
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The submitted publication presents a method for targeted protein and untargeted mRNA readout 

on single cell resolution that integrates the multiplex Olink proximity extension assay (PEA) with 

the smart seq 2 protocol. The method was applied on the two day differentiation of ESCs towards 

neural progenitor cells. Using the single-cell protein and mRNA readout they were able to 

investigate how mRNA and protein variation correlate over time and how this process is regulated. 

 

Overall the manuscript contains very interesting data and approaches worth publishing the nature 

com biol. The unstructured, the verbose writing style in some parts, and scientific inaccuracy in 

other parts makes it hard to judge and follow. Therefore, the current version of the manuscript is 

premature. 

 

The following are only some examples of the unstructured manuscript 

• Some paragraphs of the manuscript contain only references to SI figures 

• SI is highly unstructured and needs different presentation forms 

• Figure 3 references are not systematic and the text jumps between effects. Figure 3c is not 

explained. 

• Effects linked to the distribution of the cq values are discussed in the second and last paragraphs 

• Biological problems are hidden in technical presentations. Example: Page 3, 1 Paragraph the 

comparison data between sparc and smartseq2 is presented in one bar chart, why adding the 

differentiation data here? 

• Protein target sets are not described (not in SI nor main text) also otherwise stated. Text states 

that there are more than 90 proteins measured but SI contains only 62. Info hidden in material 

and methods. 

• Figure 2 spans over three separate separated paragraphs 

• Fig S7 and S8 are mixed up 

• And much more… 

 

One suggestion is to shorten the manuscript and focus on the elementary findings. 

 

The main scientific critiques are 

• When characterizing the neuronal differentiation from pluripotent stem cells I would expect the 

main marker profiles and time courses and protein and mRNA level and not only 2TF 

• The selected proteins seem to be designed for something else. It would be wiser to choose fewer 

targets with more clear biological question even if this is only a proof of principle experimental set 

up. 

• Sampling time for the velocity analysis in a proof of principle for new technology is wrongly 

chosen (realized by the authors in the text). 

• Velocity vectors going unexpectedly in both directions; it is uncertain if the analysis is fully 

correct in Figure 2. They explain the arrows from 24h to 0h with 24h being a “transition state”. But 

how do the cells come to 24h? 

• Oct 4 has a half-life time from about 90 min an offset between mRNA and protein level with a 

sampling time of 24 h cannot be expected. 

• Why focusing so much on Oct4? For the neuronal development more markers are in foreground. 

Are those not working? 

• It is not surprising that the network target prediction is working better for Oct4 on the protein 

level than mRNA since there shouldn’t be much mRNA transcripts for a TF so the noise and 

technical variances between single cells is larger. 

• Probably very variable amplification biases between the RNA detection (smartseq) and the 

protein detection (a qPCR)? A synonymous readout would produce much better/ easier to handle 

datasets 

• Unclear how the protein level normalization has been done. If the data has been normalized per 

single cell most of the biological variation has been averaged? Indication for this is that cq values 

are very similar for all proteins. 

• Is the reason of low variability of the protein levels due to insensitivity of the qPCR method? 

• Cite seq data has a much higher single cell variability, why? Could this indicate that a the 



normalized qPCR is the problem. If so the entire results to figure 4 is affected. 

• Is the low cell number a problem for all analyses? 

• It is fine to realize that protein and mRna levels are not redundant but the technical proof for this 

is too low. The protein method must be validated with an alternative method like Cite seq for 

surface proteins. 

 

Minor: 

• Do they use the whole mRNA count for the RNA-protein velocity or only the unspliced mRNA 

count? 

• Keyword misleading. There is microfluidics, expect a commercially available platform. 

• No info about the antibodies and design of the antibody probes – Sequences, washing steps? 

Unspecific bindings? Unbound antibodies will also hybridize and give signal. 

• These problems are mentioned in Supplemental Results and Figures but kind of glossed over 

otherwise. 

• Fig 1 - A + B Very simplified graphics, almost no info about the antibody PEA method 

• Fig 4 -Central findings (variability mRNA/protein) are somehow presented very underwhelmingly 

with very few examples named – why not choose a plot that shows variation for each of their 

calculated values? 

• Fig. 1c shows only 4 proteins are shown, Figure S2, and Table S1 summarizes 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors report single-cell protein and RNA co-profiling (SPARC) for simultaneously measuring 

global mRNA and large sets of intracellular protein in single cells. With SPARC analysis they 

demonstrated that mRNA and protein measurements in single cells provide different and 

complementary information regarding cell states. However, major concerns for this study lack the 

novelty for SPARC which simply combined two well-established Smart-seq2 for RNA analysis and 

PEA for protein analysis as well as sufficient performance evaluation of SPARC. 

 

In recent years there are many methods reported for simultaneous analysis of protein and RNA 

(Nat Methods 2016, 13, 269; Nat Biotech 2017, 35, 936; Cell Syst 2018, 7, 398; Cell Syst 2018, 

6, 531; Nat Commun 2019, 10, 3544) including one study from author group (Cell Reports 2016, 

14, 380-389). Systematic performance comparison with at least one existing method is required to 

validate SPARC in terms of sensitivity, accuracy, reproducibility, and quantitative dynamic range. 

Modification of current Smart-seq2 method is not novel with incremental improvement in 

performance. 

 

Minor comments: 

1. In page 3 it is not clear why 89 proteins out of the panel of 96 proteins had detectable levels in 

single cells, while only 87 proteins in the 100 cell control. Please explain this. 

2. In page 11, significant protein loss may occur due to substantial surface absorption when cell 

lysate containing the protein supernatant is transferred to a new 96-well PCR-plate. Evaluation of 

protein recovery at the single-cell level for this transfer is needed for precise quantification. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors measured the abundances of mRNAs and proteins in single cells as they undergo 

differentiation, and used the data to explore the covariation of transcripts and proteins. They also 

examined the ability to identify the target genes of TFs based on the correlation between TFs and 

mRNAs and found that protein abundances of TFs are much more predictive of TF target genes. 

Furthermore, they report that protein expression variation is lower than mRNA variation. 

 

I found the study interesting and the conclusions generally well substantiated. I particularly like 

the requirement for pairwise protein detection, which ensures higher specificity compared to 

methods that use a single antibody per protein. I have a few suggestions to further strengthen the 



conclusions and their description: 

 

1) It seems to me that the major methodological advance of SPARC over Darmanis, S. et al. (Ref. 

11) is replacing the PCR readout with Smart-seq2. I think stating this explicitly will be helpful for 

clarifying the methodological advance. 

 

2) Measurement noise can have large and decisive influence on interpreting protein - RNA 

correlations https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005535 The 

authors should incorporate reliabilities in their estimates or at least acknowledge the influence of 

noise. Note that measurement noise might contribute to the higher correlations for the pseudotime 

trends since some of the noise is averaged and reduced. 

 

3) The lower variability of the protein levels seems consistent with our observations of lower 

protein variability in Figure 5 and Figure S3 of 

https://www.biorxiv.org/content/10.1101/665307v3. These observations use different data and 

analysis and mutually support each other. The author may want to discuss this connection. 

 

 

4) This description in the introduction is a bit simplistic 

"While bulk sample measurements generally report good correlation between mRNA and protein 

expression, little is known about the extent of correlation at cellular resolution in systems at 

steady-state or undergoing a dynamic transition." 

Some of the referenced studies reported much larger correlations than other referenced studies, 

and some of these differences are due to considering or not considering measurement noise as 

well as to computing the correlations across genes or across conditions. The authors may want to 

be a bit more specific in their description and what is meant by a "good correlation". 

 

5) The paper is clearly written and generally easy to follow. At some places, it can benefit from 

replacing qualitative statements with more exact quantitative statements, e.g., "large sets of 

intracellular protein" with  "sets of about 100 intracellular proteins". 

 

Generally, I find this paper strong. After incorporating the suggestions listed above, it likely will 

become one of the strongest papers in the field. SPARC makes very significant improvements over 

competing methods such as CITE-seq and REAP-seq, and its application demonstrates important 

results, such as the  higher predictive potential of protein measurements for TF-targets.   

  

 

Nikolai Slavov 
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Please find attached detailed responses to the reviewers. 
---- 
 
Reviewer #1 (Remarks to the Author): 
 
The submitted publication presents a method for targeted protein and untargeted mRNA 
readout on single cell resolution that integrates the multiplex Olink proximity extension assay 
(PEA) with the smart seq 2 protocol. The method was applied on the two day differentiation of 
ESCs towards neural progenitor cells. Using the single-cell protein and mRNA readout they 
were able to investigate how mRNA and protein variation correlate over time and how this 
process is regulated. 
 
Overall the manuscript contains very interesting data and approaches worth publishing the 
nature com biol. The unstructured, the verbose writing style in some parts, and scientific 
inaccuracy in other parts makes it hard to judge and follow. Therefore, the current version of the 
manuscript is premature.  
 
The following are only some examples of the unstructured manuscript  
• Some paragraphs of the manuscript contain only references to SI figures  
• SI is highly unstructured and needs different presentation forms 
• Figure 3 references are not systematic and the text jumps between effects. Figure 3c is not 
explained. 
• Effects linked to the distribution of the cq values are discussed in the second and last 
paragraphs 
• Biological problems are hidden in technical presentations. Example: Page 3, 1 Paragraph the 
comparison data between sparc and smartseq2 is presented in one bar chart, why adding the 
differentiation data here? 
• Protein target sets are not described (not in SI nor main text) also otherwise stated. Text states 
that there are more than 90 proteins measured but SI contains only 62. Info hidden in material 
and methods. 
• Figure 2 spans over three separate separated paragraphs 
• Fig S7 and S8 are mixed up 
• And much more… 
 
We implemented several of the suggestions with regard to the structure and clarified various 
aspects in the main text. We fixed and re-formatted the suppl figures. 
 
The number of proteins varies across different analyses since different filters need to be 
applied. These filters are described in detail in the Methods section. 
 
Cq variation needs to be touched upon early on in a global manner. Later on, we specifically 
address gene expression variation on the level of individual genes. We now tie these 
observations together in the discussion. 
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One suggestion is to shorten the manuscript and focus on the elementary findings. 
 
The main scientific critiques are 
• When characterizing the neuronal differentiation from pluripotent stem cells I would expect the 
main marker profiles and time courses and protein and mRNA level and not only 2TF 
 
We focused on POU5F1 and SOX2 because they are important and well-studied pluripotency 
markers. While we indeed drive embryonic stem cells towards neuronal differentiation, the 
observed time points represent very early stages of this process. We expect, therefore, more 
drastic and visible changes in pluripotency markers such as POU5F1 and SOX2 as compared 
to neuronal markers. 
We would also like to emphasize that the novelty of this study derives from the newly developed 
profiling method, SPARC, which overcomes major current limitations to study high-plex mRNA 
and protein in single cells. The dynamic cellular model system is then used to illustrate the 
quantitative power of the method. 
 
• The selected proteins seem to be designed for something else. It would be wiser to choose 
fewer targets with more clear biological question even if this is only a proof of principle 
experimental set up. 
 
For this proof-of-principle study, proteins were selected to evaluate the value of measuring 
proteins across a wide range of cellular processes, including pluripotency, cell cycle and 
metabolism. Since a major advancement of SPARC over other methods such as CITE-seq is the 
possibility to detect proteins independent of cellular localization, the panel specifically includes 
many intracellular proteins, including nuclear ones. We specifically avoided focusing on neuronal 
differentiation as the aim of this study to make more generalizable statements about RNA and 
protein expression as well as their variation and covariation independent of the specifics of the 
model system. 
 
Information about the protein panel design has been included in the manuscript. The text is 
included below for quick reference: 
 
We developed an exploratory multiplex PEA panel for single cell analysis in collaboration with 
Olink Proteomics, involving 92 proteins and focused on intracellular proteins of interest for our 
investigation. The panel includes proteins across different functional groups related to, for 
example, pluripotency, neurogenesis, cell cycle phase and metabolic functions (Table S1). The 
PEA protein panel was developed for application across different cellular models, and therefore 
not all proteins were expected to be detectable at the single cell level in hESCs. 
 
• Sampling time for the velocity analysis in a proof of principle for new technology is wrongly 
chosen (realized by the authors in the text).  
• Velocity vectors going unexpectedly in both directions; it is uncertain if the analysis is fully 
correct in Figure 2. They explain the arrows from 24h to 0h with 24h being a “transition state”. 
But how do the cells come to 24h? 
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We agree that the sampling times are not conducive for a proper velocity analysis. We therefore 
omitted the analysis from the manuscript. We added the following paragraph to the discussion: 
Since SPARC employs the Smart-seq2 protocol, future studies could utilize the sizeable fraction 
of intronic reads to further dissect gene regulation and expression dynamics. For example, we 
hypothesize that RNA and protein co-profiling can be used to predict future cell states similar to 
RNA velocity that employs spliced and un-spliced transcripts29, 30.  Updated versions of the Smart-
seq2 protocol, such as Smart-seq 2.5 and Smart-seq3, furthermore allow for greater sensitivity 
and better quantification through the use of UMIs. 
 
• Oct 4 has a half-life time from about 90 min an offset between mRNA and protein level with a 
sampling time of 24 h cannot be expected. 
 
The protein half-life of POU5F1 (Oct4) is estimated by various studies to be between 4 and 12h 
in human pluripotent cells (Pan et al. 2016, Lin et al. 2012) and 6.5 to more than 12h in mouse 
ESCs (Liu et al. 2017, Strebinger et al. 2019). Independent of the RNA half-life, we would 
therefore expect to see a delay in expression changes. If at a given time point POU5F1 RNA is 
rapidly repressed and degraded, POU5F1 protein will still be present a considerable time after 
the reduction in RNA levels. In fact, such substantial delays between RNA and protein levels of 
pluripotency markers have been shown in differentiation experiments (Rosa and Brivanlou 
2011). 
 
References: 

● Pan et al. 2016 (“Site-specific Disruption of the Oct4/Sox2 Protein Interaction Reveals 
Coordinated Mesendodermal Differentiation and the Epithelial-Mesenchymal Transition”) 
estimate Pou5f1 (Oct4) half-life to be 4-6h (Fig. 6) in NCCIT cells (human, pluripotent) 

● Lin et al. 2012 (“Reciprocal Regulation of Akt and Oct4 Promotes the Self-Renewal and 
Survival of Embryonal Carcinoma Cells”) estimate Pou5f1 (Oct4) half-life to be 6-12h 
(Fig. 2A) in NCCIT cells (human, pluripotent) 

● Liu et al. 2017 “G1 cyclins link proliferation, pluripotency and differentiation of embryonic 
stem cells”) estimate Pou5f1 (Oct4) half-life to be more than 12h (Suppl. Fig. 4C) in 
mESCs 

● Strebinger et al. 2019 (“Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell 
fate decisions”) estimate Pou5f1 (Oct4) half-life to be 7.8±1.3 h (Fig. 1E) in mouse ESCs 

● Rosa and Brivanlou 2011 (“A regulatory circuitry comprised of miR-302 and the 
transcription factors OCT4 and NR2F2 regulates human embryonic stem cell 
differentiation”) show time courses of hESC differentiation and a substantial delay 
between RNA and protein (Fig. 1D) 

 
• Why focusing so much on Oct4? For the neuronal development more markers are in 
foreground. Are those not working? 
 
See earlier comment about the focus on Pou5f1 (Oct4) and Sox2. 
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• It is not surprising that the network target prediction is working better for Oct4 on the protein 
level than mRNA since there shouldn’t be much mRNA transcripts for a TF so the noise and 
technical variances between single cells is larger. 
 
The transcription factors profiled here are moderately expressed (see Figure 1) and not in a 
regime that is dominated by technical noise, especially sampling noise. We estimated 16 RPM 
to clearly exceed this regime in previous studies using the Smart-seq2 protocol (Tarbier, et al. 
2020). 
 
However, we agree that it is difficult to estimate the exact impact of RNA detection noise on 
these analyses. Interestingly, despite the possible impact of technical noise sources, especially 
on lowly expressed genes, we can see clear and convincing covariations between individual 
POU5F1 targets at the RNA level (see figure below), including highly (e.g. HSPD1 and TDGF1) 
and lowly (e.g. NANOG and ETV4) expressed ones. In contrast, POU5F1 RNA is relatively 
poorly correlated with these targets, while POU5F1 protein shows high correlation. 
 
If the higher technical variability of RNA measurements would drive our observations of 
transcription factor target interaction, we should also see lower correlation of targets among 
each other on the RNA level. Clearly this is not the case, instead there is a clear hierarchy: 
targetRNA with TFRNA < targetRNA with targetRNA < targetRNA with TFProtein. 
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Figure 1: This bar plot shows the number of highly significant (p<10-9) correlations between the gene 
indicated on the x-axis and the top 10 POU5F1 (OCT4) targets: AK4, BNIP1, EPCAM, ETV4, HILTF, 
HSPD1, IL17RD, NANOG, RBM47, and TDGF1). Color indicates the RNA expression level. Targets RNA 
levels themselves show many significant correlations with other targets RNA levels. POU5F1 RNA is only 
significantly correlated with a single one of the top 10 targets. POU5F1 protein on the other hand 
correlates significantly with 8 of the top 10 targets. There is no strong relationship between the number of 
significant correlations and the RNA expression level. 

 
Moreover, the notion that the more reliable detection of protein results from its higher molecule 
abundance is not contrary to the message of the paper. One argument we aim to make with this 
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study is the added value of measuring protein versus RNA in single cells, including the lower 
impact of sampling noise on protein measures. We therefore suggest that the higher correlation 
of POU5F1 protein with targets has two origins - the closer temporal connection between 
protein TF and its RNA target, and sampling of abundant protein versus less abundant RNA 
molecules. In the presented experimental approach, we did not aim to distinguish biological and 
technical effects, but this should be the aim of future studies.  
 
• Probably very variable amplification biases between the RNA detection (smartseq) and the 
protein detection (a qPCR)? A synonymous readout would produce much better/ easier to 
handle datasets. 
 
First, qPCR is a very sensitive detection method. Second, both the mRNA and antibody-
associated DNA go through almost equal rounds of PCR amplification before being detected via 
either sequencing or qPCR, respectively. However, we agree that there would be some benefits 
to a completely sequencing based readout and hope to develop the method in this direction in 
the future. We note that even with an unified sequencing readout, the sequencing library 
preparation for the RNA and protein would still need to be seperate due to e.g. sample tagging 
via PCR versus Tn5 and differences in amplicon size and proportional amount. 
 
Even for CITE-seq, where the sample tags are added in the same way within a droplet, the 
downstream library preparation is performed in separate tubes, using different PCR primers. 
This is due to two reasons: First, protein tags are very short in comparison to cDNA from RNA 
molecules; and, second, the protein molecules are far more abundant than the RNA molecules. 
Only a small fraction of the protein library is then spiked into the sequencing run. 
 
Finally, it has to be noted, that protein measures will never be completely comparable to RNA 
measures even when using the same readout. Due to the DNA-conjugated antibody-based 
detection, the protein values are inherently semi-quantitative and informative for expression 
changes, variation and covariation, but not for absolute abundance. 
 
• Unclear how the protein level normalization has been done. If the data has been normalized 
per single cell most of the biological variation has been averaged? Indication for this is that cq 
values are very similar for all proteins. 
 
Protein normalization is described in the Methods section under “scProtein dataset processing”. 
In brief, protein data has been normalized within each plate (Cq of each Assay - Cq of an 
internal control) and adjusted for the negative control (dCq - (lysis buffer mean + 2*SD)). Protein 
values are not normalized to total protein sums, since total protein amounts can vary depending 
on, e.g., cell cycle stage. 
 
• Is the reason of low variability of the protein levels due to insensitivity of the qPCR method? 
 
In general quantitative PCR is a very sensitive detection method. A comparison of 100 pooled 
cells with single cell measures yields a correlation of 0.88 (see figure below). The exact 
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variability of protein measures is furthermore not determined by the exact percentage of 
detected molecules as long as it is comparable across individual cells. We do not believe that 
there are substantial differences in the sensitivity between individual qPCR reactions. 
Additionally, only a very small fraction of the proteins is close to the detection limit (see 
Supplementary Figures 2 and 4). 
 

 
 
Figure 2: Analysis of protein expression in single cells versus 100 cells 
Agreement of average measured protein concentration levels (Cq) in single cells and 100 FACS sorted 
cells. Each dot represents a measured protein. The measurements of NOTCH1, POUF51, SOX2, 
CASP3, EPCAM and TP53 are also identified by their names. The  Spearman rank correlation coefficient 
(rho) between the single cells and the 100 cells is 0.88 (p-value 8.99e-21).  Color of the dots represent 
the fraction of cells were the protein was considered to be expressed (Cq > 0) . The lighter the color the 
higher fraction of cells in which the protein was expressed.     
 
• Cite seq data has a much higher single cell variability, why? Could this indicate that a the 
normalized qPCR is the problem. If so the entire results to figure 4 is affected. 
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First, we did not compare protein expression in the same cell line with both SPARC and CITE-
seq, therefore we do not know if CITE-seq single cell data is more variable. Second, we show 
that protein expression across proteins can more or less be variable, not uniformly expressed, 
and therefore the PEA normalization method is not over-correcting the data. 
 
• Is the low cell number a problem for all analyses? 
 
Previous work with single-cell data, especially with quantitative Smart-seq2 data, has shown 
that the kind of analyses are feasible with around 100 cells per condition or time point. We 
therefore believe that the number of cells per se was not a limiting factor. 
 
• It is fine to realize that protein and mRna levels are not redundant but the technical proof for 
this is too low. The protein method must be validated with an alternative method like Cite seq for 
surface proteins. 
 
We agree that it could be informative to have single cell proteomics data from an orthogonal 
approach. However, we motivate that we present multiple pieces of evidence that strongly 
support the notion that the protein data is robust and highly quantitative. First, the median 
expression measures over time scale well with a control of 100 pooled cells. Second, there is a 
good agreement between estimated pseudotime from RNA and protein measures, the same 
holds true for general dimensionality reductions. Third, the covariation of RNA levels of 
transcription factors with transcription factor protein can be seen as a positive control. The 
abundance of targets has been used in the past to computationally estimate the abundance and 
activity of transcription factors, and single cell studies have shown that the transcription factor 
RNA does not correlate with target RNA. Finally, antibodies have been thoroughly tested and 
validated by us and Olink Proteomics. 
We think there is little evidence that the protein measures would be a reflection of sampling 
noise only. We understand that caution should be applied when assessing new technologies. 
However, we also believe that we present manifold evidence for the quantitativeness of the 
protein data as well as the non-redundancy of RNA and protein measures. 
In general PEA is a well-established technology that has been benchmarked for its 
quantitativeness. In this study we show that single-cell measures correlate well (rho=0.89) with 
measures obtained from pooled 100 cell controls. 
 
Minor: 
• Do they use the whole mRNA count for the RNA-protein velocity or only the unspliced mRNA 
count? 
 
All RNA counts have been used for the RNA-protein velocity. The RNA velocity was performed 
as usual using unspliced and spliced transcripts respectively. Regardless, we decided to 
remove this analysis from the manuscript. 
 
• Keyword misleading. There is microfluidics, expect a commercially available platform.  
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We agree and therefore remove the keyword “microfluidics”. Instead we add “PEA”, which is a 
necessary technology for the protocol. 
 
• No info about the antibodies and design of the antibody probes – Sequences, washing steps? 
Unspecific bindings? Unbound antibodies will also hybridize and give signal. 
 
All antibodies have been obtained from Olink and a complete list of proteins IDs can be found in 
Supplementary Table 1. While we cannot disclose the oligo sequences (as they are property of 
Olink) all information about individual assays is available on their website: olink.com. In brief, 
each PEA assay was assessed for sensitivity, cross-reactivity, and appropriate dose-response 
against cell lysates or recombinant antigens. Assays displaying single- or near-single-cell 
sensitivity, minimal variation in replicates and no evidence of cross-reactivity were chosen for 
subsequent analysis. 
 
One strength of PEA and SPARC is that the reaction occurs in solution phase and no wash 
steps are required after antibodies are added to the cell lysate. Antibody incubations are 
performed in low volumes followed by a 25x dilution for the DNA extension step. Performing the 
extension step at high dilution minimizes the extension of antibodies in proximity by chance. As 
with all antibody methods, there is indeed a background antibody signal, but the signal is stable, 
calculated for each antibody and every experiment, and is subtracted during the normalization 
steps.  
 
• These problems are mentioned in Supplemental Results and Figures but kind of glossed over 
otherwise. 
 
• Fig 1 - A + B Very simplified graphics, almost no info about the antibody PEA method 
 
Figures 1A and 1B are indeed simple overview figures. PEA is an established technology and 
we refer readers to previously published papers on the matter. 
 
• Fig 4 -Central findings (variability mRNA/protein) are somehow presented very 
underwhelmingly with very few examples named – why not choose a plot that shows variation 
for each of their calculated values? 
 
Figure 4A follows the standard visualization of the dependency of mean and variation in single 
cell experiments. More detailed overviews of the expression profiles (which show variation) can 
be found in Supplementary Figures 2 and 4. Figure 4B mimics this style of 4A to allow for an 
easy comparison between RNA and protein variation. We improved the layout of the figure 
further, but think that its simplistic representation of information is not per se bad. It rather 
makes the information more accessible to the reader. 
For readers that are interested in any particular gene we now include a Supplementary Figure 
that shows all genes labeled (Suppl. Fig. 8). 
 
• Fig. 1c shows only 4 proteins are shown, Figure S2, and Table S1 summarizes   
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Reviewer #2 (Remarks to the Author): 
 
The authors report single-cell protein and RNA co-profiling (SPARC) for simultaneously 
measuring global mRNA and large sets of intracellular protein in single cells. With SPARC 
analysis they demonstrated that mRNA and protein measurements in single cells provide 
different and complementary information regarding cell states. However, major concerns for this 
study lack the novelty for SPARC which simply combined two well-established Smart-seq2 for 
RNA analysis and PEA for protein analysis as well as sufficient performance evaluation of 
SPARC. 
 
In recent years there are many methods reported for simultaneous analysis of protein and RNA 
(Nat Methods 2016, 13, 269; Nat Biotech 2017, 35, 936; Cell Syst 2018, 7, 398; Cell Syst 2018, 
6, 531; Nat Commun 2019, 10, 3544) including one study from author group (Cell Reports 2016, 
14, 380-389). Systematic performance comparison with at least one existing method is required 
to validate SPARC in terms of sensitivity, accuracy, reproducibility, and quantitative dynamic 
range. Modification of current Smart-seq2 method is not novel with incremental improvement in 
performance.  
 
In principle, SPARC is the combination of two existing protocols. It is nevertheless the very first 
technology to ever quantify the entire transcriptome as well as dozens of proteins independent 
of protein localization in the exact same single cells. This combination of technologies has never 
been successfully executed before and came with its own technical challenges that had to be 
overcome by the authors. In the table below we compare different recent technologies and show 
how SPARC outperforms existing competitors. 
 
Reference	 Acronym	

or	short	
descriptio

n	

RNA	detection	 Protein	detection	 Major	Limitations	

Targeted	RNA	and	protein	detection,	channel	limited	

Frei,	et	al.	
2016	

PLAYR	 Targeted,	
proximity	ligation	
assay,	cytometry	
(limited	by	
channels,	5	to	10)	
or	CyTOF	(limited	
by	channels,	40	to	
max.	135	genes)	

Targeted,	antibodies,	
CyTOF	(limited	by	
channels,	40	to	max.	
135	genes)	

Probes	needed	for	RNA	
detection,	need	for	highly	
specific	antibodies,	limited	by	
available	channels	(both	RNA	
and	protein),	fixed	cells,	semi-
quantitative1,2,3	

Schulz,	et	
al.	2017	

Imaging	
mass	
cytometry	

Targeted,	bDNA	
(metal-oligo),	
CyTOF	(limited	by	
channels,	40	to	
max.	135	genes)	

Targeted,	antibodies	
(metal-conjugated),	
CyTOF	(limited	by	
channels,	40	to	max.	
135	genes)	

Probes	needed	for	RNA	
detection,	need	for	highly	
specific	antibodies,	limited	by	
available	channels	(both	RNA	
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and	protein),	fixed	cells,	semi-
quantitative1,2,3	

Popovic,	et	
al.	2018	

Tagging	
with	
fluorescent	
protein	

Targeted,	smFISH	
using	bDNA	
(limited	by	
channels)	

Targeted,	genetically	
GFP-tagged	proteins	
(1	gene	per	
experiment,	no	
parallelization),	
independent	
quantification	using	
antibodies	

Probes	needed	for	RNA	
detection,	Either	only	1	
protein	per	experiment	
(genetics,	GFP)	or	semi-
quantitative1,2,3		with	need	for	
highly	specific	antibodies,	
RNA	detection	limited	by	
channels,	fixed	cells	

Targeted	RNA	and	protein	detection,	qPCR-based	

Darmanis,	
et	al.	2016		

Combined	
PEA	and	
qPCR	

Targeted,	
microfluidic	qPCR	

Targeted,	proximity	
extension	assay,	
microfluidic	qPCR	

Probes	needed	for	RNA	
detection,	semi-quantitative1	

Whole	transcriptome	and	targeted	cell	surface	protein	detection	

Peterson,	
et	al.		2017	

REAP-seq	 Droplet	
microfluidics	
based	scRNA-seq	

Targeted,	DNA-labeled	
antibodies,	dozens	to	
hundreds	of	genes,	
cell	surface	proteins	
only	

Cell	surface	proteins	only,	
need	for	highly	specific	
antibodies,	semi-quantitative1	

Stoeckius,	
et	al.	2017	

CITE-seq	 Droplet	
microfluidics	
based	scRNA-seq	

Targeted,	DNA-labeled	
antibodies,	dozens	to	
hundreds	of	genes,	
cell	surface	proteins	
only	

Cell	surface	proteins	only,	
need	for	highly	specific	
antibodies,	semi-quantitative1	

Whole	transcriptome	and	targeted	intra-cellular	protein	detecti-on	

Gerlach,	et	
al.	2019	

RAID	 Well-plate	based	
scRNA-seq	

Targeted,	antibodies	
(RNA-conjugated),	
few	genes	

Fixed	cells,	few	proteins	only	
(N=6,	up-scaling	unclear),	
semi-quantitative1	

Reimegård,	
et	al.	2019	
(this	study)	

SPARC	 Droplet	
microfluidics	
based	scRNA-seq	

Targeted,	proximity	
extension	essay,	
targeted,	many	dozens	
(~100)	of	genes,	
easily	scalable	

Semi-quantitative1	



12 

Katzenelen
-bogen,	et	
al.	2020	

INs-seq	 Well-plate	or	
droplet	
microfluidics	
based	scRNA-seq	

Targeted,	
fluorophore-
conjugated	antibodies,	
FACS-based	
quantification	(limited	
by	channels),	few	
genes	

Fixed	cells	(improved	
fixation),	few	proteins	only,	
limited	by	available	channels	
(~10),	semi-quantitative1	

1	protein	quantification	is	semi-quantitative	due	to	variable	antibody	affinity	(abundances	compare	
across	cells	but	not	across	genes)	
2	only	applies	to	one	of	the	alternative	methods	presented	
3	RNA	quantification	is	semi-quantitative	due	to	variable	probe	affinity	(abundances	compare	across	
cells	but	not	across	genes)	

 
 
Minor comments: 
1. In page 3 it is not clear why 89 proteins out of the panel of 96 proteins had detectable levels 
in single cells, while only 87 proteins in the 100 cell control. Please explain this. 
 
The difference is based on the detection of cell cycle specific proteins that are expressed in 
subset of single cells that are in the cognate cell cycle. In the 100 cell control, only a small 
fraction of cells are in each cycle, the protein signal is diluted and under the limit of detection. 
 
2. In page 11, significant protein loss may occur due to substantial surface absorption when cell 
lysate containing the protein supernatant is transferred to a new 96-well PCR-plate. Evaluation 
of protein recovery at the single-cell level for this transfer is needed for precise quantification. 
 
We agree with the reviewer that some level of protein loss can occur due to surface absorption. 
We have not measured the extent of protein loss in this study, but in a previous publication 
(Darmanis et al Cell Reports 2016), we showed that split single cell protein measurements are 
highly reproducible and correlated. Moreover, in this study, we show that 100-cell replicates are 
highly reproducible. Taken together, we are confident that protein loss is not driving variation in 
protein expression.  
 
Reviewer #3 (Remarks to the Author): 
 
The authors measured the abundances of mRNAs and proteins in single cells as they undergo 
differentiation, and used the data to explore the covariation of transcripts and proteins. They 
also examined the ability to identify the target genes of TFs based on the correlation between 
TFs and mRNAs and found that protein abundances of TFs are much more predictive of TF 
target genes. Furthermore, they report that protein expression variation is lower than mRNA 
variation. 
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I found the study interesting and the conclusions generally well substantiated. I particularly like 
the requirement for pairwise protein detection, which ensures higher specificity compared to 
methods that use a single antibody per protein. I have a few suggestions to further strengthen 
the conclusions and their description: 
 
1) It seems to me that the major methodological advance of SPARC over Darmanis, S. et al. 
(Ref. 11) is replacing the PCR readout with Smart-seq2. I think stating this explicitly will be 
helpful for clarifying the methodological advance. 
 
We agree with this assessment and now specifically highlight this advance in the main text. 
“mRNA levels were recorded using a modified Smart-seq2 protocol enabling sensitive 
expression measurements of the full-length transcripts. The use of Smart-seq2 replaces a 
targeted, multiplexed qPCR approach described previously.” 
 
2) Measurement noise can have large and decisive influence on interpreting protein - RNA 
correlations https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005535 The 
authors should incorporate reliabilities in their estimates or at least acknowledge the influence of 
noise. Note that measurement noise might contribute to the higher correlations for the 
pseudotime trends since some of the noise is averaged and reduced. 
 
We agree that differences in technical variation can impact these analyses and we now highlight 
this limitation in the Discussion. It is, however, interesting to notice that we observe clear 
covariations between individual targets on the RNA level, including highly and lowly expressed 
ones, but specifically not with the factor itself (see comments to reviewer 1). This lends 
evidence to the notion that biological effects such as covariation as a result of transcription 
factor co-targeting can be seen on the RNA level, but that target RNAs for biological reasons 
covary with the protein of transcription factor only. 
 
Text added: 
Results from single-cell mass spectrometry (Specht, et al. 2019) support these results. We note 
that our measurements are not corrected for technical measurement noise, and that 
incorporating reliability estimates for RNA and protein measurements may provide an even 
more acute view of mRNA-protein relationships (Franks et al 2019). 
 
3) The lower variability of the protein levels seems consistent with our observations of lower 
protein variability in Figure 5 and Figure S3 of 
https://www.biorxiv.org/content/10.1101/665307v3. These observations use different data and 
analysis and mutually support each other. The author may want to discuss this connection. 
 
We thank the reviewer for pointing out the interesting and relevant study. We have referred to 
the publication in the discussion. 
 
4) This description in the introduction is a bit simplistic 
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"While bulk sample measurements generally report good correlation between mRNA and 
protein expression, little is known about the extent of correlation at cellular resolution in systems 
at steady-state or undergoing a dynamic transition." 
Some of the referenced studies reported much larger correlations than other referenced studies, 
and some of these differences are due to considering or not considering measurement noise as 
well as to computing the correlations across genes or across conditions. The authors may want 
to be a bit more specific in their description and what is meant by a "good correlation". 
 
We agree with the reviewer that our statement regarding correlation was over simplistic. We 
accordingly removed the sentence as we do not think that a summary of a fairly extensive and 
at times contradictory body of work is pertinent in the introduction. 
 
Sentenced removed: 
While bulk sample measurements generally report good correlation between mRNA and protein 
expression2, 4-7, little is known about the extent of correlation at cellular resolution in systems at steady-
state or undergoing a dynamic transition. 
  
 
5) The paper is clearly written and generally easy to follow. At some places, it can benefit from 
replacing qualitative statements with more exact quantitative statements, e.g., "large sets of 
intracellular protein" with  "sets of about 100 intracellular proteins". 
 
While the set we profile contains close to 100 proteins, the method itself can be scaled to 
measure more. However, we clarified the number of proteins measured at different points 
throughout the text.  
 
Generally, I find this paper strong. After incorporating the suggestions listed above, it likely will 
become one of the strongest papers in the field. SPARC makes very significant improvements 
over competing methods such as CITE-seq and REAP-seq, and its application demonstrates 
important results, such as the  higher predictive potential of protein measurements for TF-
targets.    
  
 
Nikolai Slavov 
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript can be accepted as is. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have addressed my comments. 
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Please find attached detailed responses to the reviewers. 
---- 
 
REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript can be accepted as is. 
 
No additional rebuttal required. 
 
 
---- 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have addressed my comments. 
 
 
No additional rebuttal required. 
 


