	0.091721
н	-1.193567	-3.931067	2.277812
H	-0.922628	-2.344510	1.523643
С	-3.444748	2.279271	-1.104286
Ċ	-5 738195	1 /12323	-1 576335
	5.750155	1.412323	1.070000
н	-3.89/30/	0.33308/	-1.848443
H	-6.108253	2.285466	-1.019847
Н	-6.467667	0.602704	-1.439543
ч	-5 722616	1 692136	-2 639534
	0.010075	1.092130	2.035554
н	-3.8168/5	3.006127	-0.36562/
H	-3.461959	2.765671	-2.091671
Н	-2.399271	2.052772	-0.853305
C	2 310088	-1 268691	-2 154086
~	2.310000	-1.200091	-2.134000
C	1.635143	-2.5813/1	-0.25034/
С	2.303504	-3.685603	-0.769893
С	2.946895	-2.386247	-2.695075
C	2 951917	-3 595577	-2 002793
	2.991917	5.555577	2.002/03
н	3.458565	-4.465697	-2.422262
H	2.312809	-4.623906	-0.213141
Н	2.322707	-0.324866	-2.704646
н	3 440971	-2 310058	-3 664951
 TT	1 100000	2.510000	0 710000
н	1.122922	-2.638228	U./IU986

<u>4b</u>	v_{mi}	$in = 17 \text{ cm}^{-1}$	E = -2	720.3315519
	С	1.769657	1.036613	0.035590
	С	0.944465	-0.135867	-0.092906
	С	1.613929	-1.467144	-0.118116
	P	-0./63559	2 309619	0.162566
	C	2 434331	2.300010	0.078192
	C	3.381505	2.459025	0.707463
	Ν	2.982840	1.138707	0.667540
	С	0.425673	2.804623	-1.240277
	С	-0.463420	3.760851	-0.724516
	С	-1.286915	4.431763	-1.635219
	С	-1.251273	4.129925	-2.989621
	C	0.4/3032	2.438620	-2.606538
	C	1 462740	1 433192	-3.139425
	H	-0.399258	2.894239	-4.526172
	Н	-1.901465	4.662577	-3.685015
	С	-0.582536	4.066170	0.760511
	Н	-1.977937	5.193110	-1.267842
	Н	2.368622	4.249254	-0.140131
	Н	4.310805	2.751965	1.183836
	C	3.760283	0.096424	1.294755
	С	3.581012	-0.168758	2.661333
	C	4.34/030	-1.208078	2 436401
	C	5 437036	-1 606359	1 094257
	C	4.710816	-0.576110	0.496253
	C	4.987697	-0.157689	-0.941975
	Н	6.165449	-2.164509	0.506585
	Н	5.823153	-2.739775	2.886202
	С	2.715889	0.624633	3.639017
	Η	4.228311	-1.445872	4.266222
	С	-0.259171	5.531159	1.069171
	H	0.744817	5.815085	0.721484
	п u	-0.309887	6 205617	2.131973
	Н	0.137605	3.435349	1.301068
	C	-1.976332	3.687283	1.272414
	Н	-2.758843	4.287585	0.781711
	Н	-2.047095	3.866857	2.355597
	Н	-2.191674	2.625178	1.086622
	Н	1.498630	0.618118	-2.402389
	С	2.874891	2.023200	-3.261234
	С	1.030310	0.808359	-4.465327
	H	-0.004159	0.43/846	-4.420653
	п u	1.000143	1 524330	-4.700039
	Н	3.260468	2.391485	-2.298793
	Н	2.878851	2.863248	-3.971841
	Н	3.575046	1.259674	-3.633927
	С	5.610282	-1.265827	-1.792128
	С	5.916706	1.065945	-0.992632
	Н	4.024246	0.125924	-1.397523
	Н	6.660527	-1.434823	-1.511085
	H	5.605522	-0.968260	-2.850546
	H U	5.0/3283	-2.216522	-1.693864 -0.506030
	н	5 492722	1.947948	-0.498506
	H	6.123054	1.338195	-2.038115
	С	1.358894	1.142054	3.157441
	С	3.538538	1.765710	4.254725
	Н	2.502506	-0.085787	4.453069
	Н	3.772671	2.531786	3.500468
	Н	4.485174	1.397749	4.673185
	H	2.970175	2.254174	5.059303
	H	1.452991	2.025196	2.507353
	H U	U./66814 0 705520	1.453628 0.375005	4.0300/5
	п С	-1 767896	-1.263958	-0.217196
	Ň	-2.989551	-1.287620	0.348620
	C	-1.650068	-2.404869	-1.245303
	С	-0.792791	-3.618075	-0.809948
	С	-1.046271	-1.870363	-2.572776
	С	-3.139794	-2.813482	-1.401142

C	-3 020671	-2 465441	_0 093196
C	-3.0200/1	-2.403441	-0.003190
С	-5.304562	-2.124036	-0.255604
C	-3 7/1622	-3 608674	0 932926
0	0.0741022	5.000074	0.952920
н	-3.2/1535	-3.8/49/8	-1.639116
Н	-3.598731	-2.232934	-2.216468
п	0 253040	-3 313033	_0 027002
п	0.233040	-3.313033	-0.02/992
С	-0.961767	-4.797647	-1.783293
н	-0.998033	-3,925565	0.223582
	0.000000	1 121 000	0.220002
п	-0.264488	-1.131692	-2.338/09
H	-1.832251	-1.322130	-3.118217
C	-0 442390	-2 980382	-3 452641
~	0.442550	2.900902	1 07777
C	-3.572216	-0.1/98///	1.0777776
Н	-4.357165	-4.444024	0.572196
U	_/ 130717	-3 202774	1 00/300
п	-4.139/1/	-3.292114	1.904309
H	-2.721941	-3.979568	1.073802
Н	-5.476474	-1.381768	-1.038686
	E 747000	1 7 C 4 1 C 4	0 0 1 2 0 0
н	-5./4/088	-1./04104	0.084288
H	-5.830446	-3.043290	-0.547706
C	-3 500068	-0 066301	2 183075
0	5.500000	0.000001	2.403073
C	-4.163930	1.022161	3.073772
С	-4.873171	1.953388	2.334391
Ċ	1 001101	1 020441	0 040050
C	-4.904104	1.039441	0.949990
С	-4.248721	0.796468	0.296093
С	-4.271861	0.809552	-1.229696
	E 20E002	0.777411	2 022007
п	-3.383082	2.1/1411	2.832997
H	-5.436363	2.587049	0.359750
C	-2 796598	-0 970491	3 502230
	2.790390	0.070401	3.302230
Н	-4.112448	1.128207	4.159764
С	-1.619504	-1.824737	3.041602
Ċ	-3 917456	_1 70570/	1 200001
C	-3.01/430	-1.795704	4.299001
H	-2.367232	-0.252538	4.220145
Н	-4.337756	-2.527866	3.668142
	4 500007	1 1 5 2 4 9 0	A 75255A
п	-4.303307	-1.132409	4./55554
H	-3.312167	-2.346138	5.106344
н	-1 913413	-2 641991	2 374776
	1 1 4 0 0 0 0	2.041001	2.374770
н	-1.140932	-2.2/3839	3.924128
H	-0.869299	-1.214498	2.523567
C	-3 356833	1 906430	-1 781677
-	5.550055	1.000400	1.701077
C	-5.686579	1.014431	-1.792285
Н	-3.886350	-0.150757	-1.597046
C	2 21 20 0 2	1 056260	1 205642
C	2.213003	-1.930200	-1.203042
С	1.638344	-2.270175	1.033868
С	2.241942	-3.523232	1.018606
°	0 700047	2 007001	1 010545
C	2.189941	-3.22/991	-1.310545
С	2.810085	-4.012940	-0.159752
н	3 266604	-5 003442	-0 179155
	0.00004	4 104000	1 000474
н	2.263539	-4.124908	1.9284/4
Н	2.198815	-1.353203	-2.197066
н	3 222000	-3 607389	-2 238401
	3.222000	5.007505	2.230401
н	T.18/3/3	-1.894596	1.954498
Н	-5.699359	0.792985	-2.869213
ц	-6 006152	2 060116	-1 676210
11	0.000132	2.000110	-1.0/0210
H	-6.438395	0.384838	-1.297834
Н	-3.392770	1.915970	-2.881834
ц	_2 310240	1 771500	_1 /75000
п	-2.310240	1.//1083	-1.4/5906
H	-3.686086	2.895191	-1.426385
C	-1 131441	-4 327265	-3 240602
	1 000001	1.02/200	1 400010
п	-1.800091	-3.43883/	-1.488310
Н	-0.062836	-5.427037	-1.699008
н	-2 198118	-4 230193	-3 497916
	7.T)0TT0	- 020E12	2.020050
н	-0./22498	-5.0/854/	-3.930250
Н	0.625289	-3.098260	-3.208931
н	-0 488673	-2 6705/9	-4 500026
11	0.3000/3	2.0/2040	ユ・フレクレムひ

<u>5a</u>	$v_{min} =$	16 cm^{-1}	E = -2	<u>603.4441379</u>	
	С	1.736398	0.752621	0.480025	
	C	0.845181	-0.015666	-0.424143	
	С	1.499033	-0.963564	-1.366837	
	P	-0.795229	0.302866	-0.162519	
	N	1.663537	2.067086	0.790165	
	C	2.641233	2.373091	1.705028	
	N	2 755879	1.220643	1 202825	
	C	0.771140	3.070751	0.239973	
	C	-0.322269	3.483867	1.020605	
	С	-1.139211	4.482509	0.482529	
	С	-0.879032	5.024206	-0.772654	
	C	1.093306	3.626302	-1.010245	
	C	0.224/98	4.601543	-1.509112	
	н	0.432828	5.061706	-2.475831	
	Н	-1.530869	5.801496	-1.173896	
	С	-0.584437	2.944013	2.416826	
	Н	-1.991239	4.844644	1.060466	
	H	2.768785	3.383737	2.081604	
	H	4.132297	1.015900	2.658346	
	C	2 476335	-2 070563	2 029358	
	C	2.817328	-3.422459	1.871168	
	С	3.815224	-3.826878	0.995005	
	С	4.541279	-2.880342	0.275341	
	С	4.240845	-1.521011	0.369675	
	C	5.105672	-0.487887	-0.340184	
	н	5.354893 4 057317	-3.207613	-0.3/1531	
	C	1.567822	-1.752729	3.219365	
	H	2.304211	-4.165679	2.485968	
	С	-0.170804	3.981401	3.469109	
	Н	0.879224	4.287218	3.357706	
	H	-0.305603	3.576810	4.481971	
	H U	-0./88188	4.88/586	3.381134 2.556549	
	С	-2 035643	2 508435	2.550549	
	H	-2.730923	3.358816	2.553022	
	Н	-2.154963	2.074484	3.628163	
	Н	-2.339297	1.749741	1.889705	
	H	2.750388	2.322588	-1.369335	
	C	3.451095 2 195736	4.341007	-1.40/833	
	н	1.373327	2.487437	-3.517477	
	Н	3.119232	2.795310	-3.720954	
	Н	1.981775	4.145332	-3.715662	
	Н	3.636045	4.401004	-0.325671	
	H	3.131155	5.336423	-1.748776	
	H C	4.399886	4.09/068	-1.906103 -1.598464	
	C	6.195332	0.034531	0.611858	
	Н	4.458449	0.357996	-0.632973	
	Н	6.617959	-1.701112	-1.336514	
	Н	6.230187	-0.192228	-2.165958	
	H	5.099730	-1.567822	-2.251973	
	н	5 793977	-0.795696	1 521259	
	Н	6.819457	0.780728	0.100670	
	С	0.654440	-0.527160	3.188057	
	С	2.449163	-1.696426	4.478941	
	Н	0.912488	-2.632930	3.318876	
	H	3.140225	-0.840607	4.42/369	
	н н	3.UJ1U49 1 828538	-2.00/404 -1 576602	4.JY1369 5 377083	
	H	1.219338	0.413352	3.265961	
	H	-0.008345	-0.561721	4.064911	
	Н	0.007728	-0.487958	2.300942	
	С	-1.801312	-0.768752	-1.333595	
	N	-2.889229	-1.256346	-0.817008	
	C	-1.81/984 -0 789721	-U.838515 -1 732496	-2.86/510 -3.575507	
	C	-1.628802	0.607638	-3.363583	
	С	-3.259100	-1.354202	-3.128833	

С	-3.706799	-2.056410	-1.843960
С	-5.199885	-1,996118	-1.571666
C	-3 244703	-3 514057	-1 813936
u u	-3 201138	-2 042871	-3 982375
11	2 022252	0 51/055	2 257020
п	-3.932232	-0.314833	-3.33/920
Н	0.223445	-1.329258	-3.5085/9
H	-1.066489	-1.758343	-4.638553
Н	-0.784236	-2.762781	-3.203402
Н	-0.602561	0.955193	-3.169451
Н	-2.334288	1.307604	-2.890897
Н	-1.799360	0.633039	-4.449502
С	-3.441860	-0.885343	0.492172
u u	-3 786533	-1 059294	-2 598252
и и	-3 475017	-3 000131	_0 954452
п	-3.4/301/	-3.909131	-0.034432
н	-2.169921	-3.614094	-2.008353
Н	-5.600630	-0.9/9619	-1.625678
H	-5.445919	-2.428754	-0.591753
Н	-5.703005	-2.596578	-2.341903
С	-3.216622	-1.615307	1.678834
С	-3.847521	-1.138953	2.840388
С	-4.670917	-0.025811	2.841556
C	-4.868866	0.675212	1.658458
C	-4 259818	0 278126	0 468548
C	1.200010	1 160651	0.100010
C	-4.40/0/9	1.100001	-0.757233
н	-5.153329	0.300230	3./63642
Н	-5.503000	1.562588	1.659062
С	-2.430140	-2.907677	1.897426
Н	-3.685349	-1.685865	3.771587
С	-1.204728	-3.142870	1.023733
С	-3.381065	-4.113439	1.937624
Н	-2.036488	-2.803379	2.921057
Н	-3,931439	-4.242474	0.996243
н	-4 129555	-3 992540	2 732068
ц ц	-2 820276	-5 037494	2 136295
11	1 445640	2 222052	0 020127
п	-1.443049	-3.323033	-0.030137
н	-0.662203	-4.028957	1.386112
Н	-0.513562	-2.289148	1.089265
С	-3.667083	2.454341	-0.672454
С	-5.968187	1.514344	-0.958807
Н	-4.154405	0.618825	-1.651084
Н	-6.304466	2.253035	-0.217993
Н	-6.628374	0.640380	-0.875904
Н	-6.112740	1.966297	-1.949971
н	-3.962933	3.039353	0.211635
н	-3 844011	3 075732	-1 563228
u u	-2 59/933	2 274465	-0 503245
 C	2.004000	_0 44000	-2 100250
C	2.202232	-0.442222	-2.400339
	1.339518	-2.349664	-1.252598
C a	1.946528	-3.201199	-2.173829
С	2.847897	-1.296975	-3.351726
С	2.685011	-2.678857	-3.234702
Н	3.141824	-3.346602	-3.966385
Н	1.835543	-4.280997	-2.063506
Н	2.408876	0.636210	-2.510275
Н	3.426370	-0.881423	-4.178185
Н	0.774777	-2.765284	-0.420190

<u>5b</u>	$v_{\min} = 12 \text{ cm}^{-1}$		E = -2720.0399323	
	С	1.839507	0.974966	0.163892
	С	0.895887	-0.112894	-0.189260
	С	1.486368	-1.413100	-0.611351
	P	-0.724912	0.327687	0.007502
	Ν	1.755178	2.281746	-0.177434
	С	2.804339	2.967335	0.385079
	С	3.539501	2.066497	1.094941
	Ν	2.939349	0.843075	0.941657
	С	0.788623	2.938991	-1.038695
	С	-0.197512	3.736780	-0.432924
	С	-1.059877	4.431713	-1.285692
	С	-0.952277	4.314493	-2.667752
	Ċ	0.951340	2.823345	-2.430073
	Ċ	0.038420	3.515051	-3.231951
	C	2 122477	2 088674	-3 058853
	н	0 126901	3 456804	-4 317549
	н	-1 636523	4 865321	-3 314636
	Ċ	-0 316373	3 901541	1 073016
	u u	-1 828095	5 077668	-0.856720
	и П	2 033500	1 033794	0.000720
	п	2.955599	4.033/04	1 712052
	п	4.421913	2.193/02	1 562240
	c	2 046220	-0.362633	1.303349
	C	2.040330 3 0/1075	-U./0/402 -2 0/701F	2.100020
	C	J.2410/J	-2.U4/813	J.ZJYY04 0 501000
		4.1/1132	-2.024400	2.JOL393
	C	4.//0342	-2.344255	1.418902
	C	4.408566	-1.108144	0.882545
	С	5.137582	-0.551349	-0.333079
	Н	5.531647	-2.944330	0.921002
	H	4.459113	-3.798671	2.978715
	С	2.027498	0.059944	3.762920
	Н	2.828320	-2.403601	4.206468
	С	0.156796	5.296558	1.500192
	Н	1.186140	5.501851	1.173340
	Н	0.117196	5.397464	2.593801
	Н	-0.488034	6.074690	1.065715
	Н	0.338970	3.158446	1.549085
	С	-1.734582	3.626833	1.576817
	Н	-2.453889	4.364206	1.188345
	Н	-1.762362	3.690320	2.674514
	Н	-2.077835	2.624149	1.285218
	Н	2.547166	1.405875	-2.305698
	С	3.224162	3.091490	-3.430189
	С	1.715018	1.250189	-4.272445
	Н	0.874541	0.577172	-4.043456
	Н	2.564976	0.641580	-4.613935
	Н	1.417357	1.884398	-5.119164
	Н	3.562171	3.663910	-2.554374
	Н	2.854765	3.808946	-4.177407
	Н	4.092591	2.570094	-3.856874
	C	5.701680	-1.634933	-1.254786
	C	6.299692	0.353052	0.111566
	н	4 420932	0.056607	-0.913529
	н	6 585028	-2.111625	-0.805765
	н	6 NRN552	-1 183601	-2 201008
	н	4 966710	-2 417266	-1 476182
	ц 11	7 010605	-0 230626	1.7/0102 0 703183
	ц 11	5 070307	1 20220	0.705105
	11	5.313331	1.20221/ 0.750061	-0 766310
	п С	0.0200/U 1 05C241	U./JZZØI 1 116400	-U. / UUJIZ
	C	1.036341	1.110489	3.233444
	U TT	3.003335	0.717246	4./31433
	H T	1.425/28	-0.000841	4.332899
	H	3.648136	1.444570	4.231045
	H	3.657677	-0.025626	5.228760
	H	2.455798	1.253210	5.537789
	Н	1.580628	1.982659	2.805894
	Н	0.464891	1.501305	4.078827
	Н	0.344342	0.722569	2.497551
	С	-1.829096	-1.125348	-0.468661
	Ν	-2.892054	-1.238215	0.270855
	С	-1.932381	-1.951711	-1.753232
	С	-0.972621	-3.156621	-1.899456
	С	-1.654642	-0.987904	-2.950887
	С	-3.410694	-2.428220	-1.676905

C	2 000000	2 272767	0 200272
C	-3.809000	-2.3/3/6/	-0.200372
С	-5.279721	-2.081734	0.048656
0	2 12700	2 (50022	0 524000
C	-3.42/000	-3.659832	0.534698
Н	-3.540153	-3.443912	-2.067550
TT	1 050025	1 765140	2 260540
п	-4.059025	-1./03140	-2.200349
H	0.038189	-2.767221	-2.026230
C	1 220025	2 002700	2 140251
C	-1.329033	-3.993790	-3.140231
Н	-0.956535	-3.783726	-0.999671
	0 072051	0 0 1 0 0	2 667620
н	-0.8/3951	-0.261629	-2.00/030
H	-2.565229	-0.400451	-3.151112
C	1 106002	1 720057	1 217500
C	-1.190902	-1./3083/	-4.21/300
С	-3.338441	-0.259467	1.265857
TT	1 062750	1 160705	0 152642
н	-4.063/50	-4.469/85	0.153642
H	-3.606188	-3.571901	1.611647
TT	2 201657	2 012626	0 260062
п	-2.301037	-3.942030	0.309903
H	-5.636674	-1.198155	-0.487851
п	-5 100037	-1 962074	1 120077
п	-3.400937	-1.902074	1.1209//
H	-5.853408	-2.946337	-0.312218
C	2 017020	0 251056	2 612061
C	-3.04/030	-0.331030	2.042004
С	-3.599315	0.644096	3.467899
C	-1 10111	1 658538	2 978506
<u> </u>		T.0000000	2.570500
C	-4.658581	1./30057	1.613685
C	-1 120306	0 793019	0 727/21
0	4.120000	0.199019	0.121421
С	-4.401154	1.004701	-0.761649
н	-4 825759	2 401018	3 657096
11		2.401010	5.057090
H	-5.273006	2.542281	1.223534
C	-2 249828	-1 408551	3 407475
0	2.219020	1.100001	5.10/1/5
Н	-3.386701	0.598034	4.538108
С	-1.109793	-2.106170	2.674065
- -	2 100002	2 201 44	4 117700
C	-3.192023	-2.391044	4.11//00
H	-1.762353	-0.832170	4.210070
ц	-3 81/567	-2 958836	3 /12883
11	5.014507	2.950050	J. 41200J
H	-3.875807	-1.859360	4.792816
ц	-2 614472	-3 109365	1 716322
п	-2.0144/2	-3.109303	4./10322
H	-1.443206	-2.772907	1.870046
ц	-0 5/3/21	-2 722189	3 388248
11	0.343421	2.122105	5.500240
H	-0.410648	-1.367337	2.255374
C	-3 523883	2 124883	-1 335388
0	5.525005	2.121005	1.00000
С	-5.875469	1.323516	-1.048305
н	-4 149598	0 084776	-1 304821
~	1.110000	1.407050	1 0000021
C	2.113262	-1.49/259	-1.863//9
С	1.406102	-2.552635	0.198130
C	1 026225	2 762656	0 045006
C	1.930233	-3.702030	-0.245250
C	2.602465	-2.720477	-2.318600
С	2.518179	-3.855164	-1.509239
	0 01 5000	4 000075	1 0 0 1 5 5 0
п	7.2T2030	-4.0002/3	-1.001009
H	1.887067	-4.640837	0.400280
п	2 172601	-0 617522	-2 505364
п	2.1/2091	-0.01/322	-2.303304
H	3.060821	-2.784516	-3.306803
ц	0 959011	-2 187039	1 180187
	0.00011	2.30/000	1.10/10/
H	-6.069632	1.254572	-2.127671
н	-6.126045	2.349121	-0.743208
	0.120010		0.507015
п	-0.305498	0.64619/	-0.52/015
Н	-3.757415	2.282355	-2.398944
U	-2 116007	1 015//0	_1 256407
п	-2.44090/	1.913448	-1.23042/
H	-3.710391	3.070249	-0.803390
C	-1 821736	-3 100510	-1 307050
C	1.021/30	-3.120312	-4.307039
Н	-2.072445	-4.767810	-2.897100
н	-0.419963	-4.535923	-3,438128
	0.010550	2.004777	4 000120
п	-2.919556	-3.024//4	-4.288/98
H	-1.576447	-3.594507	-5.266295
н	-0 000330	-1 836960	-4 205782
11	0.0/9000	T.020200	7.200/02
	1 // / 21 / 6	-1 12/1631	L 1002/7

References

- Rottschäfer, D.; Sharma, M.; Neumann, B.; Stammler, H.-G.; Andrada, D. M.; Ghadwal, R. S., A Modular Access to Divinyldiphosphenes with a Strikingly Small HOMO-LUMO Energy Gap. *Chem. Eur. J.* 2019, 25, 8127–8134.
- Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G., Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. *Angew. Chem. Int. Ed.* 2005, 44, 5705-5709.
- Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, *Organometallics* 2010, 29, 2176–2179.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.* 2009, 42, 339–341.
- 5. Sheldrick, G. M., A short history of SHELX, Acta Cryst. 2008, A64, 112–122.
- 6. Sheldrick, G. M., Crystal structure refinement with SHELXL, Acta Cryst. 2015, C71, 3-8.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT, 2016.
- Zhao, Y., Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.* 2008, **120**, 215–241.
- Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.

- McIver, J. W., Komornic. A, Structure of transition states in organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method, *J. Am. Chem. Soc.* 1972, **94**, 2625–2633.
- 11. Wiberg, K. B., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, *Tetrahedron* 1968, **24**, 1083–1096.
- (a) Reed, A. E., Weinhold, F., Natural localized molecular orbitals, *J. Chem. Phys.* 1985, 83, 1736–1740;
 (b) Reed, A. E., Weinstock, R. B., Weinhold, F., Natural population analysis, *J. Chem. Phys.* 1985, 83, 735–746.
- 13. Glendening, E. D., Reed, A. E., Carpenter, J. E., Weinhold, F., NBO Version 3.1.
- Neese, F., Software update: the ORCA program system, version 4.0, WIREs Comput. Mol. Sci. 2017, 8, e1327.
- 15. Barone, V., Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, *J. Phys. Chem. A* 1998, 102, 1995.