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Supplementary Note 

Additional acknowledgement 

The Alzheimer’s Disease Sequencing Project (ADSP) is comprised of two Alzheimer’s Disease (AD) 
genetics consortia and three National Human Genome Research Institute (NHGRI) funded Large Scale 
Sequencing and Analysis Centers (LSAC). The two AD genetics consortia are the Alzheimer’s Disease 
Genetics Consortium (ADGC) funded by NIA (U01 AG032984), and the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, 
Lung, and Blood Institute (NHLBI), other National Institute of Health (NIH) institutes and other foreign 
governmental and non-governmental organizations. The Discovery Phase analysis of sequence data is 
supported through UF1AG047133 (to Drs. Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); 
U01AG049505 to Dr. Seshadri; U01AG049506 to Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and 
U01AG049508 to Dr. Goate and the Discovery Extension Phase analysis is supported through 
U01AG052411 to Dr. Goate, U01AG052410 to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri 
and Fornage. Data generation and harmonization in the Follow-up Phases is supported by U54AG052427 
(to Drs. Schellenberg and Wang). 

The ADGC cohorts include: Adult Changes in Thought (ACT), the Alzheimer’s Disease Centers (ADC), 
the Chicago Health and Aging Project (CHAP), the Memory and Aging Project (MAP), Mayo Clinic 
(MAYO), Mayo Parkinson’s Disease controls, University of Miami, the Multi-Institutional Research in 
Alzheimer’s Genetic Epidemiology Study (MIRAGE), the National Cell Repository for Alzheimer’s 
Disease (NCRAD), the National Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA-
LOAD), the Religious Orders Study (ROS), the Texas Alzheimer’s Research and Care Consortium (TARC), 
Vanderbilt University/Case Western Reserve University (VAN/CWRU), the Washington Heights-Inwood 
Columbia Aging Project (WHICAP) and the Washington University Sequencing Project (WUSP), the 
Columbia University Hispanic- Estudio Familiar de Influencia Genetica de Alzheimer (EFIGA), the 
University of Toronto (UT), and Genetic Differences (GD). 

The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI) 
infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is 
supported by the National Institute on Aging (NIA) R01 grant AG033193. The CHARGE cohorts 
participating in the ADSP include the following: Austrian Stroke Prevention Study (ASPS), ASPS-Family 
study, and the Prospective Dementia Registry-Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in 
Communities (ARIC) Study, the Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study 
(ERF), the Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian 
Science Fond (FWF) grant number P20545-P05 and P13180 and the Medical University of Graz. The 
ASPS-Fam is funded by the Austrian Science Fund (FWF) project I904),the EU Joint Programme - 
Neurodegenerative Disease Research (JPND) in frame of the BRIDGET project (Austria, Ministry of 
Science) and the Medical University of Graz and the Steiermärkische Krankenanstalten Gesellschaft. 
PRODEM-Austria is supported by the Austrian Research Promotion agency (FFG) (Project No. 827462) 
and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC research is carried out as a 
collaborative study supported by NHLBI contracts (HHSN268201100005C, HHSN268201100006C, 
HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, 
HHSN268201100011C, and HHSN268201100012C). Neurocognitive data in ARIC is collected by U01 
2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH 
(NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI examinations funded by R01-HL70825 
from the NHLBI. CHS research was supported by contracts HHSN268201200036C, 
HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, 
N01HC85083, N01HC85086, and grants U01HL080295 and U01HL130114 from the NHLBI with 
additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). 
Additional support was provided by R01AG023629, R01AG15928, and R01AG20098 from the NIA. FHS 
research is supported by NHLBI contracts N01-HC-25195 and HHSN268201500001I. This study was also 
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supported by additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and NINDS 
(R01 NS017950). The ERF study as a part of EUROSPAN (European Special Populations Research 
Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-
01947) and also received funding from the European Community's Seventh Framework Programme 
(FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the 
programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. 
QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by a joint grant from the 
Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-
RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, 
Rotterdam, the Netherlands Organization for Health Research and Development (ZonMw), the Research 
Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry 
for Health, Welfare and Sports, the European Commission (DG XII), and the municipality of Rotterdam. 
Genetic data sets are also supported by the Netherlands Organization of Scientific Research NWO 
Investments (175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal 
Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), and the 
Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) 
Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are grateful to their 
participants, faculty and staff. The content of these manuscripts is solely the responsibility of the authors 
and does not necessarily represent the official views of the National Institutes of Health or the U.S. 
Department of Health and Human Services. 

The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54 
HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome Center at the 
Uniformed Services University of the Health Sciences (U01AG057659), and the Washington University 
Genome Institute (U54HG003079). 

Biological samples and associated phenotypic data used in primary data analyses were stored at Study 
Investigators institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD, 
U24AG021886) at Indiana University funded by NIA. Associated Phenotypic Data used in primary and 
secondary data analyses were provided by Study Investigators, the NIA funded Alzheimer’s Disease 
Centers (ADCs), and the National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the 
National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, 
U24AG041689) at the University of Pennsylvania, funded by NIA, and at the Database for Genotypes and 
Phenotypes (dbGaP) funded by NIH. This research was supported in part by the Intramural Research 
Program of the National Institutes of health, National Library of Medicine. Contributors to the Genetic 
Analysis Data included Study Investigators on projects that were individually funded by NIA, and other 
NIH institutes, and by private U.S. organizations, or foreign governmental or nongovernmental 
organizations. 

The COPDGene project was supported by Award Number U01 HL089897 and Award Number U01 
HL089856 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of 
the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood 
Institute or the National Institutes of Health. COPDGene is also supported by the COPD Foundation 
through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer-
Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer, Siemens, and Sunovion. 

Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program was supported by the 
National Heart, Lung and Blood Institute (NHLBI). Genome Sequencing for "NHLBI TOPMed: Genetic 
Epidemiology of COPD (COPDGene) in the TOPMed Program” (phs000951) was performed at the 
University of Washington Northwest Genomics Center (3R01 HL089856-08S1) and the Broad Institute of 
MIT and Harvard (HHSN268201500014C). Core support including centralized genomic read mapping and 
genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics 
Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core support including 



 5 

phenotype harmonization, data management, sample-identity QC, and general program coordination were 
provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract 
HHSN268201800001I). We gratefully acknowledge the studies and participants who provided biological 
samples and data for TOPMed. 

The probabilistic model for genetic variables. As a proof of concept, we demonstrate the exchangeability 
of the proposed sequential knockoff generator for multivariate Gaussian distribution. The application of the 
proposed method to genotype dosage data is an approximation, and we demonstrate the practical 
performance of the proposed method by empirical studies.  

The knockoff generator introduced in the paper is proposed based on a multivariate Gaussian approximation. 
Specifically, let 𝐺 = #𝐺!, ⋯ , 𝐺"&

# be the collection of 𝑝 genetic variants. We assume a multivariate normal 
model for 𝐺: 𝐺~𝑁(𝜇, Σ). Based on the known haplotype block structure in the human genome, we also 
assume the covariance matrix Σ is block diagonal, i.e.,  

Σ = .
Σ!! 0

⋱
0 Σ$$

1,	 

where each Σ%% 	(1 ≤ 𝑙 ≤ 𝐿) is a 𝑘% by 𝑘% matrix. This is to say, if we divide the genome into	𝐿	(𝐿 ≤ 𝑝	) 
contiguous non-overlapping regions/blocks, and use Φ!, ⋯ ,Φ$  to denote the set of genetic variants 
contained in each region respectively and let 𝑘% =	 |Φ%|	(1 ≤ 𝑙 ≤ 𝐿), then with appropriately spaced and 
sized regions, we may use a model in which the variants from different regions are independent to each 
other as an approximation to the underlying correlations structure. Let Θ =	Σ&! be the precision matrix. It 
is easy to see that Θ is also a block diagonal matrix. For each variant 𝑗, let 𝐵' =	 =𝑗( ∈ [𝑝], 𝑗( ≠ 𝑗 ∶ 	Θ''! ≠
0C. Then conditional on the variants =𝐺'! , 𝑗( ∈ 𝐵' 	C, the variant 𝐺' is independent of the other variants. Based 
on our assumption, if 𝑗 ∈ Φ% for some 𝑙, then 𝐵' ⊂ Φ%. 

We also introduce the following notation: if 𝐺 is a vector of 𝑝 random variables, for any 𝐴 ⊂ [𝑝], 𝐺) is 
defined to be the column vector #𝐺'&'∈). 

When the model parameters are known, we claim that if we apply the Algorithm 1 Sequential Conditional 
Independent Pairs (Single Knockoff) to this model, the following claims hold at each step 𝑗	(1 ≤ 𝑗 ≤ 𝑝):  

1. When sample 𝐺F'  from ℒ#𝐺'H𝐺&' , 𝐺F!:('&!)& (with the convention that for 𝑗 = 1, we sample from 
ℒ#𝐺'H𝐺&'&), it becomes sampling 𝐺F' from 𝑁#𝜇I' , 𝜎I'.&, where 𝜇I' is a linear combination of variants 
𝐺/" and 𝐺F/"∩['&!] if 𝑗 ∈ Φ% (for 𝑗 = 1, it is only 𝐺/"). 

2.  #𝐺, 𝐺F!:'& jointly follow a multivariate Gaussian distribution, and if we denote the precision matrix 
of this distribution by Θ('3"), then for any 𝑠 ∈ Φ%, 𝑡 ∈ Φ4 with 𝑙 ≠ 𝑚, Θ56

('3") = 0, Θ5,(63")
('3") = 0 

when 𝑡 ≤j, Θ(53"),6
('3") = 0 when 𝑠 ≤j, and Θ(53"),(63")

('3") =0, when both 𝑠 ≤j and 𝑡 ≤j.  

The claims can be shown by induction. It is easy to see that the claims hold when 𝑗 = 1. Assume the claims 
hold up to step 𝑗. Then at step 𝑗 + 1, as #𝐺, 𝐺F!:'& follows a multivariate normal distribution, the conditional 
distribution of 𝐺'3! given #𝐺&('3!), 𝐺F!:'& is again a normal one. If we denote the mean of this conditional 
distribution as 𝜇I('3!) , then 𝜇I('3!)  should be a linear function of 𝐺8#$%

(#$') with 𝐵'3!
('3") = O𝑗( ≠ 𝑗 +

1:	Θ'3!,'!
('3") ≠ 0, 1 ≤ 𝑗( ≤ 𝑝Q and 𝐺F89#$%

(#$') with 𝐵F'3!
('3") = O𝑗( − 𝑝:	Θ'3!,'!

('3") ≠ 0, 𝑝 < 𝑗( ≤ 𝑝 + 𝑗Q. Based on the 

second induction hypothesis at step 𝑗, if 𝑗 + 1 ∈ Φ% for some 𝑙, then 𝐺8#$%
(#$') ⊂ Φ% and 𝐺F89#$%

(#$') ⊂ Φ% ∩ [𝑗]. 

Therefore, the first induction hypothesis still holds at step 𝑗 + 1. 
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To show the second part, without loss of generality, we can switch the order of the variables to make 𝐺'3! 
the last variable, and the corresponding precision matrix is denoted as 

ΘU('3") = V
ΘU!
('3") �̅�'3!
�̅�'3!# Θ'3!,'3!

('3") Y, 

where ΘU!
('3") is a 𝑝 + 𝑗 − 1 by 𝑝 + 𝑗 − 1 matrix obtained by removing the (𝑗 + 1)st column and  (𝑗 + 1)st 

row from Θ('3"), �̅�'3! is a column vector of length 𝑝 + 𝑗 − 1,  obtained by removing the (𝑗 + 1)st element 
from the (𝑗 + 1)st column of Θ('3"), and Θ'3!,'3!

('3")  is the (𝑗 + 1)st diagonal element of Θ('3"). Then after 
we sample 𝐺F'3!  independently from ℒ#𝐺'3!H𝐺&('3!), 𝐺F!:'& , the joint distribution of 
#𝐺&('3!), 𝐺F!:' 	, 𝐺'3!, 𝐺F'3!& is still a multivariate normal one, and its precision matrix is  

ΘU('3"3!) =

⎣
⎢
⎢
⎢
⎡ΘU!

('3") + ]Θ'3!,'3!
('3") ^

&!
�̅�'3!�̅�'3!# �̅�'3! �̅�'3!

�̅�'3!# Θ'3!,'3!
('3") 0

�̅�'3!# 0 Θ'3!,'3!
('3")

⎦
⎥
⎥
⎥
⎤
. 

Based on this, after rearrange the order of variables, we can get the precision matrix of the joint distribution 
of #𝐺, 𝐺F!:('3!)	&, which is denoted as Θ('3"3!). Based on the second induction hypothesis, we still have for 
any 𝑠 ∈ Φ% , 𝑡 ∈ Φ4  with 𝑙 ≠ 𝑚, Θ56

('3"3!) = 0, Θ5,(63")
('3"3!) = 0 when 𝑡 ≤j+1, Θ(53"),6

('3"3!) = 0 when 𝑠 ≤j+1, 

and Θ(53"),(63")
('3"3!) =0, when both 𝑠 ≤j+1 and 𝑡 ≤j+1. This finishes the proof for the two claims. A similar 

argument can also be applied to the multiple knockoffs. That is, if a same model is imposed on the original 
variables, then when applying Algorithm 2 to generate knockoffs, the conditional distribution is a normal 
one, and conditional on the nearby variants and their already constructed knockoffs, the 𝑗th variable is 
independent of the other original and knockoff variables.  

In practice, as the model parameters are unknown, we use the following methods to estimate the model 
parameters, and approximately sample from the conditional distribution ℒ#𝐺'H𝐺&' , 𝐺F!:('&!)& at each step: 

1. Estimate the conditional mean by running a regression. Based on the first claim, the conditional 
mean should be a linear function of the nearby variants (those that belong to the same LD block) 
and their knockoffs, so we can estimate the conditional mean by regressing 𝐺' on those variables. 
In this paper, we choose to include the variants in a nearby region (within 200kb), under the 
assumption that such a region is large enough to cover an LD block. 

2. We did not estimate the conditional variance, instead, we permute the residuals as an approximation 
to sampling from the conditional distribution. 

It is worthy to note that when the size of the blocks is large enough, we may think that such a model is a 
reasonable approximation to the true correlation structure of genetic variants. However, the larger the block, 
the higher the computational cost. To make a trade-off between the computational cost and model accuracy, 
in this paper we set the size of the block to be about 200kb (+/-100kb from the target variant), as the typical 
LD block is less than 100kb. Within these blocks LD decreases slowly with physical distance, but between 
blocks LD decays rapidly1.   
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Proof of the exchangeability property of the sequential model for multiple knockoffs. Let 𝐺 =
(𝐺!, ⋯ , 𝐺") be 𝑝 original explanatory variables (i.e. genetic variants in our case), also denoted as 𝐺F:; 𝐺F; =
#𝐺F!4, ⋯ , 𝐺F"4&, 1	 ≤ 𝑚 ≤ 𝑀, be 𝑀	(𝑀 ≥ 2) groups of knockoff features. 𝜎 = (𝜎')!<'<" is a collection of 𝑝 
permutations over the set of integers {0, 1,⋯ ,𝑀}, with each 𝜎' corresponding to an original feature	𝑋'. The 
variables after swapping are defined as (𝐺F:, 𝐺F!, ⋯ , 𝐺F=)>?@A(B) ∶=	(  𝑈:, 𝑈!, ⋯ , 𝑈=) , with 𝑈'; =

𝐺F'
B#(4) for all 1 ≤ 𝑗 ≤ 𝑝, 1 ≤ 𝑚 ≤ 𝑀. The extended exchangeability condition for multiple knockoffs is 

defined as follows. 

Definition 1. The multiple knockoffs  (𝐺F:, 𝐺F!, ⋯ , 𝐺FC) satisfy the extended exchangeability condition if  
#𝐺F:, 𝐺F!, ⋯ , 𝐺C&5DE"(B) follows the same distribution as #𝐺F:, 𝐺F!, ⋯ , 𝐺FC& for any 𝜎. 

We prove that if we generate multiple knockoffs by applying Algorithm 2, the extended exchangeability is 
satisfied. We denote the probability mass function (PMF) of (𝐺!:", 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= )  as 
ℒ#𝐺&' , 𝐺' , 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= &. Our argument is based on induction with the following induction hypothesis: 
after 𝑗  steps, for all 1 ≤ 𝑙 ≤ 𝑗 , the variables #𝐺F%:, 𝐺F%!, ⋯ , 𝐺F%C&  are exchangeable with respect to any 
permutation 𝜎% over the set of integers {0, 1,⋯ ,𝑀} in the joint distribution ℒ#𝐺!:", 𝐺F!:'! , ⋯ , 𝐺F!:'C &. 

It is easy to check the induction hypothesis is true when 𝑗 = 1. Next, assuming the induction hypothesis 
holds for the first 𝑗 − 1, we show that it also holds after 𝑗 steps. At step 𝑗, 𝐺F'!, ⋯ , 𝐺F'= are conditionally 
independent and follow the same distribution. The conditional PMF of 𝐺F'

(!)given 𝐺!:", 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!=  is  

ℒ#𝐺&' , 𝐺F'!, 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= 	&
∑ ℒ#𝐺&' , 𝑢, 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= 	&F

. 

Then the joint PMF of #𝐺!:", 𝐺F!:'! , ⋯ , 𝐺F!:'= & is the product of the conditional PMF with the joint PMF of 
#𝐺!:", 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= &: 

∏ ℒ#𝐺&' , 𝐺F';, 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= 	&C
4G:

#∑ ℒ#𝐺&' , 𝑢, 𝐺F!:'&!! , ⋯ , 𝐺F!:'&!= 	&F &
C . 

The PMF remains invariant with respect to any permutation of #𝐺F':, 𝐺F'!, ⋯ , 𝐺F'=&. Based on the induction 
hypothesis, we also have for any 𝑙 < 𝑗 , the joint distribution ℒ  is symmetric in #𝐺F%:, 𝐺F%!, ⋯ , 𝐺F%=&. 
Combining these two facts, the induction hypothesis holds after 𝑗 steps. 

  



 8 

Proof of FDR control. For KnockoffScreen, we construct multiple groups of knockoff features and 
introduce a new feature importance statistic 𝜏/)" = 𝑇/)"

(:) −median
!<4<C

𝑇/)"
(4) instead of 𝑇/)"

(:) − 𝑇/)"

(!) , where ΦH% 
denotes a window on the genome. In this section, we show what with the newly introduced feature important 
statistic, the method still leads to valid FDR control. 

Let ΦH%%% , ΦH*%* , ⋯ ,ΦH+%+ be a set of non-overlapping windows on the genome. Recall that each window 
ΦH,%, 	(1 ≤ 𝜔 ≤ 𝑊)  is defined to be ΦH,%, = {𝑗:	𝑘I ≤ 𝑗 ≤ 𝑙I} ⊂ [𝑝] . In other words, ΦH,%, ’s are 
disjoint subsets of [𝑝]. ℋ: =	 =𝑗: 𝐺' 	𝑖𝑠	𝑎	𝑛𝑜𝑛𝑐𝑎𝑢𝑠𝑎𝑙	𝑣𝑎𝑟𝑖𝑎𝑛𝑡C. For each window, we have introduced a 
pair of test statistics: 𝜏/),",

 and 𝜅/),",
. Similar to all types of knockoff filters, the FDR control is 

achieved based on the following key property of the test statistics.  

Property 1: conditioning on ]𝜏/),",
^
!<I<J

 and 𝜅/),",
’s for non-null windows, 𝜅/),",

 for null windows 
are i.i.d. random variables uniformly distributed on {0, 1,⋯ ,𝑀}. 

Under multiple knockoffs framework, the property can be view as an extension of the sign-flipping one 
corresponding to the single knockoffs.  

To show this property, we consider a collection of permutations ]𝜎/),",
^
!<I<J

 on {0, 1,⋯ ,𝑀} defined 
in the following way: if ΦH,%, ⊂ ℋ:  ,  then 𝜎/),",

 can be any permutation; otherwise, 𝜎/),",
 is the 

identity permutation. We will show the following two sets of random variables follow the same distribution: 

 

��𝜎/),",
]𝜅/),",

^�
!<I<J

, ]𝜏/),",
^
!<I<J

	� ~ ]]𝜅/),",
^
!<I<J

	 , ]𝜏/),",
^
!<I<J

	^ 

The proof is based on the following observation: for window ΦH,%,with test statistics 𝜏/),",
 and 𝜅/),",

, 
if we apply any permutation 𝜎/),",

 to variables and their knockoffs corresponding to the variants covered 
by the same window, then based on the permuted data set the test statistics are exactly 𝜏/),",

 and 

𝜎/),",
]𝜅/),",

^ . More precisely, if we define (𝑮�𝟎, 𝑮�𝟏, ⋯ , 𝑮�𝐌)>?@A ∶=	(  𝑼𝟎, 𝑼𝟏, ⋯ , 𝑼𝐌)  as 𝑼𝒋𝐦 =

𝑮�𝒋
𝝈𝚽𝒌𝝎𝒍𝝎

(𝒎)
 for 𝑗 ∈ ΦH,%,, and denote the test statistics for window ΦH,%, based on (𝑮�𝟎, 𝑮�𝟏, ⋯ , 𝑮�𝐌)>?@A 

as 𝜎�/),",
 and �̂�/),",

, then �̂�/),",
= 𝜏/),",

and 𝜎�/),",
=	𝜎/),",

]𝜅/),",
^. In combination with the 

fact that (𝑮�𝟎, 𝑮�𝟏, ⋯ , 𝑮�𝐌)>?@A and #𝑮�𝟎, 𝑮�𝟏, ⋯ , 𝑮�𝑴& follow the same distribution, we have 

��𝜎/),",
]𝜅/),",

^�
!<I<J

, ]𝜏/),",
^
!<I<J

� 

= 𝑓 ]#𝑮�𝟎, 𝑮�𝟏, ⋯ , 𝑮�𝐌&>?@A, 𝒀^ 

~𝑓 ]#𝑮�𝟎, 𝑮�𝟏, ⋯ , 𝑮�𝑴&, 𝒀^ 

= ]]𝜅/),",
^
!<I<J

, ]𝜏/),",
^
!<I<J

^ 

Here 𝑓 is a function describing how we calculate test statistics based on the data. This finishes the proof for 
Property 1. 

If Property 1 holds, the knockoff filter is a special case of the Second Sequential Testing Procedure 
discussed by Barber and Candès2, the FDR control can be obtained by using a similar argument as that used 
by Gimenez and Zou3. 
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Supplementary Tables 

 
Supplementary Table 1: Empirical evaluation of KnockoffScreen in the presence of population stratification driven by rare 
variants. Each cell presents the empirical FDR. 𝛾 quantifies the magnitude of population stratification; C: continuous trait; D: 
dichotomous trait. KnockoffScreen controls FDR at 0.10; Association Testing is based on the usual Bonferroni correction 
(0.05/number of tests), controlling FWER at 0.05 level. 

𝛾 Trait KnockoffScreen KnockoffScreen 10 PCs Association Testing Association Testing 10 PCs 

0 C 0.098 0.102 0.022 0.020 

0.25 C 0.084 0.096 0.094 0.024 

0.5 C 0.124 0.084 0.430 0.018 

0.75 C 0.196 0.068 0.926 0.028 

0 D 0.106 0.112 0.056 0.058 

0.25 D 0.108 0.100 0.184 0.042 

0.5 D 0.198 0.110 0.846 0.030 

0.75 D 0.312 0.090 0.996 0.034 
 

Supplementary Table 2: Tissue grouping of GenoNet scores. The GenoNet scores were trained using epigenetic annotations 
from the Roadmap Epigenomics Project across 127 tissues/cell types.  

Epigenome ID (EID) Standardized Epigenome name Group 

E062 Primary mononuclear cells fromperipheralblood Blood 

E034 Primary T cells fromperipheralblood Blood 

E045 Primary T cells e_ector/memory enriched from peripheral blood Blood 

E033 Primary T cells from cord blood Blood 

E044 Primary T regulatory cells fromperipheralblood Blood 

E043 Primary T helper cells fromperipheralblood Blood 

E039 Primary T helper naive cells fromperipheralblood Blood 

E041 Primary T helper cells PMA-I stimulated Blood 

E042 Primary T helper 17 cells PMA-I stimulated Blood 

E040 Primary T helper memory cells from peripheral blood 1 Blood 

E037 Primary T helper memory cells from peripheral blood 2 Blood 

E048 Primary T CD8+ memory cells from peripheral blood Blood 

E038 Primary T helper naive cells from peripheral blood Blood 

E047 Primary T CD8+ naive cells from peripheral blood Blood 

E029 Primary monocytes from peripheral blood Blood 

E031 Primary B cells from cord blood Blood 

E035 Primary hematopoietic stem cells Blood 

E051 Primary hematopoietic stem cells G-CSF-mobilized Male Blood 

E050 Primary hematopoietic stem cells G-CSF-mobilized Female Blood 

E036 Primary hematopoietic stem cells short term culture Blood 

E032 Primary B cells from peripheral blood Blood 
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E046 Primary Natural Killer cells from peripheral blood Blood 

E030 Primary neutrophils from peripheral blood Blood 

E112 Thymus Blood 

E093 Fetal Thymus Blood 

E115 Dnd41 TCell Leukemia Cell Line Blood 

E116 GM12878 Lymphoblastoid Cells Blood 

E123 K562 Leukemia Cells Blood 

E124 Monocytes-CD14+ RO01746 Primary Cells Blood 

E071 Brain Hippocampus Middle Brain 

E074 Brain Substantia Nigra Brain 

E068 Brain Anterior Caudate Brain 

E069 Brain Cingulate Gyrus Brain 

E072 Brain Inferior Temporal Lobe Brain 

E067 Brain Angular Gyrus Brain 

E073 Brain Dorsolateral Prefrontal Cortex Brain 

E017 MR90 fetal lung _broblasts Cell Line ConnectiveTissue 

E026 Bone Marrow Derived Cultured Mesenchymal Stem Cells ConnectiveTissue 

E049 Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells ConnectiveTissue 

E025 Adipose Derived Mesenchymal Stem Cell Cultured Cells ConnectiveTissue 

E023 Mesenchymal Stem Cell Derived Adipocyte Cultured Cells ConnectiveTissue 

E052 Muscle Satellite Cultured Cells ConnectiveTissue 

E055 Foreskin Fibroblast Primary Cells skin01 ConnectiveTissue 

E056 Foreskin Fibroblast Primary Cells skin02 ConnectiveTissue 

E057 Foreskin Keratinocyte Primary Cells skin02 ConnectiveTissue 

E058 Foreskin Keratinocyte Primary Cells skin03 ConnectiveTissue 

E028 Breast variant Human Mammary Epithelial Cells (vHMEC) ConnectiveTissue 

E114 A549 EtOH 0.02pct Lung Carcinoma Cell Line ConnectiveTissue 

E117 HeLa-S3 Cervical Carcinoma Cell Line ConnectiveTissue 

E119 HMEC Mammary Epithelial Primary Cells ConnectiveTissue 

E120 HSMM Skeletal Muscle Myoblasts Cells ConnectiveTissue 

E121 HSMM cell derived Skeletal Muscle Myotubes Cells ConnectiveTissue 

E122 HUVEC Umbilical Vein Endothelial Primary Cells ConnectiveTissue 

E125 NH-A Astrocytes Primary Cells ConnectiveTissue 

E126 NHDF-Ad Adult Dermal Fibroblast Primary Cells ConnectiveTissue 

E127 NHEK-Epidermal Keratinocyte Primary Cells ConnectiveTissue 

E128 NHLF Lung Fibroblast Primary Cells ConnectiveTissue 

E129 Osteoblast Primary Cells ConnectiveTissue 

E054 Ganglion Eminence derived primary cultured neurospheres FetalBrain 
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E053 Cortex derived primary cultured neurospheres FetalBrain 

E070 Brain Germinal Matrix FetalBrain 

E082 Fetal Brain Female FetalBrain 

E081 Fetal Brain Male FetalBrain 

E013 hESC Derived CD56+ Mesoderm Cultured Cells FetalTissue1 

E005 H1 BMP4 Derived Trophoblast Cultured Cells FetalTissue1 

E006 H1 Derived Mesenchymal Stem Cells FetalTissue1 

E083 Fetal Heart FetalTissue1 

E099 Placenta Amnion FetalTissue1 

E089 Fetal Muscle Trunk FetalTissue2 

E090 Fetal Muscle Leg FetalTissue2 

E092 Fetal Stomach FetalTissue2 

E088 Fetal Lung FetalTissue2 

E080 Fetal Adrenal Gland FetalTissue2 

E091 Placenta FetalTissue2 

E085 Fetal Intestine Small Gastrointestinal 

E084 Fetal Intestine Large Gastrointestinal 

E109 Small Intestine Gastrointestinal 

E106 Sigmoid Colon Gastrointestinal 

E075 Colonic Mucosa Gastrointestinal 

E101 Rectal Mucosa Donor 29 Gastrointestinal 

E102 Rectal Mucosa Donor 31 Gastrointestinal 

E110 Stomach Mucosa Gastrointestinal 

E077 Duodenum Mucosa Gastrointestinal 

E066 Liver Gastrointestinal 

E118 HepG2 Hepatocellular Carcinoma Cell Line Gastrointestinal 

E059 Foreskin Melanocyte Primary Cells skin01 InternalOrgans 

E061 Foreskin Melanocyte Primary Cells skin03 InternalOrgans 

E027 Breast Myoepithelial Primary Cells InternalOrgans 

E100 Psoas Muscle InternalOrgans 

E104 Right Atrium InternalOrgans 

E095 Left Ventricle InternalOrgans 

E105 Right Ventricle InternalOrgans 

E065 Aorta InternalOrgans 

E079 Esophagus InternalOrgans 

E094 Gastric InternalOrgans 

E086 Fetal Kidney InternalOrgans 

E097 Ovary InternalOrgans 
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E087 Pancreatic Islets InternalOrgans 

E098 Pancreas InternalOrgans 

E096 Lung InternalOrgans 

E113 Spleen InternalOrgans 

E063 Adipose Nuclei Muscle 

E108 Skeletal Muscle Female Muscle 

E107 Skeletal Muscle Male Muscle 

E078 Duodenum Smooth Muscle Muscle 

E076 Colon Smooth Muscle Muscle 

E103 Rectal Smooth Muscle Muscle 

E111 Stomach Smooth Muscle Muscle 

E002 ES-WA7 Cells StemCell 

E008 H9 Cells StemCell 

E001 ES-I3 Cells StemCell 

E015 HUES6 Cells StemCell 

E014 HUES48 Cells StemCell 

E016 HUES64 Cells StemCell 

E003 H1 Cells StemCell 

E024 ES-UCSF4 Cells StemCell 

E020 iPS-20b Cells StemCell 

E019 iPS-18 Cells StemCell 

E018 iPS-15b Cells StemCell 

E021 iPS DF 6.9 Cells StemCell 

E022 iPS DF 19.11 Cells StemCell 

E007 H1 Derived Neuronal Progenitor Cultured Cells StemCell 

E009 H9 Derived Neuronal Progenitor Cultured Cells StemCell 

E010 H9 Derived Neuron Cultured Cells StemCell 

E012 hESC Derived CD56+ Ectoderm Cultured Cells StemCell 

E011 hESC Derived CD184+ Endoderm Cultured Cells StemCell 

E004 H1 BMP4 Derived Mesendoderm Cultured Cells StemCell 
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Supplementary Figures 
 

Supplementary Figure 1 Distribution of power and false discovery proportion (FDP) at target FDR level 0.1 in simulation 
studies. The results are based on 1000 replicates and the same settings as in Figure 1. 
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Supplementary Figure 2: Empirical validation of the extended exchangeability for rare variants. We generated 10,000 
individuals with genetic data for a 200 kb region containing 1000 genetic variants, simulated using a coalescent model (COSI). To 
validate the extended exchangeability, we generated two knockoffs using the proposed algorithm and evaluated whether the second 
order (covariance between each pair of genetic variants) is exchangeable for both rare and common variants in the regions.  
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Supplementary Figure 3: Empirical validation of the extended exchangeability for common variants. We generated 10,000 
individuals with genetic data for a 200 kb region containing 1000 genetic variants, simulated using a coalescent model (COSI). To 
validate the extended exchangeability, we generated two knockoffs using the proposed algorithm and evaluated whether the second 
order (covariance between each pair of genetic variants) is exchangeable for both rare and common variants in the regions.  
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Supplementary Figure 4: KnockoffScreen application to the COPDGene study in TOPMed to identify variants associated 
with the FEV1/FVC ratio in Non Hispanic White (NHW). The top-left panel presents the Manhattan plot of p-values from the 
conventional association testing with Bonferroni adjustment (𝑝 < 0.05/number of tested windows) for FWER control. The bottom-
left panel presents the Manhattan plot of KnockoffScreen with target FDR at 0.1. The right panel presents a heatmap that shows 
stratified p-values of all loci passing the FDR=0.1 threshold, and the corresponding Q-values that already incorporate correction 
for multiple testing. The loci are shown in descending order of the knockoff statistics. For each locus, the p-values of the top 
associated single variant and/or window are shown indicating whether the signal comes from a single variant, a combined effect of 
common variants or a combined effect of rare variants. The names of those genes previously implicated by GWAS studies are 
shown in bold (names were just used to label the region and may not represent causative gene in the region). 
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Supplementary Figure 5: QQ plots for all tests, common variants tests, and rare variant tests included in the KnockoffScreen 
procedure for all datasets used in the analyses.  
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Supplementary Figure 6: The analysis of the ADSP and TOPMed data with the Benjamini–Hochberg procedure for FDR 
control. The left panel presents the Manhattan plot of adjusted p-values (Q-values; truncated at 10123 for clear visualization) from 
the conventional association testing with the Benjamini–Hochberg adjustment for FDR control. The right panel presents a heatmap 
that shows stratified p-values (truncated at 10123  for clear visualization) of all loci passing the FDR=0.1 threshold, and the 
corresponding adjusted p-values that already incorporate correction for multiple testing. For each locus, the adjusted p-values of 
the top associated single variant and/or window are shown indicating whether the signal comes from a single variant, a combined 
effect of common variants or a combined effect of rare variants. The names of those genes previously implicated by GWAS studies 
are shown in bold (names were just used to label the region and may not represent causative gene in the region). 
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Supplementary Figure 7: Comparison with HMM (S=12) stratified by minor allele frequency. We generated 10,000 
individuals with genetic data for a 200 kb region containing 1000 genetic variants, simulated using a coalescent model (COSI). We 
compared the proposed algorithm to HMM with number of states S=12 and evaluated whether the second order (correlation between 
each pair of genetic variants) is exchangeable. Each dot presents one variant/window. The left panels evaluate how the correlation 
structure of knockoffs is similar to that of the original variants; the right panels evaluate how the knockoffs preserve the correlation 
structure when one swaps a variant with its synthetic counterpart. 
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Supplementary Figure 8: Comparison with HMM (S=50) stratified by minor allele frequency. We generated 10,000 
individuals with genetic data for a 200 kb region containing 1000 genetic variants, simulated using a coalescent model (COSI). We 
compared the proposed algorithm to HMM with number of states S=50 and evaluated whether the second order (correlation between 
each pair of genetic variants) is exchangeable. Each dot presents one variant/window. The left panels evaluate how the correlation 
structure of knockoffs is similar to that of the original variants; the right panels evaluate how the knockoffs preserve the correlation 
structure when one swaps a variant with its synthetic counterpart. 
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